Features

Micropower, Latching Voltage Monitors in **SOT23-5**

General Description

The MAX834/MAX835 micropower voltage monitors contain a 1.204V precision bandgap reference, comparator, and latched output in a 5-pin SOT23 package. Using the latched output prevents deep discharge of batteries. The MAX834 has an open-drain, n-channel output driver, while the MAX835 has a push-pull output driver. Two external resistors set the trip-threshold voltage.

The MAX834/MAX835 feature a level-sensitive latch, eliminating the need to add hysteresis to prevent oscillations in battery-load-disconnect applications.

♦ Prevent Deep Discharge of Batteries

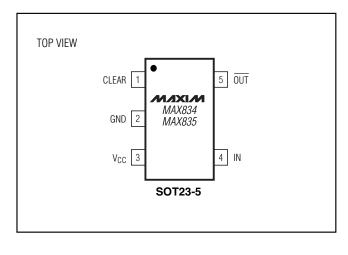
- ♦ Precision ±1.25% Voltage Threshold
- ♦ Latched Output (Once Low, Stays Low Until Cleared)
- ♦ SOT23-5 Package
- **♦ Low Cost**
- ♦ +2.5V to +11V Wide Operating Voltage Range
- ♦ < 2µA Typical Supply Current
- ♦ Open-Drain Output (MAX834)/Push-Pull Output (MAX835)

Applications

Precision Battery Monitors Load Switching Battery-Powered Systems Threshold Detectors

Ordering Information

PART	PIN-PACKAGE	TOP MARK
MAX834EUK-T	5 SOT23	AAAX
MAX835EUK-T	5 SOT23	AAAY


Note: All devices are specified over the -40°C to +85°C operating temperature range.

Devices are available in both leaded and lead-free packaging. Specify lead-free by changing "-T" with "+T" when ordering.

Typical Operating Circuit

V_{CC} (MAX834 ONLY) CLEAR LATCH -CLEAR OUT OUT MIXIM **MAX834** MAX835 GND VCC - V_{CC} 0.1µF

Pin Configuration

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} , OUT (MAX834), CLEAR to GND0.3V to +12V IN, OUT (MAX835) to GND0.3V to (V _{CC} + 0.3V)
INPUT Current
V _C C20mA
IN10mA
OUT Current20mA
V _{CC} Rate of Rise100V/µs

Continuous Power Dissipation (T _A = +70°C)	
5-Pin SOT23 (derate 7.1mW/C above +70°C	5)571mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.5V \text{ to } +11V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

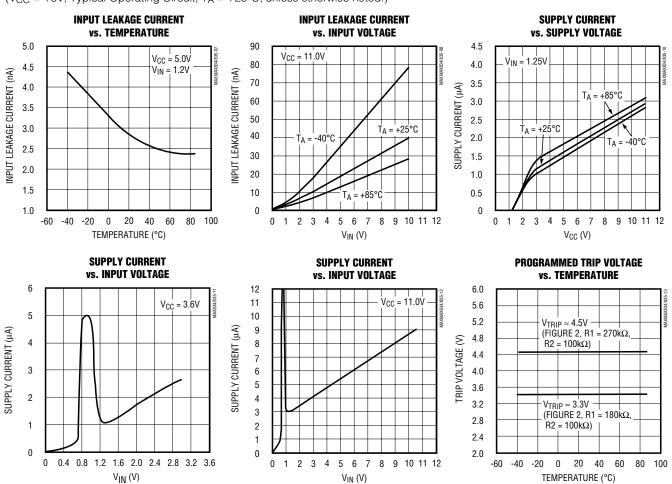
PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS	
Operating Voltage Range (Note 1)	V _C C				2.5		11.0	V	
		$V_{IN} = 1.6V$, $\overline{OUT} = 1.6V$, OU	V _{CC} = 3.6V	$T_A = +25$ °C		2.4	5	_	
				$T_A = T_{MIN}$ to T_{MAX}			10		
Supply Current	laa		V _{CC} = full o	V _{CC} = full operating range			15	^	
(Note 2)	Icc	V _{IN} = 1.25V, OUT	Voo = 3 6V	T _A = +25°C		1.1	4	μΑ	
		= high, V _{CLEAR} ≥ V _{CC} - 0.25V or	$V_{CC} = 3.6V$	$T_A = T_{MIN}$ to T_{MAX}			8		
		V _{CLEAR} ≤ 0.25V	V _{CC} = full o	perating range			13	<u> </u>	
Threshold Voltage	VTH	V _{IN} falling	$T_A = +25^{\circ}C$		1.185	1.204	1.215		
Threshold Voltage	VIH	VIIN TAIRING	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		1.169	1.204	1.231	V	
Threshold Voltage Hysteresis	VHYST	$V_{CC} = 5V$, $IN = low to high$			6		mV		
IN Operating Voltage Range (Note 1)	VIN			0		V _{CC} - 1	V		
IN Leakage Current (Note 3)	I _{IN}	V _{IN} = V _{TH}			±3	±12	nA		
Propagation Delay	tpL	V _{CC} = 5V, 50mV overdrive			80		μs		
Glitch Immunity		$V_{CC} = 5V, 100 \text{mV} \text{ c}$	overdrive			35		μs	
OUT Rise Time	t _{RT}	$V_{CC} = 5V$, no load	V _{CC} = 5V, no load (MAX835 only)			200		ns	
OUT Fall Time	t _{FT}	$V_{CC} = 5V$, no load (MAX834 pullup = $10k\Omega$)			480		ns		
Output Leakage Current (Note 4)	ILOUT	V _{IN} > V _{TH(MAX)} (MAX834 only)				±1	μΑ		
Output-Voltage High	Voh	V _{IN} > V _{TH(MAX)} , I _{SOURCE} = 500μA (MAX835 only)		V _{CC} - 0.5			V		
Output-Voltage Low	VoL	VIN < VTH(MIN), ISINK = 500µA				0.4	V		
CLEAR Input High Voltage	VCIH				2			V	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.5V \text{ to } +11V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

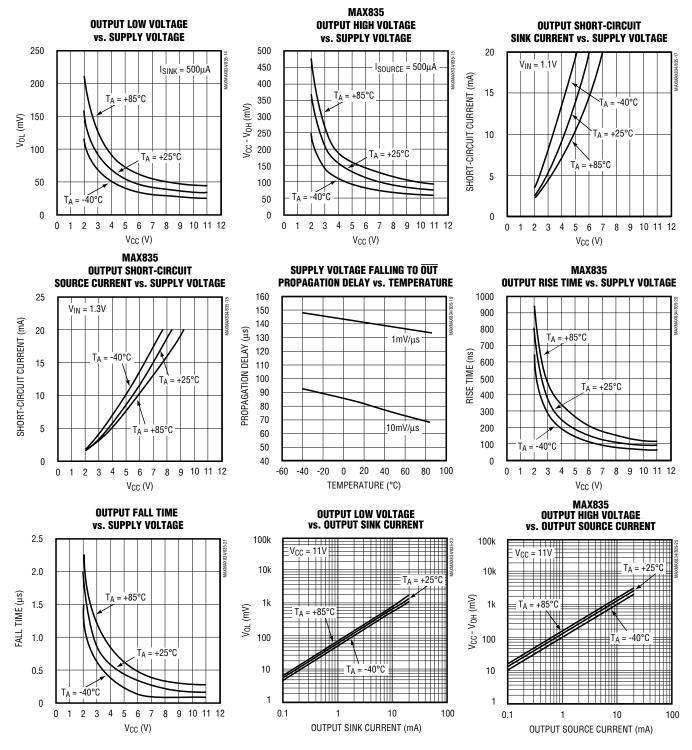
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLEAR Input Low Voltage	V _{CIL}				0.4	V
CLEAR Input Leakage Current	tCLEAR			±1	±100	nA
CLEAR Input Pulse Width	tCLR		1			μs

Note 1: The voltage-detector output remains in the correct state for V_{CC} down to 1.2V when V_{IN} ≤ V_{CC}/2.

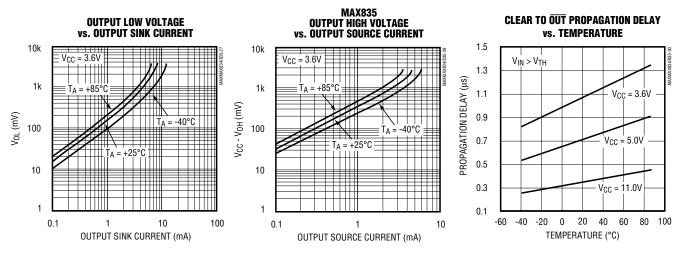

Note 2: Supply current has a monotonic dependence on VCC (see the Typical Operating Characteristics).

Note 3: IN leakage current has a monotonic dependence on V_{CC} (see the *Typical Operating Characteristics*).

Note 4: The MAX834 open-drain output can be pulled up to a voltage greater than V_{CC}, but may not exceed 11V.


Typical Operating Characteristics

(V_{CC} = +5V, Typical Operating Circuit, T_A = +25°C, unless otherwise noted.)


Typical Operating Characteristics (continued)

(V_{CC} = +5V, Typical Operating Circuit, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, Typical Operating Circuit, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION
1	CLEAR	Clear Input Resets the Latched Output. With $V_{\text{IN}} > V_{\text{TH}}$, pulse CLEAR high for a minimum of 1µs to reset the output latch. Connect to V_{CC} to make the latch transparent.
2	GND	System Ground
3	Vcc	System Supply Input
4	IN	Noninverting Input to the Comparator. The inverting input connects to the internal 1.204V bandgap reference.
5	OUT	Open-Drain (MAX834) or Push-Pull (MAX835) Latched Output. OUT is active-low.

Figure 1. Functional Diagram

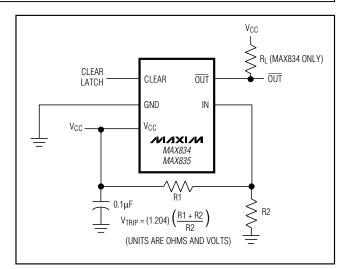


Figure 2. Programming the Trip Voltage (VTRIP)

Detailed Description

The MAX834/MAX835 micropower voltage monitors contain a 1.204V precision bandgap reference and a comparator with an output latch (Figure 1). The difference between the two parts is the structure of the comparator output driver. The MAX834 has an open-drain, n-channel output driver that can be pulled up to a voltage higher than VCC, but less than 11V. The MAX835's output is push-pull and can both source and sink current.

Programming the Trip Voltage (VTRIP)

Two external resistors set the trip voltage, VTRIP (Figure 2). VTRIP is the point at which the falling monitored voltage (typically VCC) causes $\overline{\text{OUT}}$ to go low. IN's high input impedance allows the use of large-value resistors without compromising trip voltage accuracy. To minimize current consumption, choose a value for R2 between 500k Ω and 1M Ω , then calculate R1 as follows:

R1 = R2 [(VTRIP / VTH) - 1]

where V_{TRIP} is the desired trip voltage and V_{TH} is the threshold voltage (1.204V). The voltage at IN must be at least 1V less than V_{CC} .

Latched-Output Operation

The MAX834/MAX835 feature a level-sensitive latch input (CLEAR), designed to eliminate the need for hysteresis in battery undervoltage-detection applications. When the monitored voltage (VMON) is above the programmed trip voltage (VTRIP) (as when the system battery is recharged or a fresh battery is installed), pulse CLEAR low-high-low for at least 1µs to reset the output latch (OUT goes high). When VMON falls below VTRIP, OUT goes low and remains low (even if VMON rises above VTRIP), until CLEAR is pulsed high again with VMON > VTRIP. Figure 3a shows the timing relationship between VMON, OUT, and CLEAR.

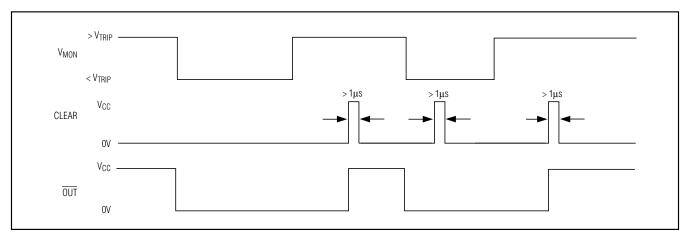


Figure 3a. Timing Diagram

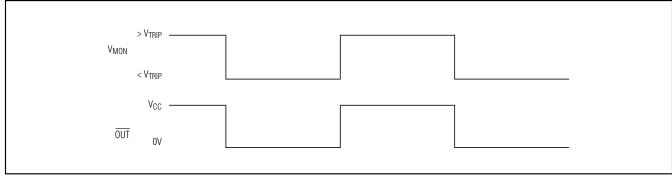


Figure 3b. Timing Diagram, CLEAR = V_{CC}

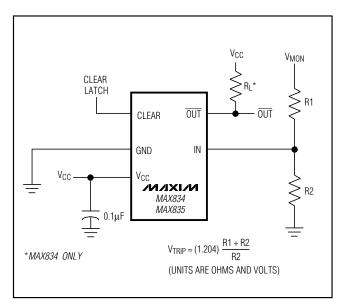


Figure 4. Monitoring Voltages Other than VCC

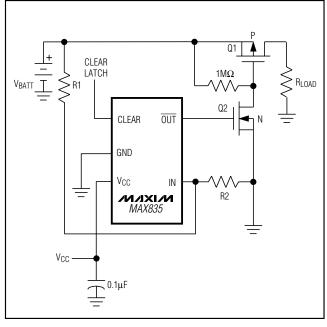


Figure 5. Load-Disconnect Switch

Monitoring Voltages Other than VCC

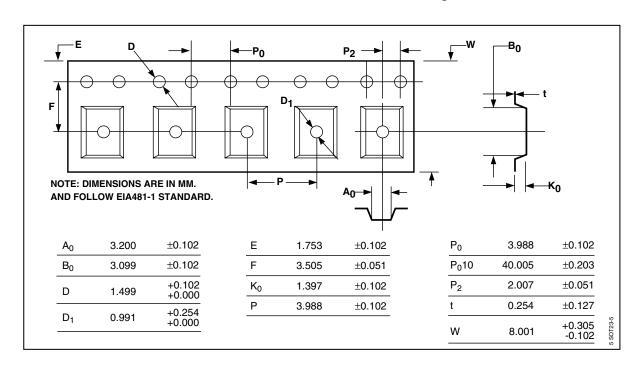
The *Typical Operating Circuit* for the MAX834/MAX835 monitors V_{CC}. Voltages other than V_{CC} can easily be monitored, as shown in Figure 4. Calculate V_{TRIP} as in the *Programming the Trip Voltage (V_{TRIP})* section. When monitoring voltages other than V_{CC}, ensure that the maximum value for V_{MON} is not exceeded:

 $V_{MON(MAX)} = (V_{CC} - 1) (R1 + R2) / R2$

Load-Disconnect Switch

The circuit in Figure 5 is designed to prevent a lead-acid battery or a secondary battery such as an NiCd, from sustaining damage through deep discharge. As the battery reaches critical undervoltage, \overline{OUT} switches low. Q1 and Q2 turn off, disconnecting the battery from the load. The MAX835's latched output prevents Q1 and Q2 from turning on again as the battery voltage relaxes to its open-circuit voltage when the load disconnects. CLEAR can be connected to a pushbutton switch, an RC network, or a logic gate to reset the latch when the battery is recharged or replaced.

____Chip Information


Package Information

TRANSISTOR COUNT: 74

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.		
5 SOT23	U5-1	21-0057		

Tape-and-Reel Information

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/96	Initial release	_
1	12/05	Added lead-free option to Ordering Information.	1
2	1/07	Fix limits in Electrical Characteristics and add lead-free part numbers.	1, 2
3	3/10	Updated Electrical Characteristics.	3

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.