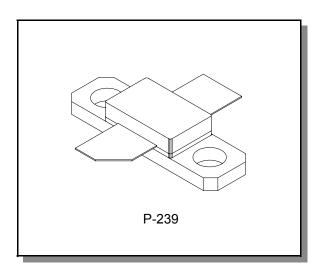
MAPLST0810-030CF


Features

- Designed for 865 to 960 MHz Broadband Commercial and Base Station Applications.
- Typical CW RF Performance at 960MHz, $26V_{DC}$:

 \blacksquare P_{OUT}: 30W (P_{1dB}) Gain: 18dB ■ Efficiency: 50%

- Ruggedness: 10:1 VSWR @ 30W CW, 26V, 925MHz
- High Gain, High Efficiency and High Linearity
- **Excellent Thermal Stability**

Package Style

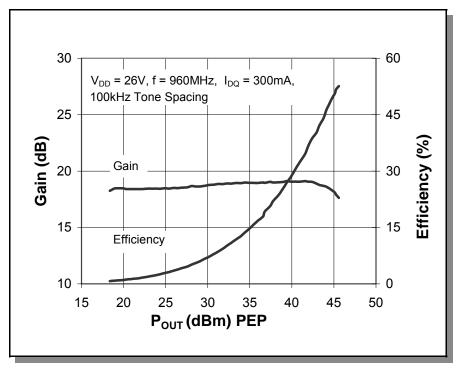
Maximum Ratings

Parameter	Symbol	Rating	Units
Drain—Source Voltage	V_{DSS}	65	V_{dc}
Gate—Source Voltage	V_{GS}	20	V_{dc}
Total Power Dissipation @ T _C = 25 °C	P_D	97	W
Storage Temperature	T _{STG}	-40 to +150	°C
Junction Temperature	TJ	+200	°C

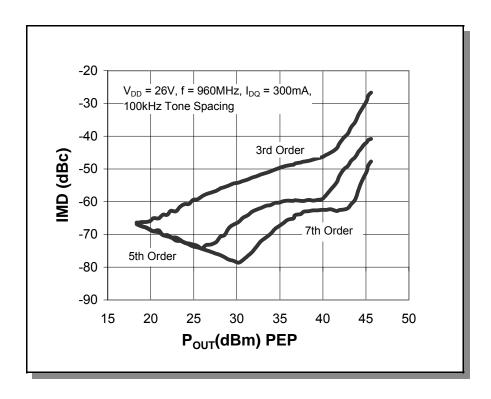
Thermal Characteristics

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{OJC}	1.8	°C/W

NOTE—CAUTION—MOS devices are susceptible to damage from electrostatic charge. Precautions in handling and packaging MOS devices should be observed.


5/14/04

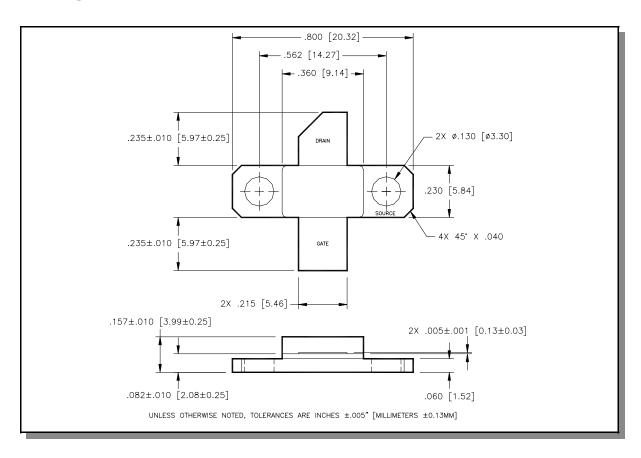
Preliminary


Characteristic	Symbol	Min	Тур	Max	Unit
DC CHARACTERISTICS @ 25°C					
Drain-Source Breakdown Voltage (V_{GS} = 0 Vdc, I_D = 20 μ Adc)	V _{(BR)DSS}	65	_	_	Vdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 26 \text{ Vdc}, V_{GS} = 0)$	I _{DSS}	_	_	1	μAdc
Gate—Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0)	I _{GSS}	_	_	3	μAdc
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 100 μ A)	$V_{GS(th)}$	2	_	4	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _D = 300 mA)	V _{DS(Q)}	_	4.0	_	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1 A)	V _{DS(on)}	_	0.20	_	Vdc
Forward Transconductance (V _{GS} = 10 Vdc, I _D = 1 A)	Gm	_	2.0	_	S
DYNAMIC CHARACTERISTICS @ 25°C					
Input Capacitance $(V_{DS} = 26 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{iss}	_	50	_	pF
Output Capacitance $(V_{DS} = 26 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C_{oss}	_	32	_	pF
Reverse Transfer Capacitance $(V_{DS} = 26 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C_{rss}	_	1.4	_	pF
RF FUNCTIONAL TESTS @ 25°C (In M/A-COM Test Fixture)					
Common Source Amplifier Gain (V_{DD} = 26 Vdc, I_{DQ} = 300 mA, f = 920 & 960 MHz, P_{OUT} = 30 W)	G _P	_	18	_	dB
Drain Efficiency $(V_{DD} = 26 \text{ Vdc}, I_{DQ} = 300 \text{ mA}, f = 920 \& 960 \text{ MHz}, P_{OUT} = 30 \text{ W})$	EFF (ŋ)	_	50	_	%
Input Return Loss (V _{DD} = 26 Vdc, I _{DQ} = 300 mA, f = 920 & 960 MHz, P _{OUT} = 30 W)	IRL	_	12	_	dB
Output VSWR Tolerance $(V_{DD} = 26 \text{ Vdc}, I_{DQ} = 300 \text{ mA}, f = 920 \& 960 \text{ MHz}, P_{OUT} = 30 \text{ W}, VSWR = 10:1, All Phase Angles at Frequency of Tests}$	Ψ	No Degradation In Output Power Before and After Test			

5/14/04

Preliminary

Graph 1. Power Gain and Drain Efficiency vs. Output Power



Graph 2. Intermodulation Distortion vs. Output Power

5/14/04

Preliminary

Package Dimensions

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

Visit www.macom.com for additional data sheets and product information.

■ North America: Tel. (800) 366-2266

Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

■ Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

