

9-bit parity generator

Datasheet - production data

Features

- High-speed:
 t_{PD} = 22 ns (typ.) at V_{CC} = 6 V
- Low power dissipation:
 I_{CC} = 4 μA (max.) at T_A = 25 °C
- High noise immunity:
 V_{NIH} = V_{NIH} = 28 % V_{CC} (min)
- Symmetrical output impedance: |I_{OH}| = I_{OL} = 4 mA (min.)
- Balanced propagation delays: $t_{PLH} \cong t_{PHL}$
- Wide operating voltage range:
 V_{CC} (opr) = 2 V to 6 V

- Pin and function compatible with 74 series 280
- ESD performance

HBM: 2 kVMM: 200 VCDM: 1 kV

Description

The M74HC280 is a high-speed CMOS 9-bit parity generator fabricated with silicon gate C²MOS technology.

It is composed of nine data inputs (A to I) and odd/even parity outputs (Σ ODD and Σ EVEN). The nine data inputs control the output conditions. When the number of high-level inputs is odd, Σ ODD outputs are kept high and Σ EVEN outputs are kept low. Conversely, when the number of high-level outputs is even, Σ EVEN outputs are kept high and Σ ODD outputs are kept low. The IC generates either odd or even parity making the application flexible. The word-length capability is easily expanded by cascading.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Table 1. Device summary

Order code	Temp. range	Package	Packing	Marking
M74HC280RM13TR	-55 °C to 125 °C	S014		74HC280
M74HC280YRM13TR ⁽¹⁾	-40 °C to 125 °C	SO14 (automotive grade)	Tana and rool	74HC280Y
M74HC280TTR	-55 °C to 125 °C	TSSOP14	Tape and reel	HC280
M74HC280YTTR ⁽¹⁾	-40 °C to 125 °C	TSSOP14 (automotive grade)		HC280Y

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

Contents M74HC280

Contents

1	Pin information
2	Functional description
3	Electrical characteristics
4	Package information
	4.1 SO14 package information
	4.2 TSSOP14 package information
5	Ordering information1
6	Revision history

M74HC280 Pin information

1 Pin information

Figure 1. Pin connection and IED logic symbols

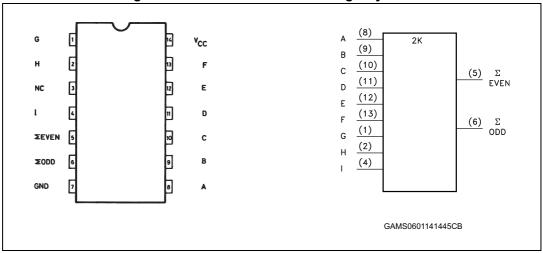


Table 2. Pin description

Pin no	Symbol	Name and function
5, 6	ΣEVEN, ΣODD	Parity outputs
8, 9, 10, 11, 12, 13, 1, 2, 4	A to I	Data inputs
3	NC	No connection
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage

2 Functional description

Tigure 2: Logic diagram

2 000

E 000

Figure 2. Logic diagram

Table 3. Truth table

Number of inputs A - I that are high	Outputs				
Number of inputs A - I that are high	ΣΕVΕΝ	ΣΟDD			
0, 2, 4, 6, 8	Н	L			
1, 3, 5, 7, 9	L	Н			

Input Output

GND GND

Figure 3. Input and output equivalent circuit

Electrical characteristics M74HC280

3 Electrical characteristics

"Absolute maximum ratings" are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to +7	
VI	DC input voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC output voltage	-0.5 to v _{CC} + 0.5	
I _{IK}	DC input diode current	±20	
I _{OK}	DC output diode current	120	
I _O	DC output current	±25	mA
I _{CC} or I _{GND}	DC V _{CC} or ground current	±50	
P _D	Power dissipation	500 ⁽¹⁾	mW
T _{stg}	Storage temperature	-65 to +150	°C
T _L	Lead temperature (10 sec)	300	

^{1. 500} mW at 65 °C; derate to 300 mW by 10 mW/°C from 65 °C to 85 °C

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit		
V _{CC}	Supply voltage		2 to 6		
V _I	Input voltage		0 to V _{CC}	V	
Vo	Output voltage	utput voltage			
T _{op}	Operating temperature		-55 to 125	°C	
		V _{CC} = 2.0 V	0 to 1000		
t _p , t _f	Input rise and fall time	V _{CC} = 4.5 V	0 to 500	ns	
		0 to 400			

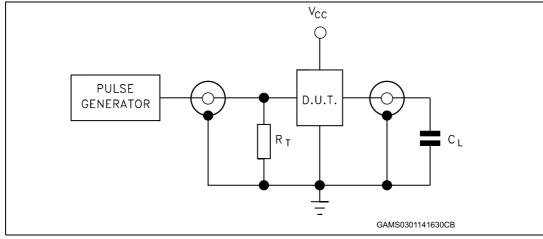
Table 6. DC specifications

		Test condition		Value							
Symbol	Parameter	Parameter V _{CC}		Т,	T _A = 25 °C		-40 to 85 °C		-55 to 125 °C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0		1.5			1.5		1.5		
V_{IH}	High level input voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
		2.0				0.5		0.5		0.5	
V_{IL}	Low level input voltage	4.5				1.35		1.35		1.35	٧
		6.0				1.8		1.8		1.8	
	2.0	I _O = -20 μA	1.9	2.0		1.9		1.9			
		4.5	I _O = -20 μA	4.4	4.5		4.4		4.4		
V _{OH}	High level output voltage	6.0	I _O = -20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O = -4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O = -5.2 mA	5.68	5.8		5.63		5.60		
		2.0	I _O = 20 μA			0.1		0.1		0.1	
		4.5	I _O = 20 μA			0.1		0.1		0.1	
V _{OL}	Low level output voltage	6.0	I _O = 20 μA			0.1		0.1		0.1	٧
vollage	4.5	I _O = 4.0 mA		0.17	0.26		0.33		0.40		
		6.0	I _O = 5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input leakage current	6.0	V _I = V _{CC} or GND			±0.1		±1		±1	μА
I _{CC}	Quiescent supply current	6.0	V _I = V _{CC} or GND			4		40		80	μА

Electrical characteristics M74HC280

Table 7. AC electrical characteristics ($C_1 = 50$ pF, Input $t_r = t_f = 6$ ns)

		Test condition	Value							
Symbol Parameter	Parameter	V 00	T _A = 25 °C		C	-40 to 85 °C		-55 to 125 °C		Unit
		V _{CC} (V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0		30	75		95		110	
t _{TLH} , t _{THL}	Output transition time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
	Propagation delay	2.0	-	80	200	-	250	-	290	
t _{PLH} , t _{PHL}	time (input to	4.5		26	40		50		58	ns
	ΣEVEN, ΣODD)	6.0		22	34		43		49	


Table 8. Capacitive characteristics

		Test condition		Value							
Sym	Parameter	V 00	Т	A = 25°0	C	-40 to	85 °C	-55 to	125 °C	Unit	
	V _{CC} (V	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max		
C _{IN}	Input capacitance			5	10		10		10		
C _{PD}	Power dissipation capacitance ⁽¹⁾	5.0	-	61		-		-		pF	

C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load (refer to test circuit). Average operating current can be obtained by the following equation:

I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}.

Figure 4. Test circuit

1. Legend: C_L = 50 pF or equivalent (includes jig and probe capacitance). R_T = Z_{OUT} of pulse generator (typically 50 Ω).

8/14 DocID1938 Rev 2

VCC INPUTS (A~1) 50% -GND THL .^tTLH · VOH 90% 50% IN-PHASE OUTPUT .VOL 10% • ^tPLH • tPHL +tTHL 90% 50% OUT-OF-PHASE OUTPUT 10% - VOL ^tPLH GAMS0601141607CB


Figure 5. Propagation delay time (f = 1 MHz; 50 % duty cycle)

Package information M74HC280

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 SO14 package information

Figure 6. SO14 package mechanical drawing

Table 9. SO14 package mechanical data

			Dime	nsions		
Ref		Millimeters			Inches	
	Min.	Тур.	p. Max. Min.		Тур.	Max.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1		45 °			45 °	
D	8.55		8.75	0.336		0.344
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8 °			8 °

Package information M74HC280

4.2 TSSOP14 package information

Figure 7. TSSOP14 package mechanical drawing

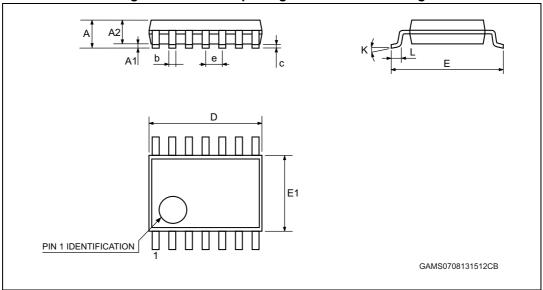


Table 10. TSSOP14 package mechanical data

	Dimensions								
Ref		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.2			0.047			
A1	0.05		0.15	0.002	0.004	0.006			
A2	0.8	1	1.05	0.031	0.039	0.041			
b	0.19		0.30	0.007		0.012			
С	0.09		0.20	0.004		0.0089			
D	4.9	5	5.1	0.193	0.197	0.201			
E	6.2	6.4	6.6	0.244	0.252	0.260			
E1	4.3	4.4	4.48	0.169	0.173	0.176			
е		0.65			0.0256				
K	0 °		8 °	0 °		8 °			
L	0.45	0.60	0.75	0.018	0.024	0.030			

5 Ordering information

Table 11. Order codes

Order code	Temp. range	Package	Packing	Marking
M74HC280RM13TR	-55 °C to 125 °C	S014		74HC280
M74HC280YRM13TR ⁽¹⁾	-40 °C to 125 °C	SO14 (automotive grade)	Tape and reel	74HC280Y
M74HC280TTR	-55 °C to 125 °C	TSSOP14	rape and reer	HC280
M74HC280YTTR ⁽¹⁾	-40 °C to 125 °C	TSSOP14 (automotive grade)		HC280Y

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

6 Revision history

Table 12. Document revision history

Date	Revision	Changes
15-Jan-2014	2	Removed DIP14 package Added ESD data Table 1: Device summary: added automotive grade order codes, added temperature range, and marking details. Added Section 5: Ordering information.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 DocID1938 Rev 2

