# MITSUBISHI LSI



#### 512-BIT(32-WORD BY 16-BIT) ELECTRICALLY ALTERABLE ROM

### DESCRIPTION

The M58659P is a serial input/output 512 bit electrically erasable and reprogrammable ROM organized as 32 words of 16 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

#### FEATURES

- Word-by-word electrically alterable
- Non-volatile data storage . . . . . . . . 10 years (min)
- Typical power supply voltages . . . . . . 30V, +5V
- Number of erase-write cycles . . . . . . 10<sup>5</sup> times (min)
- Number of read access unrefreshed. . .10<sup>9</sup> times (min)
- 5V I/O interface

#### APPLICATION

Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems



The address is designated by one-of-four and one-of-eight coded digits. Seven modes—accept address, accept data, eet4U.com shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to  $C_1$ ,  $C_2$ , and  $C_3$ . Data is stored by internal negative writing pulses that selectively tunnel charges into the SiO<sub>2</sub>—Si<sub>3</sub>N<sub>4</sub> interface of the gate insulators of the MNOS memory transistors.



DataShe





12-39

#### **PIN DESCRIPTION**

| Pin             | Name                   | Functions                                                                                                                                                                                      |  |
|-----------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1/0             | 1/0                    | In the accept address and accept data modes, used for input.<br>In the shift data output mode, used for output<br>In the standby, read, erase and write modes, this pin is in a floating state |  |
| VM              | Test                   | Used for testing purposes only. It should be left unconnected during normal operation                                                                                                          |  |
| Vss             | Chip substrate voltage | Normally connected to +5V                                                                                                                                                                      |  |
| V <sub>GG</sub> | Power supply voltage   | Normally connected to -30V                                                                                                                                                                     |  |
| CLK             | Clock input            | Required for all operating modes, when $\overline{\text{CS}}$ is low.                                                                                                                          |  |
| C1-C3           | Mode control input     | Used to select the operation mode                                                                                                                                                              |  |
| VGND            | Ground voltage         | Connected to ground (OV)                                                                                                                                                                       |  |
| ĈŜ              | Chip select            | Used for chip selection in "L"                                                                                                                                                                 |  |

### **OPERATION MODES**

| [       | Cı | C2 | C 3 | Functions                                                                                                                                                                                                                                 |
|---------|----|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t4U.com | н  | н  | н   | Standby mode. The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state                                                                                               |
|         | н  | н  | L   | Not used                                                                                                                                                                                                                                  |
|         | н  | L  | н   | Erase mode: The word stored at the addressed location is erased. The data bits after erasing are all low-level                                                                                                                            |
|         | н  | L  | L   | Accept address mode. Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by one-of-four and one-of-eight-coded digits. 32-word address is assigned in this mode. |
|         | L  | н  | н   | Read mode. The addressed word is read from the memory into the data register                                                                                                                                                              |
|         | L  | н  | L   | Shift data output mode. The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.                                                                                      |
|         | L  | L  | н   | Write mode. The data contained in the data register is written into the location designated by the address registers                                                                                                                      |
|         | L  | L  | L   | Accept data mode. The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.                                                                                           |

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol          | Parameter             | Conditions          | Ratings    | Unit |
|-----------------|-----------------------|---------------------|------------|------|
| V <sub>GG</sub> | Supply voltage        |                     | 0.3~-40    | v    |
| VI              | Input voltage         | With respect to VSS | 0.3 20     | v    |
| Vo              | Output voltage        |                     | 0.3~-20    | V    |
| Tstg            | Storage temperature   |                     | - 40 ~ 125 | τ    |
| Topr            | Operating temperature |                     | - 10 ~ 70  | τ    |

### **RECOMMENDED OPERATING CONDITIONS** ( $Ta = -10 \sim 70$ °C. unless otherwise noted)

|                                  | Parameter                |                     | Limits        |                      |      |  |
|----------------------------------|--------------------------|---------------------|---------------|----------------------|------|--|
| Symbol                           | rarameter                | Min                 | Nom           | Max                  | Unit |  |
| V <sub>GG</sub> -V <sub>SS</sub> | Supply voltage           | 32.2                | <b>,</b> - 35 | - 37.8               | V    |  |
| Vss-VgND                         | Supply voltage           | 4.75                | 5             | 6                    | v    |  |
| ViH                              | High-level input voltage | V <sub>SS</sub> - 1 |               | V <sub>SS</sub> +0.3 | v    |  |
| VIL                              | Low-level input voltage  | Vss-6.5             |               | V SS-4.25            | v    |  |

DataSheet4U.com

www.DataSheet4U.com



DataSheet4U.com

12--40 DataSheet4U.com

| Symbol          | Parameter                                           | Test conditions        |                     | Limits |                       |     |  |
|-----------------|-----------------------------------------------------|------------------------|---------------------|--------|-----------------------|-----|--|
|                 |                                                     |                        | Min                 | тур    | Max                   | Uni |  |
| ∨ін             | High-level input voltage                            |                        | V <sub>SS</sub> – 1 |        | V <sub>SS</sub> + 0.3 | v   |  |
| VIL             | Low-level input voltage                             |                        | Vss-6.5             |        | Vss-4.25              | v   |  |
| I <sub>IL</sub> | Low-level input current CLK, C1, C2, C3, I/O        | $V_1 - V_{SS} = -6.5V$ | -10                 |        | + 10                  | μA  |  |
| RI              | Input pull-up resistance, CS                        |                        |                     | 30     | 1                     | kΩ  |  |
| OZL             | Off-state output current, low-level voltage applied | $V_{O} V_{SS} = -6.5V$ | - 10                |        | + 10                  | μA  |  |
| VoH             | High-level output voltage                           | $i_{OH} = -200 \mu A$  | V <sub>SS</sub> - 1 | -      |                       | v   |  |
| Vol             | Low-level output voltage                            | I <sub>OL</sub> = 80μΑ |                     |        | VGND +0.5             | v   |  |
| IGG             | Supply current from VGG                             | $I_0 = 0\mu A$         |                     | 5.5    | 8.8                   | mA  |  |

Note 1: Typical values are at Ta = 25°C and VGG-VSS = -35V.

# TIMING REQUIREMENTS ( $T_a = -10 \sim 70 \degree$ . $V_{GG} \sim V_{SS} = -35 V \pm 8 \%$ , $V_{SS} \sim V_{GND} = 5 V - 5 \%$ . unless otherwise noted)

| Symbol                         | Parameter                                             | Tate and it is an |     | Limits    | 11-14 | ]    |       |
|--------------------------------|-------------------------------------------------------|-------------------|-----|-----------|-------|------|-------|
|                                | Faratileter                                           | Test conditions   | Min | Тур       | Max   | Unit |       |
| $T_{L(\phi)}$                  | Negative clock pulse width                            |                   | 30  | · · · · · |       | μs   | 1     |
| Тн(ø)                          | Positive clock pulse width                            |                   | 33  | [         |       | // S |       |
| Τ(φ)                           | Clock period                                          |                   |     | 1         | 300   | μs D | ataSl |
| tw                             | Write time                                            |                   | 16  | 20        | 24    | ms   | 1     |
| t <sub>E</sub>                 | Erase time                                            |                   | 16  | 20        | 24    | ms   | 1     |
| t <sub>r,</sub> t <sub>f</sub> | Risetime, fall time                                   |                   |     |           | 1     | μs   | 1     |
| t <sub>su</sub>                | Control setup time before the fall of the clock pulse | taSheet4U.com     | 1   | 1         | 1     | μs   | 1     |
| t <sub>h</sub>                 | Control hold time after the rise of the clock pulse   |                   | 0   |           |       | μs   |       |
| tss                            | Clock control setup time before the fall of CS        |                   | 1   | 1         |       | μS   | 1     |
| t <sub>hs</sub>                | Clock control hold time after the rise of CS          |                   | 1   |           |       | μS   | 1     |

# **SWITCHING CHARACTERISTICS** (Ta = $-10 \sim 70$ °C. V<sub>GG</sub> = $-35V \pm 8$ %. unless otherwise noted)

| Symbol          | Parameter                                 | Alternative<br>symbols | Test conditions                                                         | Limits          |     |     |       |
|-----------------|-------------------------------------------|------------------------|-------------------------------------------------------------------------|-----------------|-----|-----|-------|
|                 | Taron etc.                                |                        | rest conditions                                                         | Min             | Тур | Max | Unit  |
| ta(c)           | Read access time                          | tew                    | $C_{L} = 100 pF$<br>$V_{OH} = V_{SS} - 2V$<br>$V_{OL} = V_{GND} + 1.5V$ |                 |     | 20  | μs    |
| ts              | Unpowered nonvolatile data retention time | Τs                     | $N_{EW} = 10^4$ , $t_{W(W)} = 20 ms$<br>$t_{W(E)} = 20 ms$              | 10              |     |     | Year  |
|                 |                                           | Τ <sub>S</sub>         | $N_{EW} = 10^5$ , $\frac{t_{W}(w)}{t_{W}(E)} = 20 \text{ ms}$           | 1               |     |     | fear  |
| NEW             | Number of erase/write cycles              | Nw                     |                                                                         | 10 <sup>5</sup> |     |     | Times |
| N <sub>RA</sub> | Number of read access unrefreshed         | NRA                    |                                                                         | 10 <sup>9</sup> |     |     | Times |
| tdv             | Data valid time                           | tew                    |                                                                         |                 |     | 20  | μs    |

DataSheet4U.com

www.DataSheet4U.com





DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com



DataSheet4U.com











Note 3:  $C_1 \sim C_3$  and accept data are interchnageable while the clock is set high.

## Timing of clock, $C_1$ , $C_2$ , $C_3$ , and data input





DataSheet4U.com

### **Operation flowchart**

**Rewriting flowchart** 



5: Set  $\overline{CS}$  to the low level after the lapse of tss and CLK has been set high and C<sub>1</sub> ~ C<sub>3</sub> have been set to the standby mode.

6: Keep CLK to the high level and  $C_1 \sim C_1 = C_1 + C_2 +$ of ths

### **Read Flowchart**





DataSheet4U.com

12-45

### **Power-on/off Conditions**

With power-on,  $V_{GG}$  is applied after  $V_{SS}$  has been applied. With power-off,  $V_{SS}$  is cut after  $V_{GG}$  has been cut. For power-on and off, hold  $\overline{CS}$  in  $V_{SS}$  or floating state. The recommended timing chart for power-on and off is as follows.



DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com



DataSheet4U.com