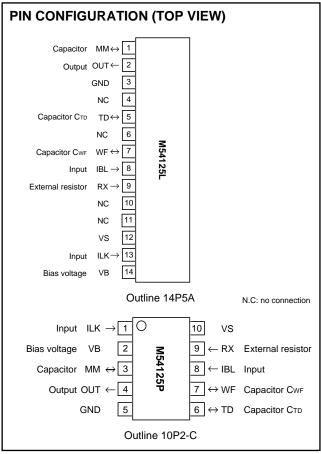
M54125L/P

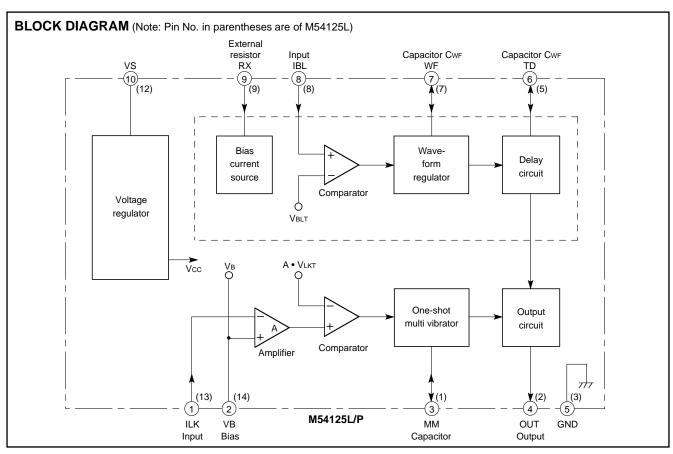
EARTH LEAKAGE CURRENT DETECTOR

DESCRIPTION

The M54125 is a semiconductor integrated circuit consisting of an amplifier for high-speed earth leakage circuit breaker.

FEATURES

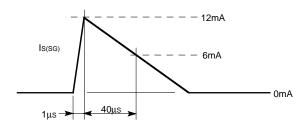

- Satisfies JIS C 8371
- Temperature-stable input current trigger threshold (VLKT = 9mV)
- Capable of detecting a lost phase on the neutral line
- Economical, low external component count
- Highly resistant to noise and power surges
- Wide operating temperature range (Ta = -20 − +80°C)


APPLICATION

High-speed earth-leakage circuit breakers

FUNCTION

The M54125 is a semiconductor integrated circuit for use in the amplifier section of earth-leakage circuit breakers. It consists of a differential amplifier, one-shot circuit, output circuit, current regulator, waveform regulator and delay circuit. The following description refers to the block diagram, application example, and operational waveforms.



ABSOLUTE MAXIMUM RATINGS (Ta = $-20 - 80^{\circ}$ C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Is	Supply voltage	Average supply current frequency per cycle	0 – 6	mA
Is(so)	Supply surge current	(Note 1)	0 – 12	mA
ΔVILK	ILK input voltage	Pin VB serves as the voltage reference	-1.8 — +1.8	V
VIBL	IBL input voltage		-0.3 – 6	V
Vouт	OUT applied voltage	When external voltage is applied	-0.3 – 4	V
Pd	Power dissipation		160	mW
Topr	Operating temperature		-20 - 80	°C
Tstg	Storage temperature		-55 — 125	°C

Note 1: Is(sG) current waveform, which is given in the following diagram, shall be one shot or less per minute.

RECOMMENDED OPERATING CONDITIONS (Ta = -20 - 80°C unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Тур.	Max.	Offic
Vs	Supply voltage	When output OUT is OFF	12			V
Is	Supply current	Average power supply current per cycle			5.6	mA
Смм	External capacitor MM			0.22		μF
CWF	External capacitor WF			1		μF
Стр	External capacitor TD			6.8		μF
Rx	External resistor Rx			27		kΩ

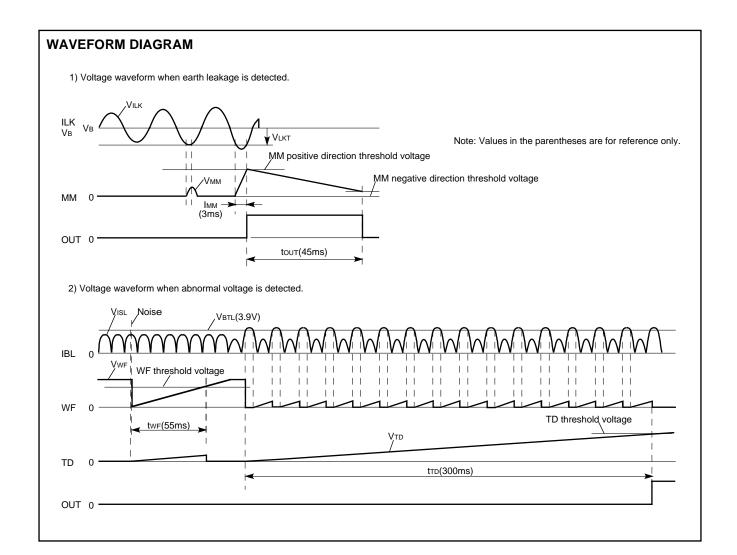
Handling of unused pins when the abnormal voltage detection function is not used

- Pin Rx must be left open
- Pin TD must be shorted to GND
- Pin WF and pin IBL may be left open or shorted to GND

LEAKAGE DETECTION FUNCTION

When leakage current current Ig appears on the primary side of zero-current transformer, ZCT, leakage signal voltage VILK appears on the secondary side and is input at ILK with bias VB as the reference. In the half cycle when VILK is negative, capacitor CMM connected to MM charges until VILK reaches the DC trip voltage.

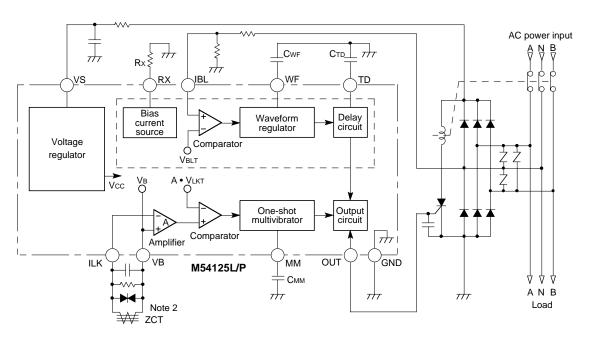
If the voltage at MM does not reach the MM positive threshold voltage, when the charging phase is completed, capacitor CMM discharges at a small current. The output OUT is reset to the off state (in which output current flows in) when VMM descends to the MM negative threshold voltage.


Earth-leakage currents are detected when the amplitude of input voltage V_{LKT} for longer than the detection time tmm. The output OUT turns on for time tout. The output current is used to turn on the thyristor that opens the breaker contacts.

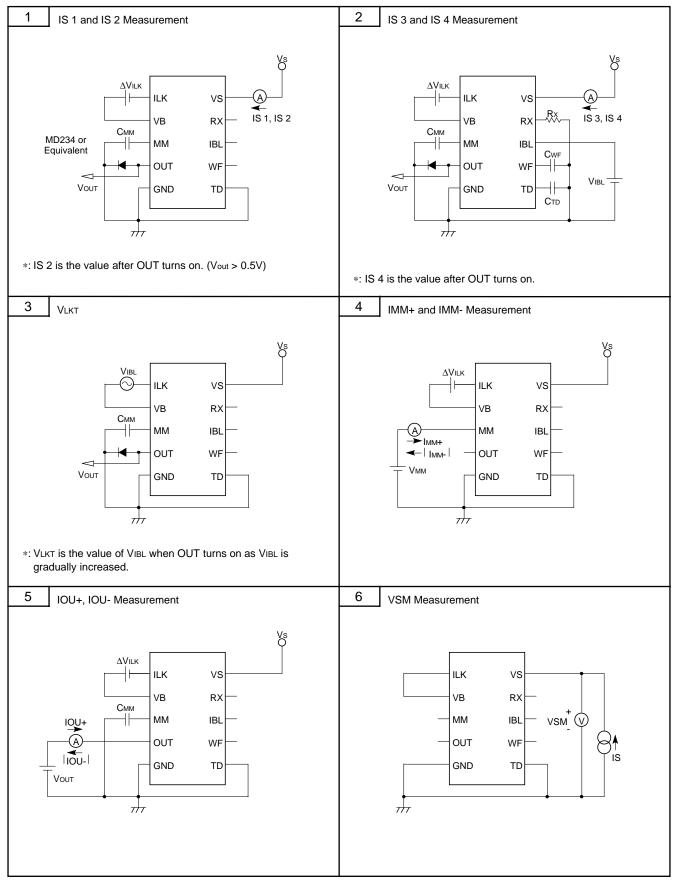
ABNORMAL VOLTAGE DETECTION FUNCTION

Normally VIBL, fixed amplitude AC supply that has been rectified and divided by a resistor, is input to abnormal voltage input IBL. When a fault occurs in the neutral line N, successive peaks of VIBL become alternately small and large, with the levels determined by the load on the AC power lines A and B.

When the amplitude of VIBL exceeds the abnormal voltage trip voltage VBLT, capacitor CWF connected to pin WF discharges. After the discharge shase is completed, charging begins again.) When voltage VWF at WF drops below the WF threshold voltage, capacitor CTD at TD charges, and after delay time tTD, when voltage VTD at TD reaches the TD threshold voltage, output OUT turns on, activating the circuit breaker. To avoid misoperation due to the effect of repeated one-shot noise that brings VIBL above VBLT, the voltage drops to the initial value only after time tWF.


This abnormal voltage detection circuit is enabled only when an external resistor Rx is connected to pin Rx to enable the current flow.

ELECTRICAL CHARACTERISTICS (Vcc = 5V and Ta = -20 - 80°C unless otherwise noted)


Symbol	Parameter		Took oo a ditions		Limits		Line	Test
			Test conditions	Temperature	Min.	Max.	Unit	circuit
ls1	Supply current 1	Pin VS	Vs = 12V, Δ VILK = 0mV, Out : "OFF"			0.7	mA	1
ls2	Supply current 2	Pin VS	Vs = 16V, Δ VILK = -15mV, Out : "ON"			1.2	mA	1
VLKT	Trip voltage	Pin ILK and VB	Vs = 16V, VLKT: 60Hz Test circuit 3		4	9	mVrms	
Імм+	Sink current	Pin MM	$Vs = 16V$, $\Delta VILK = 0mV$, $VMM = 0.8V$	25	170	370	μΑ	4
Імм-	Source current	Pin MM	Vs = 16V, Δ VILK = -15mV, VMM = 0.8V	25	-110	-250	μΑ	4
tmm	Detect inhibit time	Pin MM	Vs = 16V		1.7	4	ms	10
lou+	Sink current	Pin OUT	$Vs = 16V$, $\Delta VILK = 0mV$, $VOUT = 0.2V$		150		μΑ	5
lou-	Source current		\\-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-20	-200		μА	5
		Pin OUT	Vs = 16V, Δ VILK = -15mV VOUT = 0.8V	25	-100			
			VOU1 = 0.8V	80	-70			
tout	Output pulse width	Pin OUT	Vs = 16V		25	100	ms	10
Vsm	Maximum current voltage	Pin VS	Is = 3.5mA	25	20	26	V	6
ls3	Supply current 3	Pin VS	Vs = 12V, VILK: 0mV VIBL = 0V, OUT: "OFF" Test circuit 2			1	mA	
IS4	Supply current 4	Pin VS	Vs = 12V, VILK : -15mV VIBL = 12V, OUT : "ON" Test circuit 2			1.4	mA	
VBLT	Trip voltage	Pin IBL	Vs = 16V		3.6	4.1	V	7
libl	Input current	Pin IBL	Vs = 16V, VIBL = 4.5V Test circuit 7	25		0.8	μА	
lwF+	Sink current	Pin WF	Vs = 16V, Vibl = 4.5V, VwF = 0.5V	25	1		mA	8
lwF-	Source current	Pin WF	Vs = 16V, VibL = 0V, VwF = 0.5V	25	-22	-30	μА	8
twF	Recovery time	Pin WF	Vs = 16V		35	70	ms	11
ITD+	Sink current	Pin TD	Vs = 16V, VibL = 0V, VTD = 0.5V	25	1		mA	9
ITD-	Source current	Pin TD	Vs = 16V, VIBL = 4.5V, VTD = 0.5V	25	-22	-30	μА	9
tDT	Delay time	Pin TD	Vs = 16V		200	420	ms	12

APPLICATION EXAMPLE

Note 2 : MZ Core Series by Soryo Denshi Kagaku Co., Ltd (Mitsubishi Subsidiary) Tel. +81-427-74-7813

TEST CIRCUIT (CMM = $0.22\mu F$, CTD = $6.8\mu F$ and RX = $27k\Omega$ unless otherwise noted)

M54125L/P

EARTH LEAKAGE CURRENT DETECTOR

