MITSUBISHI LINEAR ICs

M51961L

FLASHER CONTROL CIRCUIT

DESCRIPTION

The M51961L is a semiconductor integrated circuit for flasher, and especially is suited for the automobile flasher. It is designed so that its flashing frequency is set to 85cpm in case of turn signal or hazard, then it is 192cpm in case of break.

The break detecting is made use of the break detecting resistance connecting between the power supply and the lamp.

The threshold voltage for break is about 90mV when supply voltage is 12.8V, and it is designed so as to compensate for the characteristics of the lamp of supply voltage and temperature.

FEATURES

- The lamp is on immediately after turn signal switch is turned on. 25ms (max.)
- Threshold voltage for break detecting compensates for the characteristics of the lamp.
- Flashing frequency is not influenced by the ripple of power supply because of the built-in stabilized power supply.
- The built in zenor diode at the output terminal for absorbing reverse E.M.F of the relay.

8-pin molded plastic SIL

APPLICATION

Automobile flasher, break detecting of lamp.

RECOMMENDED OPERATING CONDITIONS

Rated supply voltage12.8V

FLASHER CONTROL CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{CC1}	Supply voltage		18	v
V _{CC2}	Peak supply voltage	t≤1min	24.5	v
BVo	Output breakdown voltage		24.5	v
Io	Output current		150	mA
V ₂	Voltage at ②pin		V_{cc} -36 V ~ V_{cc}	v
VO	Voltage at ①pin		o∼v _{cc}	v
Pd	Power dissipation		900	mW
K _θ	Derating	T _a ≧25℃	7.2	mW/℃
Topr	Operating temperature		-40~+85	°C
T _{stg}	Storage temperature		-50~+125	°C

$\label{eq:characteristics} \begin{array}{c} \textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \quad (\textbf{R}_{i} = 55 k \, \Omega, \ \textbf{C}_{i} = 10 \mu F, \ \textbf{T}_{a} = 25 ^{\circ} \textbf{C}, \ \textbf{V}_{cc} = 12.8 \textbf{V}, \ \textbf{unless otherwise noted}) \end{array}$

Symbol	Parameter	Test conditions	Limits			
			Min	Тур	Max	Unit
V _{cc}	Supply voltage range		7	12.8	17	v
Τs	Time from T/S on to lamp on			5	25	mS
N1	Flashing frequency 1	In case of T/S or hazard	81	85	89	cpm
N ₂	Flashing frequency 2	In case of break	178	192	207	cpm
D ₁	Duty of lamp on 1	In case of T/S or hazard	41	45	49	%
D ₂	Duty of lamp on 2	In case of break	33	37	41	%
V⊕тн	Threshold voltage for break detecting		84	91.3	98.5	mV
I _{CC1}	Circuit current 1	In case of output off		3.4	5.3	mA
I _{CC2}	Circuit current 2	In case of output on		8.9	15	mA
V②	②pin voltage	②pin open	6.0	7.4	9.0	v
V _{©тнн}	High threshold voltage of ②pin		V ₂ +1	9.2* ¹	11.3*1	v
V _{©THL}	Low threshold voltage of ②pin		3.5* ²	5.6* ²	V _∞ −1	v
	Input current to ②pin	Voltage at ②pin is V _{CC} .	0.6	0.96	1.6	mA
I _{DIN2}	Input current from ②pin	Voltage at ② pin is GND.	-2.2	-1.36	-0.9	mA
I _{⊕in}	Input current to ①pin	Voltage at ①pin is V _{CC} .		1.6	20	μA
Vos	Output saturation voltage	$R_L=120\Omega$		180	500	mV
I _{OL}	Output leak current				100	nA
Voz	Zenor voltage at output		26	30	36	v

*1 Higher than V_{\odot} +1V *2 Lower than V_{\odot} -1V

M51961L

FLASHER CONTROL CIRCUIT

TYPICAL CHARACTERISTICS (Ta=25°C, Vcc=12.8V, unless otherwise noted)

AMBIENT TEMPERATURE $T_a(C)$

SUPPLY VOLTAGE V_{CC}(V)

80

100

Note : 2. In the flashing frequency characteristics 2 we didn't take the change of R₁ C₁ by temperature into cnsideration.

MITSUBISHI LINEAR ICs M51961L

FLASHER CONTROL CIRCUIT

APPLICATION EXAMPLES

(1) Typical example

(3) Example for break warning

The warning lamp is on when one or more lamps of the four break.

(2) Example in case of adjusting the threshold voltage for break detecting

