SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M3810x group is made up of 8-bit microcomputers based on the MELPS 740 core.

The M3810x group is designed mainly for VCR control, and include four 8-bit timers, a PWM function, and a 4-bit comparator circuit.

The various microcomputers in the M3810x group include variations of internal memory size and packaging. For details, see the section on part numbering.

For details on availability of microcomputers in the M3810x group, see the section on group expansion.

FEATURES

- Basic machine-language instructions71
- Instruction execution time 0.95µs (shortest instruction at 4.19MHz oscillation frequency)
- Memory size
 ROM ······ 4K to 32K bytes
 RAM ····· 192 to 1024 bytes
- Programmable input/output ports ······ 27 High-breakdown-voltage output ports 28 Interrupts 11 sources, 11 vectors Timers ······ 8-bit×4 • • Comparator circuit 4-bit×1 . 2 Clock generation circuit • Clock (X_{IN}-X_{OUT})Internal feedback amplifier Sub clock $(X_{CIN}-X_{COUT})$ Internal amplifier without feedback Low power dissipation . (at 4.19MHz oscillation frequency) In low-speed operation 300µW (at 32kHz oscillation frequency) ● Operating temperature range ······ -10 to +85℃

APPLICATIONS

VCRs, tuners, musical instruments, office automation, etc.

8-BIT CMOS MICROCOMPUTER

MITSUBISHI MICROCOMPUTERS

M3810x

Group

2 Ľ

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Function				
			Alternate Function			
$V_{\rm CC}, V_{\rm SS}$	Power supply	Power supply inputs 4 0 to 5 5V to V _{CC} , and 0V to V _{SS} .				
V _{EE}	Pull-down power input	Applies voltage supplied to pull-down resistors of ports P0, P1, P2 ₀ -P2 ₃ , and P3				
RESET	Reset input	To reset the microcomputer, this pin should be kept at an "L" level for more than 2µs under high-speed operating con- ditions. In low-speed operation start mode, internal reset is not released until the X _{CIN} -X _{COUT} clock has had time to sta- bilize				
X _{IN}	Clock input	Input and output signals for the internal clock generation circuit. It consist of internal feedback amplifier. Connect a ceramic resonator or quartz crystal between the X _M and X _{MP} pure to set the oscillation frequency. If an external clock is				
Х _{оит}	Clock output	used, connect the clock source to the X_{IN} pin and leave the	X _{OUT} pin open This clock is used as system clok			
X _{CIN}	Sub clock input	Input and output signals for the internal sub clock generat Connect a ceramic resonator or quartz crystal and external f	ion circuit It consist of internal amplifier without feedback feedback resistor between the X_{CIN} and X_{COUT} pins. If an ex-			
Х _{соит}	Sub clock output	ternal clock is used, connect the clock source to the X_{CIN} used as the system clock	pin and leave the X_{COUT} pin open. This clock can also be			
P0 ₀ -P0 ₇	Output port P0	8-bit output port The output structure is high-breakdown-vo	ltage P-channel open drain with internal pull-down resistors			
P10-P17	Output port P1	connected between the output and the v_{EE} pin				
P20-P23	Output port P2	A 4-bit output port with the same function as port P0.				
P2₄-P2 ₇	I/O port P2	A 4-bit I/O port An I/O direction register allows each pin to be individually programmed as either input or output At re- set this port is set to input mode. The output structure of this port is CMOS 3-state, and the input levels are TTL com- patible.				
P30-P37	Output port P3	An 8-bit output port with the same function as port P0				
P40/INT0	Input port P40	1-bit CMOS input pin	External interrupt input pins			
P4 ₁ /INT ₁ , P4 ₂ /INT ₂	I/O port P4	A 7-bit CMOS I/O port with the same function as port P2 ₄ - P2 ₇ , with CMOS compatible input levels.				
P43, P44			1			
P45/CNTR			Event counter input pin			
P4 ₆						
P4 ₇ /T _{OUT}			Timer output pin			
P5 ₀ /S _{IN1} , P5 ₁ /S _{OUT1} , P5 ₂ /S _{CLK1} , P5 ₃ /S _{RDY1}	I/O port P5	An 8-bit CMOS I/O port with the same function as port P2 ₄ -P2 ₇ The output structure of this port is N-channel open drain, and the input levels are CMOS compatible Keep the input voltage of this port between 0V and V_{CC}	Serial I/O1 I/O pins			
P5 ₄ /S _{IN2} , P5 ₅ /S _{OUT2} , P5 ₆ /S _{CLK2} , P5 ₇ /S _{RDY2}			Serial I/O2 I/O pins			
P6 ₀ /PWM	I/O port P6	An 8-bit CMOS I/O port with the same function as port	14-bit PWM output pin			
P61-P65		P24-P27, with CMOS compatible input levels				
P6 ₆ /AN			Comparator input pin			
P67						

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PART NUMBERING

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

Mitsubishi plans to expand the M3810x group as follows:

(2) F	Packages	
e	64P4B ······ S	hrink plastic molded DIP
· • 6	64P6N ·····	······Plastic molded QFP
e	64S1B ·····	······ Shrink ceramic DIP
e	64D0 ·····	······ Ceramic LCC

The development schedule and other details of products under development may be revised without notice Currently supported products are listed below

As of March 1992

Product name	(P) ROM size (bytes)	RAM size (bytes)	Package	Remarks
M38102M5-XXXSP				Mask ROM version
M38102E5-XXXSP	7		64P4B	One-time programmable version
M38102E5SP				One-time programmable version (blank)
M38102M5-XXXFP	001/	004		Mask ROM version
M38102E5-XXXFP	20K	384	64P6N	One-time programmable version
M38102E5FP				One-time programmable version (blank)
M38102E5SS			64S1B	EPROM version
M38102E5FS			64D0	EPROM version
M38103M6-XXXSP		512		Mask ROM version
M38103E6-XXXSP			64P4B	One-time programmable version
M38103E6SP				One-time programmable version (blank)
M38103M6-XXXFP	0.414			Mask ROM version
M38103E6-XXXFP	24K		64P6N	One-time programmable version
M38103E6FP				One-time programmable version (blank)
M38103E6SS			64S1B	EPROM version
M38103E6FS			64D0	EPROM version

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)

Microcomputers of the M3810x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions or the MELPS 740 Software Manual for details on the instruction set.

Machine-resident MELPS 740 instructions are as follows: The FST and SLW instructions are not available for use.

The STP, WIT, MUL, and DIV instructions can be used.

CPU MODE REGISTER

The CPU mode register is allocated to address $003B_{16}$. Bits 0 and 1 of this register are processor mode bits and should always be set to "0".

The CPU mode register contains the stack page selection bit.

For details of the X_{COUT} drivability selection bit, main clock stop bit, and internal system clock selection bit, see the section on the clock generation circuit.

Fig. 1 Structure of CPU mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MEMORY

Special Function Register (SFR) Area

The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

RAM

RAM is used for data storage as well for stack area.

ROM

The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

The 256 bytes from addresses 0000_{16} to $00FF_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.

The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

Special Page

The 256 bytes from addresses $FF00_{16}$ to $FFFF_{16}$ are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.

Fig. 2 Memory map diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

000016	Port P0 (P0)
0001 ₁₆	
000216	Port P1 (P1)
000316	
000416	Port P2 (P2)
000516	Port P2 direction register (P2D)
0006 ₁₆	Port P3 (P3)
0007 ₁₆	
000816	Port P4 (P4)
0009 ₁₆	Port P4 direction register (P4D)
000A16	Port P5 (P5)
000B ₁₆	Port P5 direction register (P5D)
000C ₁₆	Port P6 (P6)
000D ₁₆	Port P6 direction register (P6D)
000E ₁₆	
000F ₁₆	
0010 ₁₆	
0011 ₁₆	
0012 ₁₆	
0013 ₁₆	
0014 ₁₆	
0015 ₁₆	
0016 ₁₆	
0017 ₁₆	
0018 ₁₆	
0019 ₁₆	Serial I/O1 control register (SIO1CON)
001A ₁₆	
001B ₁₆	Serial I/O1 register (SIO1)
001C ₁₆	
001D ₁₆	Serial I/O2 control register (SIO2CON)
001E ₁₆	
001F ₁₆	Serial I/O2 register (SIO2)

Fig. 3 Memory map of special function register (SFR)

/

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS Direction Registers

The M3810x group microprocessors have 27 programmable I/O pins arranged in four I/O ports (ports $P2_4 \sim P2_7$, $P4_1 \sim P4_7$, P5, and P6). The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output.

When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

High-Breakdown-Voltage Output Ports

The M3810x group microprocessors have four ports with high-breakdown-voltge pins (ports P0, P1, P2₀ \sim P2₃, and P3). The high-breakdown-voltage ports have P-channel open drain output with a breakdown voltage of V_{CC}-40V. Each pin has an internal pull-down resistor connected to V_{EE}. At reset, the P-channel output transistor of each port latch is turned off, so it is forced to the level of V_{EE} by the pull-down resistor. Writing "1" to bit 0 of the high-breakdown-voltage port control register (address 0038₁₆) slows the transition of the output transistors to reduce transient noise. At reset, bit 0 of the high-breakdown-voltage port control register is set to "0" (strong drive).

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No
P0 ₀ -P0 ₇	Port P0	Output	High-breakdown-voltage P- channel open-drain output with pull-down resistor		High-breakdown-voltage port control register	
P1 ₀ -P1 ₇	Port P1	Output	High-breakdown-voltage P- channel open-drain output with pull-down resistor		High-breakdown-voltage port control register	(1)
P2 ₀ -P2 ₃	Port P2	Output	High-breakdown-voltage P- channel open-drain output with pull-down resistor		High-breakdown-voltage port control register	
P2 ₄ -P2 ₇		Input/output, individual bits	TTL level input CMOS 3-state output			(2)
P30-P37	Port P3	Output	High-breakdown-voltage P- channel open-drain output with pull-down resistor	· · · · · · · · · · · · · · · · · · ·	High-breakdown-voltage port control register	(1)
P40/INT0		Input	CMOS level input	E.A		(3)
P41/INT1,				External Interrupt	interrupt edge selection	(4)
P4 ₂ /INT ₂				input	register	(4)
P43, P44	Port P4	Input/output,	CMOS level input			(2)
P45/CNTR		individual bits	CMOS 3-state output	Event counter input	Timer 34 mode register	(4)
P46						(2)
P47/TOUT				Timer 3 output	Timer 34 mode register	(5)
P50/SIN1,						(6)
Р5 ₁ /S _{оит1} ,				Social I/O1 function I/O	Social I/O1 control register	(7)
Р5 ₂ /S _{CLK1} ,			CMOS lovel input	Senar i/OT function i/O	Senar //Or control register	(7)
P5 ₃ /S _{RDY1}	Port P5	Input/output,	N channel open drain			(8)
P5₄/S _{IN2} ,	FORFS	individual bits	output			(6)
P55/SOUT2,			output	Serial I/O2 function I/O	Serial I/O2 control register	(7)
P5 ₆ /S _{CLK2} ,				Genari / Oz function //O	Senar 1/ 02 control register	
P57/SRDY2						(8)
					PWM control register	
P60/PWM				14-bit PWM output	PWML register	(9)
	Dort DC	Input/output,	CMOS level input		PWMH register	
P61-P65		individual bits	CMOS 3-state output			(2)
P6 ₆ /AN				Comparator input	Comparator register	(10)
P67						(2)

Note Make sure that the input level at each pin is either 0V or V_{CC} during execution of the STP instruction.

If an input level is at an intermediate potential, a current will flow in the input-stage gate

Fig. 5 Port block diagram (2)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

A total of 11 sources can generate interrupts: 4 external, 6 internal, and 1 software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag-except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0".

Interrupt enable bits can be set or cleared by software.

Interrupt request bits can be cleared by software, but cannot be set by software.

The I flag disables all interrupts except for the BRK instruction interrupt.

Interrupt Operation

When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

Notes on Use

If you will change interrupt edge selection from rising edge to falling edge, interrupt request bit will be set to "1" automatically. Therefore, please make following process;

- (1) Disable INT which is selected.
- (2) Change INT edge selection.
- (3) Clear interrupt request which is selected.
- (4) Enable INT which is selected.

Interrupt cause	Priority	Vector address (Note 1)		Interrupt request	Pomarka	
interrupt cause	Thomy	High	Low	generation conditions	Heinarks	
Reset (Note 2)	1	FFFD ₁₆	FFFC ₁₆	At reset	Non-maskable	
INTo	2	FFFB ₁₆	FFFA ₁₆	At detection of either rising or falling edge of INT_0 input	External interrupt (active edge selectable)	
INT ₁	3	FFF9 ₁₆	FFF8 ₁₆	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)	
INT ₂	4	FFF7 ₁₆	FFF6 ₁₆	At detection of either rising or falling edge of INT ₂ input	External interrupt (active edge selectable)	
Serial I/01	5	FFF5 ₁₆	FFF4 ₁₆	At end of serial I/O1 data transfer	Valid when serial I/O1 is selected	
Serial I/O2	6	FFF3 ₁₆	FFF2 ₁₆	At end of serial I/O2 data transfer	Valid when serial I/O2 is selected	
Timer 1	7	FFF1 ₁₆	FFF0 ₁₆	At timer 1 overflow		
Timer 2	8	FFEF ₁₆	FFEE ₁₆	At timer 2 overflow	STP release timer overflow	
Timer 3	9	FFED ₁₆	FFEC ₁₆	At timer 3 overflow		
Timer 4	10	FFEB ₁₆	FFEA ₁₆	At timer 4 overflow		
CNTR	11	FFE9 ₁₆	FFE8 ₁₆	At detection of either rising or falling edge of CNTR input	External interrupt (active edge selectable)	
BRK instruction	12	FFDD ₁₆	FFDC ₁₆	At BRK instruction execution	Non-maskable software inter- rupt	

Table 1. Interrupt vector addresses and priorities

Note 1 Vector addresses contain interrupt jump destination addresses

2 Reset function in the same way as an interrupt with the highest priority

7

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMERS

Microcomputers of the M3810x group have four built-in timers. The timers count down. Once a timer reaches 00_{16} , the next count pulse loads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1. Each timer also has a stop bit that stops the count of that timer when it is set to "1".

Note that the system clock ϕ can be set to either high-speed mode or low-speed mode by the CPU mode register.

Timer 1 and Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register.

When the chip is reset or the STP instruction is executed, all bits of the timer 12 mode register are cleared, timer 1 is set to FF_{16} , and timer 2 is set to 01_{16} .

Timer 3 and Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register.

Timer 3 can also output a rectangular waveform from the P4₇/ T_{OUT} pin. The waveform changes polarity each time timer 3 overflows.

When timer 4 is assigned to external event count mode, rising edge is active.

Fig. 8 Structure of timer-related registers

Fig. 9 Timer block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SERIAL I/O

Microcomputers of the M3810x group have two built-in 8-bit clock synchronized serial I/O channels (serial I/O1 and serial I/O2).

Serial I/O1 has the same function as serial I/O2.

The I/O pins of the serial I/O function also operate as I/O port P5, and their operation is selected by the serial I/O control registers (adresses 0019_{16} and $001D_{16}$).

Fig. 10 Serial I/O block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

[Serial I/O Control Registers] SIO1CON, SIO2CON

Each of the serial I/O control registers (addresses 001916 and 001D₁₆) contains seven bits that select various control parameters of the serial I/O function.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Operation In Serial I/O Mode

Either an internal clock or an external clock can be selected as the synchronization clock for serial I/O transfer. A dedicated divider is built-in as the internal clock, giving a choice of six clocks.

If internal clock is selected, transfer start is activated by a write signal to a serial I/O register (address 001B₁₆ or 001F₁₆). After eight bits have been transferred, the S_{OUT} pin goes to high impedance.

If external clock is selected, the clock must be controlled externally because the contents of the serial I/O register continue to shift while the transfer clock is input. In this case, note that the S_{OUT} pin does not go to high impedance at the completion of data transfer. The interrupt request bit is set at the end of the transfer of eight bits, regardless of whether the internal or external clock is selected.

Fig. 12 Serial I/O timing (for LSB first)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PULSE WIDTH MODULATION (PWM) OUTPUT CIRCUIT

Microcomputers in the M3810x group have a PWM function with a 14-bit resolution. When the oscillation frequency X_{IN} is 4MHz, the minimum resolution bit width is 500ns and the cycle period is 8192 μ s. The PWM timing generator supplies a PWM control signal based on a signal that is half the frequency of the X_{IN} clock.

The explanation in the rest of this data sheet assumes $X_{IN} = 4MHz$.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(1) Date Set-up

The PWM output pin also functions as port P6₀. Set port P6₀ to be the PWM output pin by setting bit 0 of the PWM mode register (address $002B_{16}$). The upper eight bits of output data are set in the upper PWM register PWMH (address $002C_{16}$) and the lower six bits are set in the lower PWM register PWML (address $002D_{16}$).

(2) Transfer From Register to Latch

Date written to the PWML register is transferred to the PWM latch once in each PWM period (every 8192μ s), and data written to the PWMH register is transferred to the PWM latch once in each sub-period (every 128μ s). When the PWML register is read, the contents of the latch are read. However, bit 7 of the PWML register indicates whether the transfer to the PWM latch is completed; the transfer is completed when bit 7 is "0".

Table 2. Relationship between lower 6 bits of data and period set by the ADD bit

Lower 6 Bits of Data(PWML)	Sub-periods tm Lengthened (m =0 to 63)
0 0 0 0 0 ^{LSB}	None
000001	m=32
000010	m=16,48
000100	m = 8, 24, 40, 56
001000	m = 4, 12, 20, 28, 36, 44, 52, 60
010000	m = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m = 1, 3, 5, 7,, 57, 59, 61, 63

(3) PWM Operation

The timing of the 14-bit PWM function is shown in Fig. 16. The 14-bit PWM data is divided into the lower six bits and the upper eight bits in the PWM latch.

The upper eight bits of data determine how long an "H"-level signal is output during each sub-period. There are 64 sub-periods in each period, and each sub-period is $256 \times \tau$ (128μ s) long. The signal is "H" for a length equal to N times τ , where τ is the minimum resolution (500ns).

The contents of the lower six bits of data enable the lengthening of the high signal by τ (500ns). As shown in Fig. 13, the six bits of PWML determine which sub-cycles are lengthened.

As shown in Fig. 16, the leading edge of the pulse is lengthened. By changing the length of specific sub-periods instead of simply changing the "H" duration, an accurate waveform can be duplicated without the use of complex external filters.

For example, if the upper eight bits of the 14-bit data are 03_{16} and the lower six bits are 05_{16} , the length of the "H"-level output in sub-periods t_8 , t_{24} , t_{32} , t_{40} , and t_{56} is 4 τ , and its length 3 τ in all other sub-periods.

Fig. 14 PWM timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 15 Structure of PWM mode register

Fig. 16 14-bit PWM timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

COMPARATOR CIRCUIT Comparator Configuration

The comparator circuit consists of a switch tree, ladder resistors, a comparator, a comparator control circuit, a comparator register (address 0030_{16}), and an analog signal input pin (P6₆/AN). The analog signal input pin (P6₆/AN) also functions as an ordinary digital port.

Comparator Register (CMP)

The comparator register is a 5-bit register of which bits 0 to 3 can be used to generate internal reference voltages in steps of 1/16 V_{CC} . The result of the comparison between the analog input voltage and an internal reference voltage is stored in bit 4 of the comparator register.

Comparator Operation

To activate the comparator, first set port P6₆ to input mode by setting the corresponding direction register (address 000D₁₆) to "0"—this ensures that port P6₆/AN is used as an analog voltage input pin. Then write a digital value corresponding to the internal comparison voltage into bits 0 to 3 of the comparator register (address 0030₁₆). This write operation immediately activates the comparison. After 14 cycles of the system clock ϕ (the time required for the comparison), the comparison result is stored in bit 4 of the comparator. If the analog input voltage is greater than the internal reference voltage, bit 4 is "1"; if it is less than the internal reference voltage, bit 4 is "0". To perform another comparison, the comparator must be written to again, even if the same internal reference voltage is to be used.

C	omparat	or regist	ter	Internal reference voltage
Bit 3	Bit 2	Bit 1	Bit 0	Internal reference voltage
0	0	0	0	1/32V _{cc}
0	0	0	1	$1/16V_{cc} + 1/32V_{cc}$
0	0	1	0	$2/16V_{cc}+1/32V_{cc}$
0	0	1	1	$3/16V_{cc} + 1/32V_{cc}$
. 0	1	0	0	$4/16V_{cc} + 1/32V_{cc}$
0	1	0	1	$5/16V_{cc} + 1/32V_{cc}$
0	1	1	0	$6/16V_{cc} + 1/32V_{cc}$
0	1	1	1	$7/16V_{cc} + 1/32V_{cc}$
1	0	0	0	$8/16V_{cc}+1/32V_{cc}$
1	0	0	1	$9/16V_{cc} + 1/32V_{cc}$
1	0	1	0	$10/16V_{cc} + 1/32V_{cc}$
1	0	1	1	$11/16V_{cc} + 1/32V_{cc}$
1	1	0	0	$12/16V_{cc} + 1/32V_{cc}$
1	1	0	1	$13/16V_{cc} + 1/32V_{cc}$
1	1	1	0	$14/16V_{cc} + 1/32V_{cc}$
1	1	1	1	$15/16V_{cc}+1/32V_{cc}$

Table 3. Correspondence between bits 0 to 3 of the comparator register and internal reference voltage

Fig. 17 Comparator circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

After a reset, the microcomputer will start in high-speed mode or low-speed mode depending on a maskprogrammable option.

High-Speed Start Mode

In high-speed start mode, reset occurs if the RESET pin is held at a "L" level for at least 2µs then is returned to a "H" level (the power supply voltage should be between 4.0V and 5.5V). Both the X_{IN} and the X_{CIN} clocks begin oscillating. In order to give the X_{IN} clock time to stabilize, internal operation does not begin until after 13 X_{IN} clock cycles are complete. After the reset is completed, the program starts from the address contained in address FFFD₁₆ (upper byte) and address FFFC₁₆ (lower byte).

Low-Speed Start Mode

In low-speed start mode, reset occurs if the $\overrightarrow{\text{RESET}}$ pin is held at a "L" level for at least $2\mu s$ then is returned to a "H"

level (the power supply voltage should be between 2.8V and 5.5V). The X_{IN} clock does not begin oscillating. In order to give the X_{CIN} time to stabilize, timer 1 and timer 2 are connected together and 512 cycles of the X_{CIN}/16 are counted before internal operation begins. After the reset is completed, the program starts from the address contained in address FFFD₁₆ (upper byte) and address FFFC₁₆ (lower byte).

If the X_{CIN} clock is stable, reset will complete after approximately 250ms (assuming $f(X_{CIN})=32.768$ kHz). Immediately after a power-on, the stability of the clock circuit will determine the reset timing and will vary according to the characteristics of the oscillation circuit used.

Note on Use

Make sure that the reset input voltage is no more than 0.8V in high-speed start mode, or no more than 0.5V in low-speed start mode.

Fig. 18 Power-on reset circuit example

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

		Address	Register contents	
(1)	Port P0 register	(0000 ₁₆)	0016	
(2)	Port P1 register	(0002 ₁₆)	0016	
(3)	Port P2 register	(0004 ₁₆)	0016	
(4)	Port P2 direction register	(0005 ₁₆)	0016	
(5)	Port P3 register	(0006 ₁₆)	0016	
(6)	Port P4 register	(0008 ₁₆)	0016	
(7)	Port P4 direction register	(0009 ₁₆)	0016	
(8)	Port P5 register	(000A ₁₆)	0016	
(9)	Port P5 direction register	(000B ₁₆)	0016	
(10)	Port P6 register	(000C ₁₆)	0016	
(11)	Port P6 direction register	(000D ₁₆)	0016	
(12)	Serial I/O1 control register	(0019 ₁₆)	00 ₁₆	
(13)	Serial I/O2 control register	(001D ₁₆)…	0016	
(14)	Timer 1 register	(0024 ₁₆)	FF ₁₆	
(15)	Timer 2 register	(0025 ₁₆)	01 ₁₆	
(16)	Timer 3 register	(0026 ₁₆)	FF ₁₆	
(17)	Timer 4 register	(0027 ₁₆)	FF ₁₆	
(18)	Timer 12 mode register	(0028 ₁₆)	0016	
(19)	Timer 34 mode register	(0029 ₁₆)	· 00 ₁₆	
(20)	PWM control register	(002B ₁₆)	0016	
(21)	Comparator	(0030 ₁₆)	0016	
(22)	High-breakdown-voltage	(0038 ₁₆)	00 ₁₆	
	port control register	-		
(23)	Interrupt edge selection register	(003A ₁₆)	0016	
(24)	CPU mode register	(003B ₁₆)…	* * 1 0 0 0 0 0	
(25)	Interrupt control register 1	(003 E ₁₆)··[00 ₁₆	
(26)	Interrupt control register 2	(0'03F ₁₆)…	00 ₁₆	
(27)	Processor status register	(PS)…	$\times \times \times \times \times \times 1 \times \times$	
(28)	Program counter	(РС _н)…	Contents of address FFFD ₁₆	
		(PC _L)	Contents of address FFFC ₁₆	
Note : * : The initial values of bits 7 and 6 of the CPU mode register are determined by a mask option X : Undefined The contents of all other registers and RAM are undefined				

Fig. 19 Internal status at reset

Ý

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATION CIRCUIT

When using an external clock signal, input the clock signal to the X_{IN} (X_{CIN}) pin and leave the X_{OUT} (X_{COUT}) pin open.If the X_{CIN} clock is not used, connect the X_{CIN} pin to V_{SS} , and leave the X_{COUT} pin open.

Either high-speed operation start mode or low-speed operation start mode can be selected by using a mask option.

(1) High-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of X_{IN}. Immediately after power-on, both the X_{IN} and X_{CIN} clock start oscillating. To set the internal clock ϕ to low-speed mode, set bit 7 of the CPU mode register (address 003B₁₆) to "1".

(2) Low-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of X_{CIN} . Immediately after power-on, only the X_{CIN} clock starts oscillating. To set the internal clock ϕ to normal operation mode, first set bit 6 (CM₆) of the CPU mode register (address 003B₁₆) to "0", the set bit 7 (CM₇) to "0" .Note that the program must allow time for oscillation to stabilize.

(3) Oscillation Control

Stop mode

If the STP instruction is executed, oscillation stops with the internal clock ϕ at an "H" level. Timer 1 is set to "FF₁₆" and timer 2 is set to "01₁₆".

Either X_{IN} or X_{CIN} divided by 16 is input to timer 1, and the output of timer 1 is connected to timer 2. The timer 1 and timer 2 interrupt enable bits must be set to disabled ("0"), so a program must set these bits before executing a STP instruction. Oscillation restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 overflows. This allows time for the clock circuit oscillation to stabilize.

Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at a "H" level but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Low-speed mode

If the internal clock is generated from the sub clock (X_{CIN}) , a low power consumption operation can be entered by stopping only the main clock X_{IN} . To stop the main clock, set bit 6 (CM_6) of the CPU mode register $(003B_{16})$ to "1". When the main clock X_{IN} is restarted, the program must allow enough time to for oscillation to stabilize.

Note that in low-power-consumption mode the $X_{\text{CIN}}\text{-}X_{\text{COUT}}$ drive performance can be reduced, allowing even lower

power consumption (20 μ A with $X_{CIN}=32 kHz$). To reduce the $X_{CIN}-X_{COUT}$ drive performance, clear bit 5 (CM₅) of the CPU mode register (003B₁₆) to "0". At reset or when a STP instruction is executed, this bit is set to "1" and strong drive is selected to help the oscillation to start.

Fig. 22 Ceramic resonator circuit

Fig. 23 External clock input circuit

Fig. 24 System clock generation circuit block diagram

Fig. 25 State transitions of system clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

NOTES ON PROGRAMMING Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1". Therefore, flags that affect program execution must be initialized after a reset. In particular, it is essential to initialize the T and D flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written.

After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute a ADC or SBC instruction. Only the ADC and SBC instruction yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.

In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid. The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).

Multiplication and Division Instructions

The MUL and DIV instructions do not affect the T and D flags.

The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

Serial I/O

When using an external clock, input "H" to the external clock input pin and clear the serial I/O interrupt request bit before executing a serial I/O transfer.

When using the internal clock, set the synchronization clock to internal clock, then clear the serial I/O interrupt request

bit before executing a serial I/O transfer.

Instruction Execution Timing

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock ϕ is half of the X_{IN} or X_{CIN} frequency.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- (1) Mask ROM Order Confirmation Form
- (2) Mask Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies)

If required, specify the following option on the Mask Confirmation Form:

· Operation start mode switching option

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter.

Package	Name of Write Adapter
64P4B, 64S1B	PCA4738S-64
64P6N	PCA4738F-64
64D0	PCA4738L-64

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 26 is recommended to verify programming.

Fig. 26 Writing and testing of one-time programmable version

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3 to 7.0	V
V _{EE}	Pull-down power supply voltage		$V_{\rm cc}$ -40 to $V_{\rm cc}$ +0.3	V
Vi	Input voltage P24-P27, P41-P47, P50-P57, P60-P67		-0.3 to V _{cc} $+0.3$	V
V _i	Input voltage P40	All voltages measured based on the V	-0.3 to V _{cc} $+0.3$	V
Vi	Input voltage RESET, XIN	All voltages measured based on the v _{SS} pin	-0.3 to V _{cc} $+0.3$	V
Vi	Input voltage X _{CIN}		-0.3 to V _{cc} $+0.3$	V
Vo	Output voltage P00-P07, P10-P17, P20-P23, P30-P37	_	$V_{\rm cc}$ -40 to $V_{\rm cc}$ +0.3	V
Vo	Output voltage P2 ₄ -P2 ₇ , P4 ₁ -P4 ₇ , P5 ₀ -P5 ₇ , P6 ₀ -P6 ₅ , P7 ₀ -P7 ₇ , X _{OUT} , X _{COUT}		-0.3 to V _{CC} +0.3	v
Pd	Power dissipation	T _a = 25℃	1000(Note 1)	mW
Topr	Operating temperature		-10 to 85	Ĉ
Tstg	Storage temperature		-40 to 125	Ĉ

ABSOLUTE MAXIMUM RATINGS

Note 1 600mW in case of the flat package

$\label{eq:recommended} \textbf{RECOMMENDED} \quad \textbf{OPERATING} \quad \textbf{CONDITIONS} \ (v_{cc} = 4.0 \ \text{to} \ 5.5 \text{V}, \ \tau_a = -10 \ \text{to} \ 85 \ \ c, \ \text{unless otherwise noted})$

Symbol	Parameter			Limits			
			Min	Тур	Max	Unit	
V _{cc}	Supply voltage	High-speed operation mode	4.0	5.0	5.5	V	
	Supply voltage	Low-speed operation mode	2.8	5.0	5.5	v	
V _{SS}	Supply voltage			0		v	
VEE	Pull-down power supp	oly voltage	$V_{cc}-38$		$V_{\rm cc}$	v	
VIA	Analog input voltage		0		$V_{\rm cc}$	v	
VIH	"H" input voltage P24-P27		0.4V _{CC}		V _{cc}	v	
VIH	"H" input voltage P40		0.75V _{CC}		V _{cc}	v	
VIH	"H" input voltage P41-P47, P50-P57, P60-P67		0.75V _{CC}		V _{cc}	v	
VIH	"H" input voltage RESET		0.8V _{CC}		V _{cc}	V	
VIH	"H" input voltage XIN,	X _{CIN}	0.8V _{CC}		V _{cc}	v	
VIL	"L" input voltage P24-	·P27	0		0.16V _{CC}	v	
VIL	"L" input voltage P40		0		0.25V _{CC}	v	
VIL	"L" input voltage P41-	-P47, P50-P57, P60-P67	0		0.25V _{CC}	v	
VIL	"L" input voltage RES	SET .	0		$0.2V_{\rm cc}$	v	
VIL	"L" input voltage XIN,	X _{CIN}	0		$0.2V_{\rm CC}$	v	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RECOMMENDED OPERATING CONDITIONS (Vcc=4.0 to 5.5V, Ta=-10 to 85°C, unless otherwise noted)

Symbol	Parameter	Limits			Unit	
Symbol	i diameter		Тур	Мах	Unit	
SL. (main	"H" total peak output current P00-P07, P10-P17,				~^	
² 'oh(peak)	(Note 1) P20-P27, P30-P37		-24		ШΑ	
Σl _{on} (peak)	"H" total peak output current P41-P47, P60-P67			60	mA	
51	"L" total peak output current P24-P27, P41-P47,			100		
² 'oL(peak)	P50-P57, P61-P67			100	mA	
$\Sigma I_{OL}(peak)$	"L" total peak output current P60			3.0	mA	
SL	"H" total average output current P00-P07, P10-P17,			100		
- чон(avg)	(Note 1) P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇			-120	MA	
Σl _{oh(avg)}	"H" total average output current P41-P47, P60-P67			-30	mA	
SI	"L" total average output current P24-P27, P41-P47,			50		
Z IOL(avg)	P50-P57, P61-P67		.50		mA	
$\Sigma I_{OL}(avg)$	"L" total average output current P60			1.5	mA	
	"H" peak output current P00-P07, P10-P17, P20-P23,			40		
юн(peak)	P30-P37 (Note 2)		-40		TH A	
I _{OH} (peak)	"H" peak output current P24-P27, P41-P47, P60-P67			-10	mA	
I _{OL} (peak)	"L" peak output current P24-P27, P61-P67			10	mA	
I _{OL} (peak)	"L" peak output current P41-P47, P50-P57			10	mA	
IOL(peak)	"L" peak output current P60			3.0	mA	
	"H" average output current P00-P07, P10-P17,		-18		mA	
юн(avg)	(Note 3) P20-P23, P30-P37					
	"H" average output current P24-P27, P41-P47,			F 0		
loн(avg)	P60-P67			-5.0	mA	
IOL(avg)	"L" average output current P24-P27, P61-P67			5.0	mA	
I _{OL} (avg)	"L" average output current P41-P47, P50-P57			10	mA	
I _{OL} (avg)	"L" average output current P60			1.5	mA	
f(CNTR)	Clock input frequency for timers 4 (duty cycle 50%)			250	kHz	
f(X _{IN})	Main clock input oscillation frequency (Note 4)			4.2	MHz	
$f(X_{CIN})$	Sub clock input oscillation frequency (Note 4, 5)		32.768	50	kHz	

Note 1. The total output current is the sum of all the currents flowing through all the applicable ports The total average current is an average value measured over 100ns. The total peak current is the peak value of all the currents.

The peak output current is the peak current flowing in each port
 The average output current in an average value measured over 100ms

4. When the oscillation frequency has a duty cycle of 50%.

5. When using the microcomputer in low-speed mode, make sure that the sub clock's input frequency $f(X_{CIN})$ is less than $f(X_{IN})/3$

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS ($v_{cc} = 4.0$ to 5.5V, $T_a = -10$ to 85°C, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			
			Min.	Тур.	Max	Unit
V _{он}	"H" output voltage P00-P07, P10-P17, P20-P23, P30-P37	I _{OH} =-18mA, V _{CC} =4.5 to 5.5V	V _{cc} -2.0			v
V _{он}	"H" output voltage P24-P27, P41-P47, P60-P67	I _{OH} =-10mA, V _{CC} =4.5 to 5.5V	V _{cc} -2.0			v
Vol	"L" output voltage P24-P27, P41-P47, P50-P57, P61-P67	I _{OL} =10mA, V _{CC} =4.5 to 5.5V			2.0	v
Vol	"L" output voltage P60	$I_{OL}=1.5 \text{mA}, V_{CC}=4.5 \text{ to } 5.5 \text{V}$			0.5	v
$V_{T+} - V_{T-}$	Hysteresis INT0-INT2, SIN1, SIN2, CLK1, CLK2, CNTR	When using a non-port function		0.4		v
$V_{T+} - V_{T-}$	Hysteresis RESET, X _{IN}	RESET : V _{CC} =2.8V to 5.5V		0.5		V
$V_{T+} - V_{T-}$	Hysteresis X _{CIN}			0.5		V
łн	"H" input current P24-P27, P41-P47, P50-P57, P60-P67	V _i =V _{CC}			5.0	μA
Ц _Н	"H" input current P40	V _I =V _{CC}			5.0	μA
կե	"H" input current RESET, X _{CIN}	V _I =V _{CC}			5.0	μA
l _{in}	"H" input current X _{IN}	V _I =V _{CC}		4		μA
հո	"L" input current P24-P27, P41-P47, P50-P57, P60-P67	V _I =V _{SS}	1		-5.0	μA
<u>.</u> 	"L" input current P40	VI=VSS			-5.0	μA
 Iu	"L" input current RESET, X _{CIN}	VI=VSS			-5.0	μA
	"L" input current XIN	Vi=Vss	1	-4		μA
		$V_{FF} = V_{CC} - 36V, V_{O} = V_{CC}$				· ·
ILOAD	Output load current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₇	With output transistors off	150	500	900	μA
	Output leakage current P00-P07, P10-P17, P20-P23	$V_{\text{EE}} = V_{\text{CC}} - 38V$, $V_{\text{C}} = V_{\text{CC}} - 38V$.				
ILEAK	P3o-P3z	With output transistors off (Except for reset)			-10	μA
VBANA	BAM hold voltage	When clock is stopped	2.0		5.5	v
- BAM		In high-speed operation mode				
	Power supply current	$f(X_{\rm IN})=4MHz$				
		$f(X_{CM}) = 32 \text{ kHz}$		5	10	mA
		Output transistors off		Ŭ		
		Comparator operating				
		In high-speed operation mode				
		$f(X_{W}) = 4MHz$ (in WIT state)				
		$f(X_{OW}) = 32kHz$	1			m∆
		Output transistors off		•		
		Comparator stopped				
		In low-speed operation mode				
		$f(X_{ini}) = \text{stopped } f(X_{oni}) = 32 \text{kHz}$				
lcc		low-power dissipation mode set		60	200	μA
		(CM==0)				
		In low-speed operation mode				
		$f(\mathbf{Y}_{m}) = stopped$				
		$f(X_{OB}) = 32 \text{ kHz} (\text{in WIT state})$			40	
		low-nower dissipation mode set		20		μA
		(CMr=0)				
		Output transistors off				
		All oscillation stonned	+			
		(in STP state) $T_a = 25^{\circ}C$		0.1	1.0	μA
		Output transietore off $T_a = 85^{\circ}C$			10	μΑ
L					1	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

COMPARATOR CHARACTERISTICS

(v_{cc} =4.0 to 5.5V, v_{ss} =0V, T_a =-10 to 85°C, high-speed operation mode, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			11-24
			Min.	Тур	Max	Unit
_	Resolution				4	Bits
-	Absolute accuracy				1/2	LSB
T _{CONV}	Conversion time				7	μs
I _{IA}	Analog port input current				5.0	μA
RLADDER	Ladder resistor			30		kΩ

TIMING REQUIREMENTS ($v_{cc} = 4.0$ to 5.5V, $v_{ss} = 0V$, $T_a = -10$ to 85°C, unless otherwise noted)

Sumbal	Parameter	Test conditions	Limits			11-11
Symbol			Min	Тур	Max	Unit
	Reset input "L" pulse width	,	2			μs
t _{C(XIN})	Main clock input cycle time (X _{IN} input)		238			ns
t _{WH} (x _{IN})	Main clock input "H" pulse width		60			ns
	Main clock input "L" pulse width		60			ns
t _{C(XCIN)}	Sub clock input cycle time (X _{CIN})		2.0			ms
t _{W(XCIN)}	Sub' clock input pulse width (X _{CIN})		1.0			ms
	CNTR input cycle time		4			μs
twh(CNTR)	CNTR input "H" pulse width		1.6			μs
twl(CNTR)	CNTR input "L" pulse width		1.6			μs
t _{WH(INT)}	INT ₀ ~INT ₂ input "H" pulse width		80			ns
t _{WL(INT)}	INT ₀ ~INT ₂ input "L" pulse width		80			ns
t _{C(SCLK)}	Serial clock input cycle time		1		1000	μs
twH(SCLK)	Serial clock input "H" pulse width		40	1		%
twL(SCLK)	Serial clock input "L" pulse width		40			%
t _{r(SCLK)}	Serial clock input clock rise time		5		50	ns
t _{r(sclk})	Serial clock input clock fall time		5		40	ns
th(sclk-sin)	Serial input hold time		0. 2tc			ns
t _{su(sclk-sin)}	Serial input setup time		0. 2tc			ns

SWITCHING CHARACTERISTICS ($v_{cc} = 4.0 \text{ to } 5.5 \text{V}$, $v_{ss} = 0 \text{V}$, $T_a = -10 \text{ to } 85^{\circ}\text{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
Symbol	Parameter		Min	Тур	Max	Unit
twH(SCLK)	Serial clock output "H" pulse width	$C_L=100pF, R_L=1k\Omega$	t _c /2-160			ns
twL(SCLK)	Serial clock output "L" pulse width	$C_L=100pF, R_L=1k\Omega$	t _c /2160			ns
td(sclk-Sout)	Serial clock delay time				0.2t _c	ns
tv(SCLK-SOUT)	Serial clock hold time		0			ns
tf(SCLK)	Serial clock output fall time	$C_L=100pF, R_L=1k\Omega$			40	ns
t _{r(Pch-} strg)	P-channel high-breakdown voltage output rise time (Note 1)	$C_{L}=100 pF, V_{EE}=V_{CC}-36 V$		55		ns
t _{r(Pch-} weak)	P-channel high-breakdown voltage output fall time (Note 2)	$C_{L}=100 pF, V_{EE}=V_{CC}-36 V$		1.8		ns

Note 1. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at "0"

.

2. When bit 0 of the high-breakdown voltage port control register (address 003816) is at "1"

