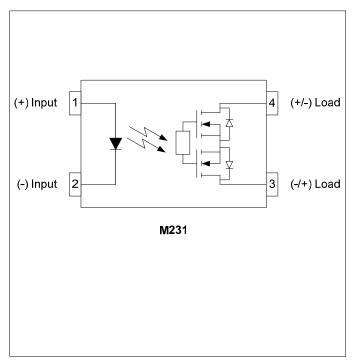


1 Form A 250V / 10Ω MOSFET Output Solid State Relay

M231

Description


The M231 is a bi-directional, single-pole, single-throw, normally open multipurpose solid-state relay in a miniature 4-pin small outline package. With a high blocking voltage (250V) and low on-resistance, it is ideally suited to high voltage applications requiring higher load currents. The relay consists of an integrated circuit that drives two rugged source-to-source enhancement type DMOS transistors – optically coupled to a light emitting diode. The output MOS transistors are protected with free-wheeling diodes that can handle up to 1.5A of inrush current

The M231 comes standard in a 4 pin SOP package.

Applications

- Reed Relay Replacement
- Security Systems
- Meter Reading Equipment
- Data Acquisition
- Battery Monitoring
- Multiplexers

Schematic Diagram

Features

- High Input-to-Output Isolation (1500V MIN)
- Low Input Control Current (2.5mA TYP)
- 150mA Maximum Continuous Load Current
- Low On Resistance (6Ω TYP)
- Ultra Miniature 4SOP Package
- Long Life / High Reliability
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

UL/C-UL:	File # E201932
VDE:	File # 40035191 (EN 60747-5-2)

Absolute Maximum Ratings

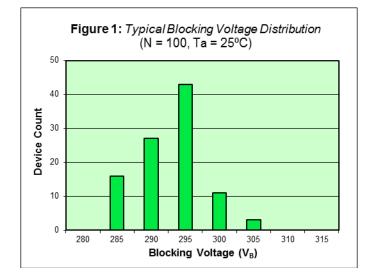
The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

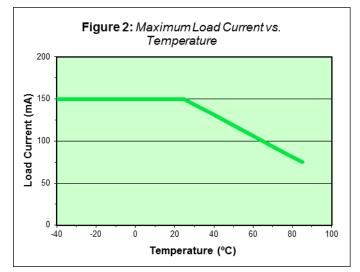
Storage Temperature	55 to +125°C
Operating Temperature	40 to +85°C
Continuous Input Current	50mA
Transient Input Current	500mA
Reverse Input Control Voltage	5V
Input Power Dissipation	40mW
Total Power Dissipation	400mW
Solder Temperature – Wave (10sec)	260°C
Solder Temperature – IR Reflow (10sec)	260°C

Ordering Information

Part Number	Description
M231	4 pin SOP, (100/Tube)
M231-TR	4 pin SOP, Tape and Reel (2000/Reel)

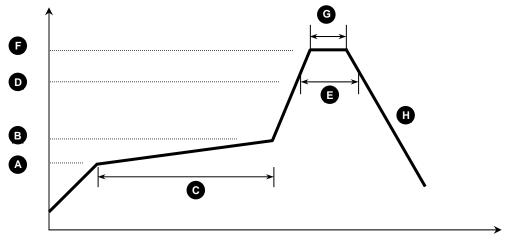
NOTE: Suffixes listed above are not included in marking on device for part number identification




Electrical Characteristics, T_A = 25°C (unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	
Input Specifications							
LED Forward Voltage	V _F	-	1.2	1.5	V	I _F = 10mA	
LED Reverse Voltage	BV _R	5	-	-	V	I _R = 10μA	
Input Reverse Current	I _R	-	-	10	μA	V _R = 5V	
Turn-On Current	I _F	-	2.5	5	mA	V_0 = 20V, I_0 = 150mA (within 10mS)	
Turn-Off Current	I _{F(OFF)}	-	0.5	-	mA	I ₀ = 140mA	
Output Specifications							
Blocking Voltage	V _B	250	-	-	V	I _O =1μA	
Continuous Load Current	Ιo	-	-	150	mA	I _F =5mA	
On Resistance	R _{ON}	-	6	10	Ω	I _F =5mA, I _O =150mA	
Leakage Current	I _{Oleak}	-	0.2	1	μA	I _F =0mA, V ₀ =250V	
Output Capacitance	C _{OUT}	-	20	-	pF	V ₀ =25V, f=1.0MHz	
Offset Voltage	VOFFSET	-	-	0.2	mV	I⊧=5mA	
Coupled Specifications							
Turn-On Time	T _{ON}	-	2	5	mS	I _F =5mA, I _O =140mA	
Turn-Off Time	T _{OFF}	-	0.15	0.5	mS	I _F =0mA, I _O =140mA	
Coupled Capacitance	C _{COUPLED}	-	3	-	pF		
Contact Transient Ratio	-	2,000	7,000	0	V/µS	dV = 50V	
Isolation Specifications							
Isolation Voltage	V _{ISO}	1500	-	-	V _{RMS}	RH ≤ 50%, t=1min	
Input-Output Resistance	R _{I-O}	-	10 ¹²	-	Ω	V _{I-0} = 500V _{DC}	

M231 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)



M231 Solder Reflow Temperature Profile Recommendations

(1) Infrared Reflow:

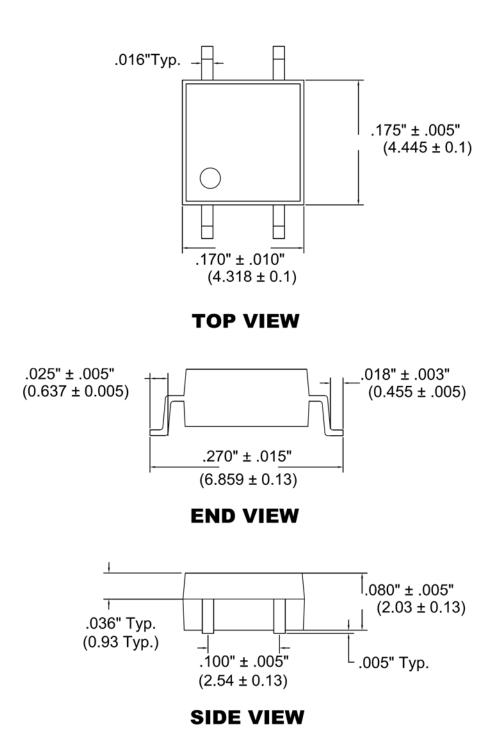
Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

Process Step	Description	Parameter
Α	Preheat Start Temperature (°C)	150°C
В	Preheat Finish Temperature (°C)	180°C
С	Preheat Time (s)	90 - 120s
D	Melting Temperature (°C)	230°C
E	Time above Melting Temperature (s)	30s
F	Peak Temperature, at Terminal (°C)	260°C
G	Dwell Time at Peak Temperature (s)	10s
Н	Cool-down (°C/s)	<6°C/s

(2) Wave Solder:

Maximum Temperature:	260°C (at terminal)
Maximum Time:	10s
Pre-heating:	100 - 150°C (30 - 90s)
Single Occurrence	

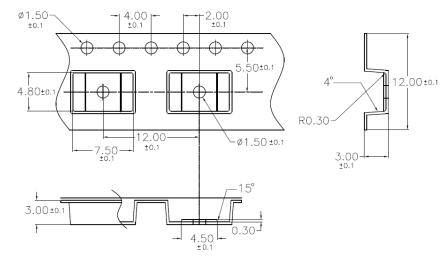
(3) Hand Solder:


Maximum Temperature:	350°C	(at tip of soldering iron)
Maximum Time:	3s	
Single Occurrence		

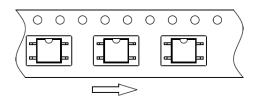
M231 Package Dimensions

4 PIN SOP Package

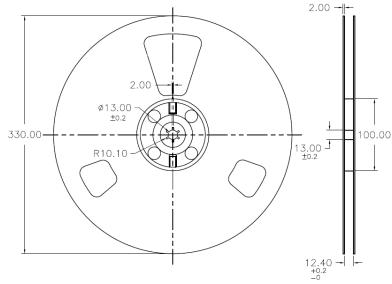
Note: All dimensions in inches with millimeters [mm] in parenthesis ()



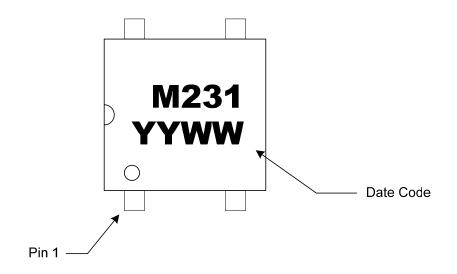
M231 Packaging Specifications


Tape & Reel Specifications (T&R)

Note: All dimensions in millimeters [mm]


Outline and Dimension (Tape)

Parts Orientation and Tape Direction


Outline and Dimensions (Reel)

Packaging: 2,000 pcs / reel

M231 Package Marking

M231 Package Weights

Device	Single Unit	Full Tube (100pcs)	Full Pouch (10 tubes)	Full Reel (2000pcs)
M231	0.10	23	240	-
M231-TR	0.10	-	-	500

Note: All weights above are in GRAMS, and include packaging materials where applicable

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices.

SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.