

() Preliminary Specification(V) Final Specification

Module	17.0" SXGA Color TFT-LCD
Model Name	M170EG02 V4(QD17EL0709)

Customer	Date
Approved by	
Note: This Specification notice.	on is subject to change without

Checked & Approved by

CC Chiu 2006/12/29

Prepared by

Gina Yu 2006/12/29

Desktop Display Business Group / AU Optronics corporation

These specification sheets are the proprietary product of AU Optronics ("AUO") and include materials protected under copyright of AUO. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of AUO.

The device listed in these technical literature sheets was designed and manufactured for use in OA equipment.

In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

AUO assumes no responsibility for any damage resulting from the use of the device, which does not comply with the instructions, and the precautions specified in these technical literature sheets.

Contact and consult with a AUO sales representative for any questions about this device.

		Revision History
REV.	Date	Change Content
0.1	12/29/06	Specification Initiate

1. Application

This specification applies to a color TFT-LCD module, M170EG02 V4

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel; driver ICs, control circuit and power supply circuit and a backlight unit. Graphics and texts can be displayed on a 1280×3×1024 dots panel with 16.2 million colors by using the LVDS (Low Voltage Differential Signaling) interface, 6-bit+FRC driving method and supplying +5V DC supply voltage for TFT-LCD panel driving. The TFT-LCD panel used for this module has very high aperture ratio. A low-reflection and higher-color-saturation type color filter is also used for this panel. Therefore, high-brightness and high-contrast image, which is suitable for the multimedia use, can be obtained by using this module.

Optimum viewing direction is 6 o'clock.

[Features]

- 1) High aperture panel; high-brightness or low power consumption.
- 2) Brilliant and high contrast image.
- 3) Small footprint and thin shape.
- 4) SXGA resolution.
- 5) LVDS interface.
- 6) Low power consumption.
- 7) Wide viewing angle.

3. General Specifications

Parameter	Specifications	Unit
Display size	43 (17") Diagonal	cm
Active area	337.9 (H) × 270.3 (V)	mm
Pixel format	1280 (H)×1024 (V)	Pixel
	(1 pixel = R+G+B dots)	
Pixel pitch	0.264 (H) × 0.264 (V)	mm
Pixel configuration	R,G,B vertical stripe	
Display mode	Normally White	
Unit outline dimensions (typ.)*1	358.5×296.5×16.5	mm
Weight	2000	g
Surface treatment	Anti-glare and hard-coating	
	3H	
	Low reflection (\sim 5%)	
Lamp Quantity	4	pcs

^{*1.}Note: excluding backlight cables.

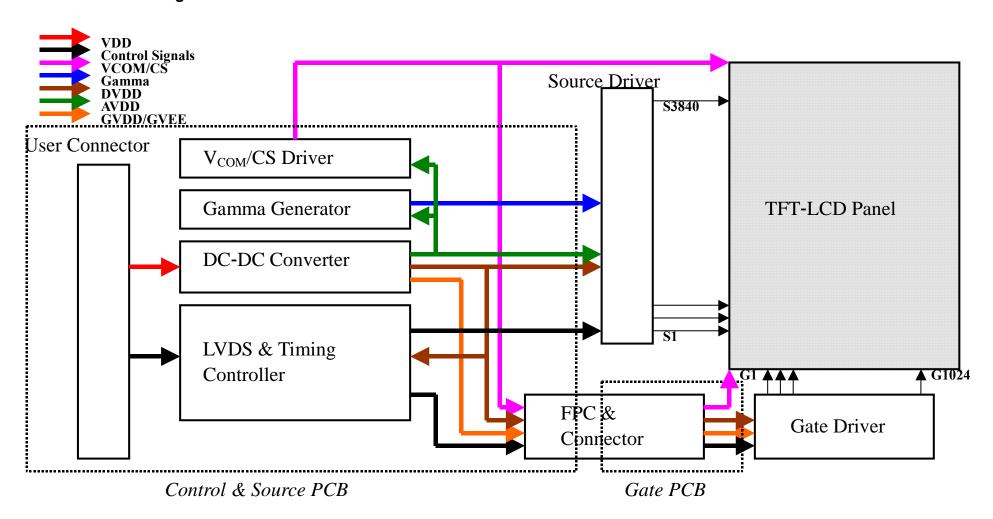
4. Input Terminals

4-1. TFT-LCD panel driving

CN1 (LVDS signals and +5V DC power supply)

Using connector: AL2307-A0G1D-P (PII)

Corresponding connector: FI-X30M or FI-X30H (JAE)


	· •	Connector. 11-A30W Of 11-A30M (JAL)	_
Pin No.	Symbol	Function	Remark
1	R1IN0-	Receiver signal of Odd side pixels (-)	LVDS
2	R1IN0+	Receiver signal of Odd side pixels (+)	LVDS
3	R1IN1-	Receiver signal of Odd side pixels (-)	LVDS
4	R1IN1+	Receiver signal of Odd side pixels (+)	LVDS
5	R1IN2-	Receiver signal of Odd side pixels (-)	LVDS
6	R1IN2+	Receiver signal of Odd side pixels (+)	LVDS
7	GND		
8	CK1IN-	Clock signal of Odd side pixels (-)	LVDS
9	CK1IN+	Clock signal of Odd side pixels (+)	LVDS
10	R1IN3-	Receiver signal of Odd side pixels (-)	LVDS
11	R1IN3+	Receiver signal of Odd side pixels (+)	LVDS
12	R2IN0-	Receiver signal of Even side pixels (-)	LVDS
13	R2IN0+	Receiver signal of Even side pixels (+)	LVDS
14	GND		
15	R2IN1-	Receiver signal of Even side pixels (-)	LVDS
16	R2IN1+	Receiver signal of Even side pixels (+)	LVDS
17	GND		
18	R2IN2-	Receiver signal of Even side pixels (-)	LVDS
19	R2IN2+	Receiver signal of Even side pixels (+)	LVDS
20	CK2IN-	Clock signal of Even side pixels (-)	LVDS
21	CK2IN+	Clock signal of Even side pixels (+)	LVDS
22	R2IN3-	Receiver signal of Even side pixels (-)	LVDS
23	R2IN3+	Receiver signal of Even side pixels (+)	LVDS
24	GND		
25	GND		
26	NC		
27	GND		
28	V_{DD}	+5V power supply	Power
29	V_{DD}	+5V power supply	Power
30	V_{DD}	+5V power supply	Power
	ALL ONID	N	

[Note 1] All GND(ground) pins should be connected together.

[Note 2] All V_{DD} (power supply) pins should be connected together.

4-2 Interface block diagram

4-3. Backlight driving

Using connector CN2, 3: BHSR-02VS-1 (JST)
Corresponding connector: SM02B-BHSS-1 (JST)

Pin No.	Symb	Function
1	HIGH	High voltage side
2	GND	Ground

5. Absolute Maximum Ratings

LCD module

Parameter	Symbol	Condition	Ratings	Unit	Remark
+5V supply voltage	V_{DD}	Ta=25℃	-0.3 ~ +6.0	V	
Storage temperature	Tstg	_	$-20 \sim +60$	$^{\circ}$	[Note1]
Operating temperature (Ambient)	Тора	_	0 ~ +50	$^{\circ}$	

【Note1】Humidity: 90%RH Max. at Ta≤40℃.

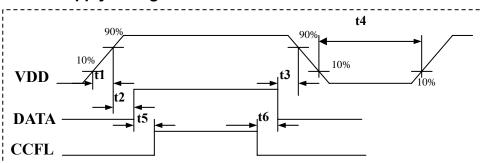
Maximum wet-bulb temperature at 39° $\mathbb C$ or less at Ta>40° $\mathbb C$.

No condensation.

6. Electrical Characteristics

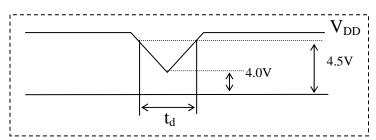
6-1.TFT-LCD panel driving

Ta=25℃


	Parameter	,	Symb	Min.	Тур.	Max.	Unit	Remark
	raiailletei		ol	IVIIII.	ıyρ.	Wax.	Oilit	Kemark
V_{DD}	Supply volt	age	V_{DD}	+4.5	+5.0	+5.5	V	【Note2】
	Current dissipation		I _{DD}	_	750	1200	m A	[Note3]
Permissive input ripple		V_{RP}	_	_	100	mV p-p	V _{DD} =+5.5V	
volta	ge							
Diffe	rential input	High	V _{TH}	_	_	+100	mV	
								V _{CM} =+1.2V
thr volta	eshold ge	Low	V _{TL}	-100	_	_	mV	【Note1】
Ru	sh current	•	I _{RUSH}			3	Α	Rise time 470uS

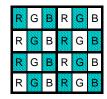
[Note1] V_{CM}: Common mode voltage of LVDS driver.

[Note2]


On-off conditions for supply voltage

 $0 < t1 \le 10 \text{ ms}$ $0 < t2 \le 50 \text{ ms}$ $0 < t3 \le 1 \text{ s}$ 1 s < t4 $200 \text{ ms} \le t5$ $200 \text{ ms} \le t6$

$V_{\text{DD}}\text{-dip conditions}$

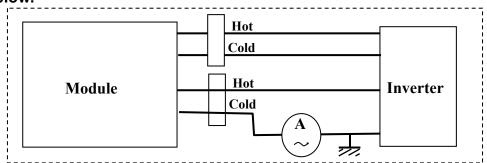

1) 4 V≦V_{DD}<4.5 V td≦10 ms

2) V_{DD} <4 V

 $\ensuremath{V_{\text{DD}}}\xspace$ dip conditions should also follow the On-off conditions for supply voltage

[Note3] Maximum current condition; Change to 1x1 dot checker board pattern. V_{DD} =+5V

: 0 GS

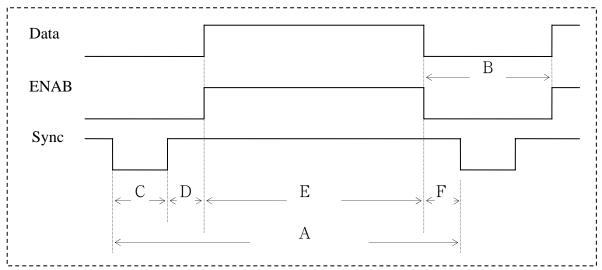

6-2. Backlight driving

The backlight system is an edge-lighting type with 2 CCFT (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

Parameter	Symb ol	Min.	Тур.	Max.	Unit	Ren	nark
Lamp current range	IL	3.0	7.0	8.0	mArm s	[Note1]	
Lamp voltage	٧L	650	725	770	Vrms		
Lamp power consumption	PL		5.1	6.16	W	[Note2]	
Lamp frequency	F∟	35	52	80	kHz	[Note3]	
Established starting voltage	Vs			1100	Vrms	Ta=25℃	
				1420	Vrms	Ta=0°C	[Note4]
Lamp life time	L _L	40000	50000		hour	[Note5]	

[Note1] Lamp current is measured with current meter for high frequency as shown below.


- [Note2] Calculated Value for reference (IL × VL)
- [Note3] Lamp frequency may produce interference with horizontal synchronous frequency, and this may cause beat on the display. Therefore lamp frequency shall be detached as much as possible from the horizontal synchronous frequency and from the harmonics of horizontal synchronous to avoid interference.
- [Note4] The voltage above this value should be applied to the lamp for more than 1 second to start-up. Otherwise the lamp may not be turned on.
- [Note5] Lamp life time is defined as the time when either ① or ② occurs in the continuous operation under the condition of Ta = 25° C and I_L =7.0 mArms.
- ① Brightness becomes 50 % of the original value under standard condition.
 - ② Kick-off voltage at Ta = 0° C exceeds maximum value.
- Note) The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the backlight and the inverter (miss-lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

7. Timing characteristics of LCD module input signals

7-1. Timing characteristics

(This is specified at digital outputs of LVDS driver.)

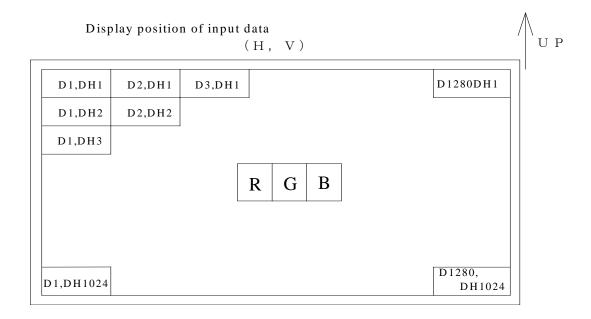
(Vertical)

Item (symbol)	Min.	Тур.	Max.	Unit	Remark
Vsync cycle (T _{VA})	_	16.7	_	ms	Postive
	1028	1066	1365	line	
Blanking period(T _{VB})	5	42		line	
Sync pulse width (T _{VC})	1	3	_	line	
Back porch (T _{VD})	1	38	_	line	
Sync pulse width + Back porch (T _{VC} +T _{VD})	2	41	_	line	
Active display area (T _{VE})	1024	1024	1024	line	
Front porch (T _{VF})	_	1	_	line	

(Horizontal)

Item (symbol)	Min.	Тур.	Max.	Unit	Remark
Hsync cycle (T _{HA})	_	15.6	_	μs	Postive
	706	844	1320	clock	2dots/cloc
					k
Blanking period (T _{HB})	66	204	_	clock	
Sync pulse width (T _{HC})	8	56	_	clock	
Back porch (T _{HD})	3	124	_	clock	
Sync pulse width +	11	180	_	clock	
Back porch (T _{HC} +T _{HD})					
Active display area	640	640	640	clock	
(T _{HE})					
Front porch (T _{HF})	_	24	_	clock	

(Clock)


Item	Min.	Тур.	Max.	Unit	Remark
Frequency	40	54	67.5	MHz	[Note1]

Note)1. Typ. Timing is 1280x1024@64KHz/60Hz SXGA.

- 2. The panel can run at 1280x1024@79.976KHz/75Hz as well.
- 3. If increase Vsync cycle too much, it may cause flicker.
- 4. Vsync/Hsync cycle value (T_{VA} / T_{HA}) is divided by 4.

7-2. Input Data Signals and Display Position on the screen

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

0. 11		at Signals, Basic Display Colors and Gray Scale of Each Color																							
	Colors &											Dat		_				ı							
	Gray scale	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G	G	В	В	В	В	В	В	В	В
		0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Ba	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Color	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
or	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	ប៌	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
y So	Darker	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	ប់	^						^						^											
of	of t			V				V						↓											
of Red	Bright	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٩	Û	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Û	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ay S	Darker	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	C O		û ^											↑											
le c	Û				•	V							•	V								V			
of G	Bright	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
of Green	Û	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
n	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
G	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Blue	Û	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Sca	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ale	Û	↑						^						^											
of I	Û	\						V						↓											
Blu	Bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
l ^o	Û	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

0 : Low level voltage, 1 : High level voltage

9. Optical Characteristics

document version 0.1

Ta=25°C,	$V_{DD}=+5V$
14- 2 5().	A 1 1 1 1 O A

Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Horizontal		CR>10	60	70		Deg.	【Note1,4】
Vertica		θ11		55	65		Deg.	
Viewing		θ12		50	60		Deg.	
Angle	Horizontal	θ21,θ22	CR>5	70	80		Deg.	
Range	Vertical	θ11		65	75		Deg.	
		θ12		60	70		Deg.	
Contra	st ratio	CRn	θ=0°	300	500	_		[Note2,4]
Respon	se time	Т	θ=0°	_	8		ms	[Note3,4]
Rise time	e tr				2	TBD	ms	
Fall time	тd				6	TBD	ms	
Chromatici	ty of	Wx		0.283	0.313	0.343		[Note4]
White (CIE	1931)	Wy		0.299	0.329	0.359		
Chromatici	ty of	Rx		0.609	0.639	0.669		
Red (CIE 19	931)	Ry		0.314	0.344	0.374		
Chromatici	ty of	Gx		0.257	0.287	0.317		
Green (CIE	en (CIE 1931) Gy			0.585	0.615	0.645		
Chromatici	ty of	Вх		0.111	0.141	0.171		
Blue (CIE 1	931)	Ву		0.057	0.087	0.117		
Luminanc	inance of white Y L			200	260		Cd/m ²	IL = 7.0mArms
White Ur	niformity	δW		_	1.25	1.33		【Note5】

The measurement shall be executed 30 minutes after lighting at rating. (typical condition: IL = 7.0 mArms)

The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig.3 below.

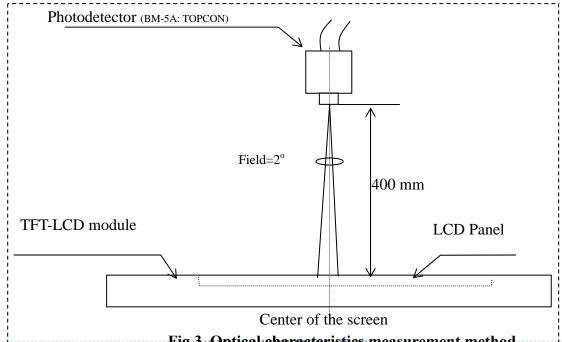
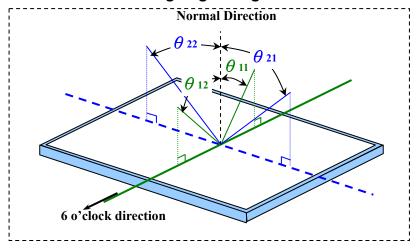
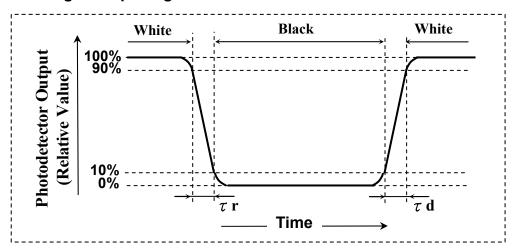



Fig 3. Optical characteristics measurement method

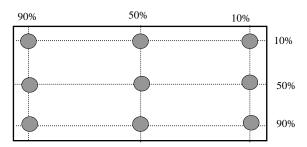
[Note1] Definitions of viewing angle range:


[Note2] Definition of contrast ratio:

The contrast ratio is defined as the following.

[Note3] Definition of response time:

The response time is defined as the following figure and shall be measured by


switching the input signal for "black" and "white".

[Note4] This shall be measured at center of the screen.

[Note5] Definition of white uniformity:

White uniformity is defined as the following with 9 measurements

Maximum Luminance (of 9 points)

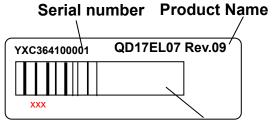
 $\delta_{W} = \frac{1}{\text{Minmum Luminance (of 9 points)}}$

10. Display Quality

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

11 · Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling.
- h) Observe all other precautionary requirements in handling components.
- i) This module has its circuitry PCBs on the rear side and should be handled carefully in order not to be stressed.
- j) Laminated film is attached to the module surface to prevent it from being scratched. Peel the film off slowly just before the use with strict attention to electrostatic charges. Ionized air shall be blown over during the action. Blow off the 'dust' on the polarizer by using an ionized nitrogen gun, etc..



12.Reliability test items

	Test item	Conditions							
No.									
1	High temperature storage test	Ta = 60°C 240h							
2	Low temperature storage test	Ta = -20°C 240h							
3	High temperature	Ta = 50℃ ; 50 %RH 240h							
	& high humidity operation test	(No condensation)							
4	High temperature operation	Ta = 50°C 240h							
	test	(The panel temp. must be less than 60°C)							
5	Low temperature operation test	Ta = 0°C 240h							
6	Vibration test (non-	Frequency: 10~500Hz, 1.0G 1Hr/each axis							
	operating)								
7	Shock test	Gravity : 50G							
	(non- operating)	Pulse width : 11 ms, sine wave							
		Direction : ±X,±Y,±Z							
		Once for each direction.							

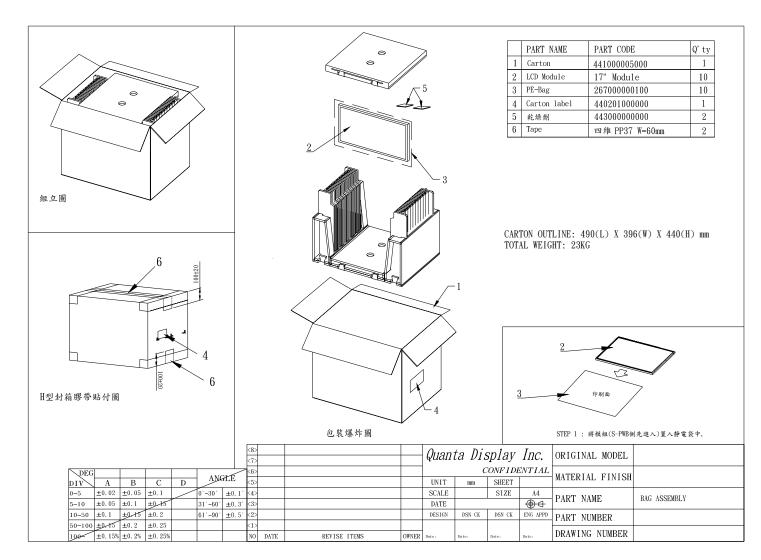
13 · Others

1) Lot No. Label:

Serial Number Bar Code

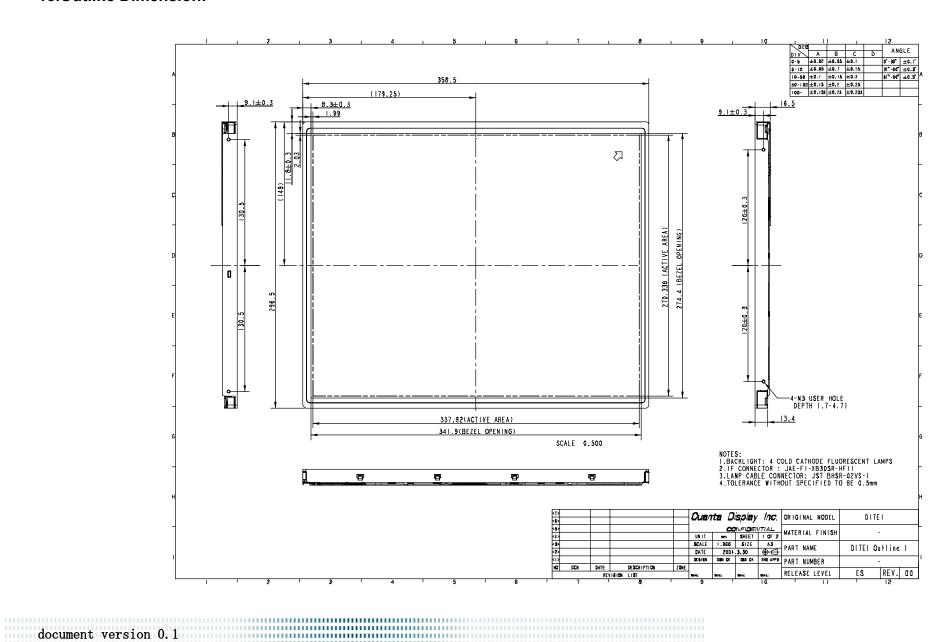
YXC364100001 Digital code 4, 5 is Date code.

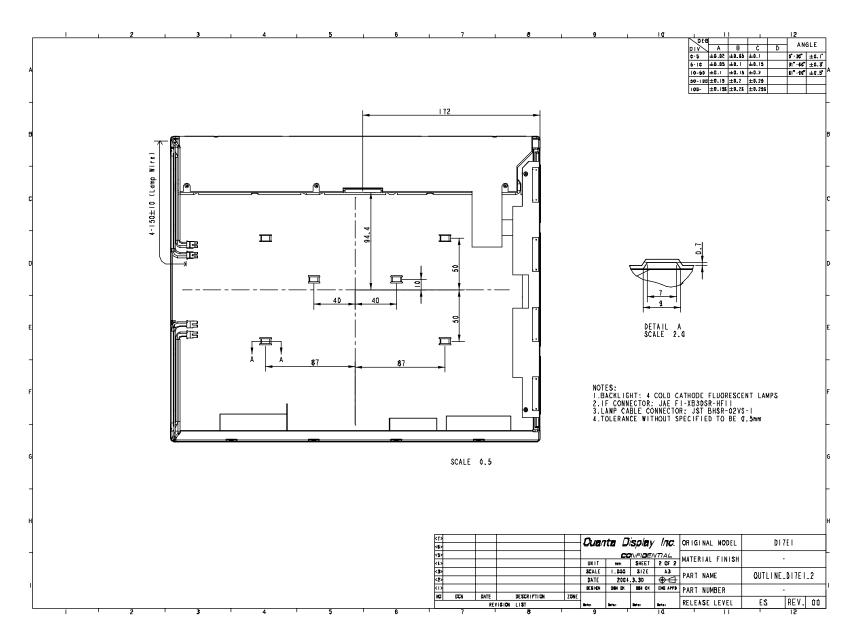
Digital 4 (Year) 1: 2001, 2: 2002, 3:2003,....


Digital 5 (Month) 1: Jan, 2: Feb,..., A:Oct, B:Nov., C: Dec.

- 2) Adjusting volume has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 3) Disassembling the module can cause permanent damage and should be strictly avoided.
 - 4) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
 - 5) If any problem occurs in relation to the description of this specification, it shall be resolved through discussion with spirit of cooperation.

14. Package Method


i) Package quantity in one box: 10pcs ii)Box Size: 490 (L)x 396 (W)x 440 (H) mm


CAMORIO TOLISION O. I

15.Outline Dimension:

