

# SANYO Semiconductors

DATA SHEET

An ON Semiconductor Company



## BI-CMOSIC Saturated Driver with 2 channels + Constant Current Driver

#### Overview

The LV8481CS is low-voltage motor driver with a saturated driver with 2 channels + constant current driver. Since it is in wafer level package, this IC is optimized for the stepping motor driver and shutter driver of various portable equipments including the mobile phones with camera.

#### **Functions**

- Saturated driver H bridge with 2 channels + Constant current driver.
- I<sup>2</sup>C bus interface
- Built-in AF stepping motor sequence logic (enabling 2-phase excitation and 1-2 phase excitation)
- Built-in lens home position sequence logic
- Enabling power-saving by MOS process
- Built-in 4 bit DAC for constant current
- Built-in constant current detection resistance
- Wafer level package. WLP10 (0.97mm × 2.47mm × 0.5mmt)
- Built-in thermal shutdown circuit and LVS circuit.

#### **Specifications**

#### Absolute Maximum Ratings at Ta = 25°C

| Parameter                   | Symbol                   | Conditions                   | Ratings      | Unit |
|-----------------------------|--------------------------|------------------------------|--------------|------|
| Maximum supply voltage      | V <sub>CC</sub> , VM max |                              | 5.0          | V    |
| Output applied voltage      | V <sub>OUT</sub> max     | OUT1, OUT2, OUT3, OUT4, OUT5 | 5.0          | V    |
| Input applied voltage       | V <sub>IN</sub> max      | ENA, SCL, SDA                | -0.3 to +5.0 | V    |
| GND pin flow-out current    | IGND                     | Per channel                  | 400          | mA   |
| Allowable power dissipation | Pd max                   | With specified substrate *   | 550          | mW   |
| Operating temperature       | Topr                     |                              | -30 to +85   | °C   |
| Storage temperature         | Tstg                     |                              | -40 to +150  | °C   |

\* Specified substrate : 50.0mm × 50.0mm × 1.6mm, glass epoxy 1 layers printed circuit board

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

> SANYO Semiconductor Co., Ltd. www.semiconductor-sanyo.com/network

## LV8481CS

### Allowable Operating Conditions at $Ta=25^{\circ}C$

| Parameter                | Symbol          | Conditions       | Ratings                 | Unit |
|--------------------------|-----------------|------------------|-------------------------|------|
| Supply voltage           | V <sub>CC</sub> |                  | 2.4 to 4.5              | V    |
| High level input voltage | VIH             | ENA, SCL and SDA | $0.4 \times V_{CC}$ to  | V    |
| Low level input voltage  | VIL             |                  | to $V_{CC} \times 0.13$ | V    |

## **Electrical Characteristics** at $Ta = 25^{\circ}C$ , $V_{CC} = 2.8V$

| Parameter                                          | Symbol              | Conditions                                                                                              |     | Ratings |      | Linit |
|----------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------|-----|---------|------|-------|
|                                                    | Gymbol              | Conditions                                                                                              | min | typ     | max  | Offic |
| Supply current                                     | Icco                | EN = 0V                                                                                                 |     | 0.1     | 1    | uA    |
|                                                    | ICCO1               | EN = 3V                                                                                                 |     | 1.2     | 1.8  | mA    |
| Output ON resistance 1<br>(out1 to out3)           | Ron11               | $V_{CC}$ = 3.0V (Sum of the upper and lower side outputs)<br>EN = 3.0V, I <sub>OUT</sub> = 100mA        |     | 2.7     | 3.3  | Ω     |
|                                                    | Ron12               | $V_{CC}$ = 4.5V (Sum of the upper and lower side outputs)<br>EN = 3.0V, I <sub>OUT</sub> = 100mA        |     | 2.1     | 2.6  | Ω     |
| Output ON resistance 2<br>(out4 to out5 + sence R) | Ron21               | $V_{CC}$ = 3.0V (Sum of the upper and lower side outputs + RF (0.5\Omega)) EN = 3.0V, $I_{OUT}$ = 100mA |     | 2.7     | 3.2  | Ω     |
|                                                    | Ron22               | $V_{CC}$ = 4.5V (Sum of the upper and lower side outputs + RF (0.5\Omega)) EN = 3.0V, $I_{OUT}$ = 100mA |     | 2.1     | 2.55 | Ω     |
| Output constant current DAC1                       | IOUT1               | D3-D0code : 0000                                                                                        |     | 260     |      | mA    |
| Output constant current DAC2                       | I <sub>OUT</sub> 2  | D3-D0code : 0001                                                                                        |     | 250     |      | mA    |
| Output constant current DAC3                       | IOUT3               | D3-D0code : 0010                                                                                        |     | 240     |      | mA    |
| Output constant current DAC4                       | IOUT <sup>4</sup>   | D3-D0code : 0011                                                                                        |     | 230     |      | mA    |
| Output constant current DAC5                       | IOUT <sup>5</sup>   | D3-D0code : 0100                                                                                        |     | 220     |      | mA    |
| Output constant current DAC6                       | I <sub>OUT</sub> 6  | D3-D0code : 0101                                                                                        |     | 210     |      | mA    |
| Output constant current DAC7                       | IOUT7               | D3-D0code : 0110                                                                                        |     | 200     |      | mA    |
| Output constant current DAC8                       | IOUT8               | D3-D0code : 0111                                                                                        |     | 190     |      | mA    |
| Output constant current DAC9                       | I <sub>OUT</sub> 9  | D3-D0code : 1000                                                                                        |     | 180     |      | mA    |
| Output constant current DAC10                      | IOUT <sup>10</sup>  | D3-D0code : 1001                                                                                        |     | 170     |      | mA    |
| Output constant current DAC11                      | IOUT11              | D3-D0code : 1010                                                                                        |     | 160     |      | mA    |
| Output constant current DAC12                      | I <sub>OUT</sub> 12 | D3-D0code : 1011                                                                                        |     | 150     |      | mA    |
| Output constant current DAC13                      | IOUT <sup>13</sup>  | D3-D0code : 1100                                                                                        |     | 140     |      | mA    |
| Output constant current DAC14                      | IOUT <sup>14</sup>  | D3-D0code : 1101                                                                                        |     | 130     |      | mA    |
| Output constant current DAC15                      | I <sub>OUT</sub> 15 | D3-D0code : 1110                                                                                        |     | 120     |      | mA    |
| Output constant current DAC16                      | I <sub>OUT</sub> 16 | D3-D0code : 1111                                                                                        |     | 110     |      | mA    |
| Output turn ON time                                | Traise              | OUT1-OUT4                                                                                               |     | 1       | 3    | us    |
| Output turn OFF time                               | Tfall               | OUT1-OUT4                                                                                               |     | 0.2     | 1    | us    |
| AF PLS period                                      | Taf                 |                                                                                                         | 1.8 | 2       | 2.2  | ms    |
| Input curren                                       | I <sub>IN</sub>     | V <sub>IN</sub> = 3V                                                                                    |     | 0       | 1    | uA    |
| SDA pin low level output                           | V <sub>OL</sub>     | I <sub>O</sub> = 300uA                                                                                  |     | 0.2     | 0.3  | V     |
| Time of onset of movements                         | TI <sup>2</sup> CSH | I <sup>2</sup> C comand SH operation                                                                    |     |         | 10   | us    |
| after receiving I <sup>2</sup> C communication     | TI <sup>2</sup> CAF | I <sup>2</sup> C comand AF sequence operation                                                           |     |         | 1.2  | ms    |
|                                                    | TI <sup>2</sup> CDP | I <sup>2</sup> C comand Defaultposition sequence operation                                              |     |         | 6    | ms    |
| Thermal shut down operation temperature            | TTSD                | ENA = 3V Design target value                                                                            |     | 175     |      | °C    |
| Hysteresis                                         | TATSD               | ENA = 3V Design target value                                                                            |     | 35      |      | °C    |

(Assured design target)  $^{\star}$  : Design target value, not to be measured at production test.

## Package Dimensions

unit : mm (typ) 3362





## **Pin Assignment**



| Pin No. | Pin Name        |
|---------|-----------------|
| A1      | OUT5            |
| A2      | V <sub>CC</sub> |
| A3      | ENA             |
| A4      | SDA             |
| A5      | SCL             |
| B1      | GND             |
| B2      | OUT4            |
| B3      | OUT3            |
| B4      | OUT2            |
| B5      | OUT1            |

## **Block Diagram**



### **Serial Bus Communication Specifications**

I<sup>2</sup>C serial transfer timing conditions Standard mode



#### Standard mode

| Parameter                 | symbol | Conditions                                                | min | typ | max  | unit |
|---------------------------|--------|-----------------------------------------------------------|-----|-----|------|------|
| SCL clock frequency       | fscl   | SCL clock frequency                                       | 0   |     | 100  | kHz  |
| Data setup time           | ts1    | Setup time of SCL with respect to the falling edge of SDA | 4.7 |     |      | us   |
|                           | ts2    | Setup time of SDA with respect to the rising edge of SCL  | 250 |     |      | ns   |
|                           | ts3    | Setup time of SCL with respect to the rising edge of SDA  | 4.0 |     |      | us   |
| Data hold time            | th1    | Hold time of SDA with respect to the falling edge of SDA  | 4.0 |     |      | us   |
|                           | th2    | Hold time of SDA with respect to the falling edge of SCL  | 0   |     |      | us   |
| Pulse width               | twL    | SCL low period pulse width                                | 4.7 |     |      | us   |
|                           | twH    | SCL high period pulse width                               | 4.0 |     |      | us   |
| Input waveform conditions | ton    | SCL, SDA (input) rising time                              |     |     | 1000 | ns   |
|                           | toff   | SCL, SDA (input) falling time                             |     |     | 300  | ns   |
| Bus free time             | tbus   | Interval between stop condition and start condition       | 4.7 |     |      | us   |

#### **High-speed mode**

| Parameter                 | Symbol | Conditions                                                | min  | typ | max | unit |
|---------------------------|--------|-----------------------------------------------------------|------|-----|-----|------|
| SCL clock frequency       | fscl   | SCL clock frequency                                       | 0    |     | 400 | kHz  |
| Data setup time           | ts1    | Setup time of SCL with respect to the falling edge of SDA | 0.6  |     |     | us   |
|                           | ts2    | Setup time of SDA with respect to the rising edge of SCL  | 100  |     |     | ns   |
|                           | ts3    | Setup time of SCL with respect to the rising edge of SDA  | 0.6  |     |     | us   |
| Data hold time            | th1    | Hold time of SDA with respect to the falling edge of SDA  | 0.6  |     |     | us   |
|                           | th2    | Hold time of SDA with respect to the falling edge of SCL  | 0.08 |     |     | us   |
| Pulse width               | twL    | SCL low period pulse width                                | 1.3  |     |     | us   |
|                           | twH    | SCL high period pulse width                               | 0.6  |     |     | us   |
| Input waveform conditions | ton    | SCL, SDA (input) rising time                              |      |     | 300 | ns   |
|                           | toff   | SCL, SDA (input) falling time                             |      |     | 300 | ns   |
| Bus free time             | tbus   | Interval between stop condition and start condition       | 1.3  |     |     | us   |

#### I<sup>2</sup>C bus transmission method

Start and stop conditions

The  $I^2C$  bus requires that the state of SDA be preserved while SCL is high as shown in the timing diagram below during a data transfer operation.



When data is not being transferred, both SCL and SDA are in the high state. The start condition is generated and access is started when SDA is changed from high to low while SCL and SDA are high.

Conversely, the stop condition is generated and access is ended when SDA is changed from low to high while SCL is high.



Data transfer and acknowledgement response

After the start condition has been generated, the data is transferred one byte (8 bits) at a time. Generally, in an  $I^2C$  bus, a unique 7-bit slave address is assigned to each device, and the first byte of the transfer data is allocated to the 7-bit slave address and to the command (R/W) indicating the transfer direction of the subsequent data.

Every time 8 bits of data for each byte are transferred, the ACK signal is sent from the receiving end to the sending end. Immediately after the clock pulse of SCL bit 8 in the data transferred has fallen to low, SDA at the sending end is released, and SDA is set to low at the receiving end, causing the ACK signal to be sent.

When, after the receiving end has sent the ACK signal, the transfer of the next byte remains in the receiving status, the receiving end releases SDA at the falling edge of the ninth SCL clock.



Number of Slave Address is 0110010. (S7→S1)

#### Serial Map

|   |    |    | R  | egister | Addres | SS |    |    |    |    |    | Da        | ata     |          |               |        |
|---|----|----|----|---------|--------|----|----|----|----|----|----|-----------|---------|----------|---------------|--------|
|   | A7 | A6 | A5 | A4      | A3     | A2 | A1 | A0 | D7 | D6 | D5 | D4        | D3      | D2       | D1            | D0     |
|   | 0  | 0  | 0  | 0       | 0      | 0  | 0  | 0  |    |    |    | AFMOD     | E [7:0] |          |               |        |
| 0 |    |    |    |         |        |    |    |    | 0  | 0  | 0  | 0         | 0       | 0        | 0             | 0      |
|   | 0  | 0  | 0  | 0       | 0      | 0  | 0  | 1  | FL | ×  | Al | MODE [5 : | 3]      | HOL      | D time set [2 | 2 : 0] |
|   |    |    |    |         |        |    |    |    | 0  | 0  | 0  | 0         | 0       | 0        | 0             | 0      |
|   | 0  | 0  | 0  | 0       | 0      | 0  | 1  | 0  | ×  | ×  | ×  | ×         | ×       | SH       | HMODE [2 :    | 0]     |
| 1 |    |    |    |         |        |    |    |    | 0  | 0  | 0  | 0         | 0       | 0        | 0             | 0      |
|   | 0  | 0  | 0  | 0       | 0      | 0  | 1  | 1  | ×  | ×  | ×  | ×         |         | CURRENTI | 10DE [3:0]    |        |
|   |    |    |    |         |        |    |    |    | 0  | 0  | 0  | 0         | 0       | 0        | 0             | 0      |

Upper : Register name Lower : Default value

\*Caution : address 00000111 is IC testmode. This address is out of use.

#### Serial Each Mode Settings

| Rotational | Direction | Setting |
|------------|-----------|---------|
|------------|-----------|---------|



| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |

| D1 | ON/OFF         |
|----|----------------|
| 0  | Standby mode   |
| 1  | Operation mode |

#### AF counter Reset

|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|

| D2 | Counter Reset |
|----|---------------|
| 0  | Reset on      |
| 1  | Reset off     |

| Ste | ep Num | ber Se | etting |   |   |   |   |   |    |    |    |    |    |    |    |    |
|-----|--------|--------|--------|---|---|---|---|---|----|----|----|----|----|----|----|----|
| 0   | 0      | 0      | 0      | 0 | 0 | 0 | 0 | 0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|     |        |        |        |   |   |   |   |   |    |    |    |    |    |    |    |    |

| D7<br>(32P) | D6<br>(16P) | D5<br>(8P) | D4<br>(4P) | D3<br>(2P) | Number of steps |
|-------------|-------------|------------|------------|------------|-----------------|
| 0           | 0           | 0          | 0          | 0          | 2step           |
| 0           | 0           | 0          | 0          | 1          | 4step           |
| 0           | 0           | 0          | 1          | 0          | 6step           |
| 0           | 0           | 0          | 1          | 1          | 8step           |
| 0           | 0           | 1          | 0          | 0          | 10step          |
| 0           | 0           | 1          | 0          | 1          | 12step          |
| 0           | 0           | 1          | 1          | 0          | 14step          |
| 0           | 0           | 1          | 1          | 1          | 16step          |
| 0           | 1           | 0          | 0          | 0          | 18step          |
| 0           | 1           | 0          | 0          | 1          | 20step          |
| 0           | 1           | 0          | 1          | 0          | 22step          |
| 0           | 1           | 0          | 1          | 1          | 24step          |
| 0           | 1           | 1          | 0          | 0          | 26step          |
| 0           | 1           | 1          | 0          | 1          | 28step          |
| 0           | 1           | 1          | 1          | 0          | 30step          |
| 0           | 1           | 1          | 1          | 1          | 32step          |
| 1           | 0           | 0          | 0          | 0          | 34step          |
| 1           | 0           | 0          | 0          | 1          | 36step          |
| 1           | 0           | 0          | 1          | 0          | 38step          |
| 1           | 0           | 0          | 1          | 1          | 40step          |
| 1           | 0           | 1          | 0          | 0          | 42step          |
| 1           | 0           | 1          | 0          | 1          | 44step          |
| 1           | 0           | 1          | 1          | 0          | 46step          |
| 1           | 0           | 1          | 1          | 1          | 48step          |
| 1           | 1           | 0          | 0          | 0          | 50step          |
| 1           | 1           | 0          | 0          | 1          | 52step          |
| 1           | 1           | 0          | 1          | 0          | 54step          |
| 1           | 1           | 0          | 1          | 1          | 56step          |
| 1           | 1           | 1          | 0          | 0          | 58step          |
| 1           | 1           | 1          | 0          | 1          | 60step          |
| 1           | 1           | 1          | 1          | 0          | 62step          |
| 1           | 1           | 1          | 1          | 1          | 64step          |

Note):

D3: 2Pulse on/off (2step) setting register

D4: 4Pulse on/off (4step) setting register

D5 : 8Pulse on/off (8step) setting register

D6:16Pulse on/off (16step) setting register

D7 : 32Pulse on/off (32step) setting register

#### AF HOLDTIME Setting

|   | I O E D |   | Ootani | 9  |                        |                        |          |          |                          |                         |                                |    |    |    |    |    |
|---|---------|---|--------|----|------------------------|------------------------|----------|----------|--------------------------|-------------------------|--------------------------------|----|----|----|----|----|
| 0 | 0       | 0 | 0      | 0  | 0                      | 0                      | 0        | 1        | D7                       | D6                      | D5                             | D4 | D3 | D2 | D1 | D0 |
|   |         |   |        |    |                        |                        |          |          |                          |                         |                                |    |    |    |    |    |
|   | D2      |   | D1     | D0 |                        | HOLD PULSE Number 1    |          |          |                          |                         | HOLD PULSE Number              |    |    |    |    |    |
|   |         |   |        |    |                        | (at AF sequence)       |          |          |                          |                         | (at Default position sequence) |    |    |    |    |    |
|   | 0       |   | 0      | 0  |                        | 1Pu                    | ls (2mse | c/1msec) |                          |                         | 1Pul                           |    |    |    |    |    |
|   | 0       |   | 0      | 1  |                        | 2Puls (4msec/2msec)    |          |          |                          |                         | 2Puls (20msec/10msec)          |    |    |    |    |    |
|   | 0       |   | 1      | 0  |                        | 4Puls (8msec/4msec)    |          |          |                          | 4Puls (40msec/20msec)   |                                |    |    |    |    |    |
|   | 0       |   | 1      | 1  |                        | 5Puls (10msec/5msec)   |          |          |                          |                         | 5Puls (50msec/25msec)          |    |    |    |    |    |
|   | 1       |   | 0      | 0  |                        | 8Puls (16msec/8msec)   |          |          |                          | 8Puls (80msec/40msec)   |                                |    |    |    |    |    |
|   | 1       |   | 0      | 1  |                        | 16Puls (32msec/16msec) |          |          |                          | 16Puls (160msec/80msec) |                                |    |    |    |    |    |
|   | 1       |   | 1      | 0  | 32Puls (64msec/32msec) |                        |          |          | 32Puls (320msec/160msec) |                         |                                |    |    | 7  |    |    |
|   | 1       |   | 1      | 1  |                        | 1Puls (2msec/1msec)    |          |          |                          | 1Puls (10msec/5msec)    |                                |    |    |    |    |    |

Note) : HOLDTIME value make a written (2-phase excitation/1-2 phase excitation).

#### **AF Excitation Setting**

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |

| D3 | Excitation system    |
|----|----------------------|
| 0  | 2-phase excitation   |
| 1  | 1-2 phase excitation |

#### Default position sequence setting

|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|

| D4 | ON/OFF                       |
|----|------------------------------|
| 0  | Off                          |
| 1  | Default position sequence ON |

#### Default position and AF sequence + steps Setting

| 0 0 0 0 0 0 0 0 0 1 D7 D6 D5 D4 D3 D2 D1 D0 |  |
|---------------------------------------------|--|
|---------------------------------------------|--|

| D5 | +64step (on/off) |
|----|------------------|
| 0  | Off              |
| 1  | +64step          |

Further note : When the pulses of 64 steps or more in total are set in Default position sequence and AF sequence and the flag of D5 is "1", the pulse of the number of AFsteps + 64steps can be set.

#### AF sequence and Default position sequence Flag

|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|

The situation between Standby state and Under execution of the sequences AF and Default position can be confirmed in the state of "D7".

| D7    | FL              |
|-------|-----------------|
| 0     | Standby state   |
| 1     | Under execution |
| TT 71 | 1 1 1 1 1       |

When the sequence ends, FL automatically becomes zero.

#### AF sequence diagram



(1) Set default value at OUT1 = H, OUT2 = L, OUT3 = H and OUT4 = L.

(2) STMspeed at the AF sequence becomes 500pps.

(3) The hold current-carrying time, it is the same time both front and rear times.

Default Position Sequence diagram



- Further note : (1) When the flag of D4 in the address 00000001 of a default position sequence is "1", whether or not the total of a default position sequence is 65step or more is set by using a flag in D5.
  The command is transmitted by the I<sup>2</sup>C communication after setting HOLD time.
  - (2) The number of step, the rotational direction and AFon/off are set in the address 00000000. And, a default position sequence is performed at the IC side when the data is transmitted by using I2C communication.
  - (3) STMspeed in a default position sequence becomes 100pps.
  - (4) Hold current-carrying time, it becomes congruent with the previous or nest time.

#### SH bridge, OUT4 to 5 Operation Setting

0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1

| D1 | DO |      |      | Bridge state                           |
|----|----|------|------|----------------------------------------|
| D1 | D0 | 0014 | 0015 | Bridge state                           |
| 0  | 0  | Z    | Z    | Standby All channels OFF               |
| 0  | 1  | Н    | L    | Constant current between OUT4 and OUT5 |
| 1  | 0  | L    | Н    | Constant current between OUT5 and OUT4 |
| 1  | 1  | L    | L    | Brake Logic                            |

• Constant current is driven When applying current between channels OUT4 and OUT5.

#### SH bridge, on/off Setting

1

|  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|

| D2 | ON/OFF    |
|----|-----------|
| 0  | Standby   |
| 1  | Operation |

#### Constant Current Setting

| D3 | D2 | D1 | D0 | Constant current value |
|----|----|----|----|------------------------|
| 0  | 0  | 0  | 0  | 260mA                  |
| 0  | 0  | 0  | 1  | 250mA                  |
| 0  | 0  | 1  | 0  | 240mA                  |
| 0  | 0  | 1  | 1  | 230mA                  |
| 0  | 1  | 0  | 0  | 220mA                  |
| 0  | 1  | 0  | 1  | 210mA                  |
| 0  | 1  | 1  | 0  | 200mA                  |
| 0  | 1  | 1  | 1  | 190mA                  |
| 1  | 0  | 0  | 0  | 180mA                  |
| 1  | 0  | 0  | 1  | 170mA                  |
| 1  | 0  | 1  | 0  | 160mA                  |
| 1  | 0  | 1  | 1  | 150mA                  |
| 1  | 1  | 0  | 0  | 140mA                  |
| 1  | 1  | 0  | 1  | 130mA                  |
| 1  | 1  | 1  | 0  | 120mA                  |
| 1  | 1  | 1  | 1  | 110mA                  |

#### LV8481CS



#### AF sequence (1-2 phase excitation drive) (1 cycle = 8CLK)



- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2009. Specifications and information herein are subject to change without notice.