

SANYO Semiconductors DATA SHEET

LV5106FN

Bi-CMOS IC For cell phone system Power supply

Overview

The LV5106FN is a power supply for a cell phone system that integrates four series regulators, two de-writers, and an LED driver (with 5V output) on a single chip.

Functions

- REG×4 (CMOS output)
- DET circuit (one for REG1, one for VBAT (with reset output)
- Thermal shutdown circuit (150°C)
- Three-color LED driver (charge pump 5V output incorporated)
- FRONT LED driver
- Mic bias output

Features

• Low power consumption 4µA when REG4 and VBATDET operate

30µA when REG1, REG2, REG3, and REG4 + DET1 and VBATDET operate

• Built-in charge pump circuit VBAT : 3.2V to 4.5V, 5V constant output with a load of 80mA

• Built-in 3-color LED drive circuit Three independent colors, 128-step PWM intensity control

Specifications

Maximum Ratings at Ta = 25°C

•				
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7	V
Allowable power dissipation	Pd max	Ta ≤ 75°C *Mounted on a board.	440	mW
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

^{*} Mounted on a 50.0mm×50.0mm×0.8mm, glass epoxy board.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LV5106FN

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	VBAT	29, 33pin	3.2 to 4.5	V
Supply voltage 2	VBATCP	3pin	3.2 to 5.9	V

Electrical Characteristics Ta = 25°C, VBAT = 3.6V, VCHARGE = 0V, unless otherwise specified.

Parameter	Symbol	Conditions	Ratings			Lleit
		Conditions	min	typ	max	Unit
Analog :						
Current dissipation	1	1	1	. 1		
Current dissipation 1	I _{CC} 1	REG4, VBATDET : ON		4	10	μΑ
		REG1, 2, 3, charge punp, DET1 : OFF no-load VBAT = 3.2V to 4.2V				
Current dissipation 2	I _{CC} 2	REG1, 2, 4, DET1, VBATDET : ON		25	35	μА
		REG3, charge pump : OFF no load				r-
Current dissipation 3	I _{CC} 3	REG3, 4, VBATDET : ON		20	28	μА
		REG1, 2, DET1, charge pump : OFF no load				
Current dissipation 4	I _{CC} 4	REG1, 2, 3, 4, DET1, VBATDET : ON		30	42	μΑ
		charge pump : OFF no load				
Current dissipation 5	I _{CC} 5	REG1, 2, 3, 4, DET1, VBATDET : ON		15	21	μА
Current dissipation 6	I _{CC} 6	charge pump : OFF no load ECO : L REG1, 2, 3, 4, charge pump, DET1, VBATDET :		5	8	mA
Current dissipation o	1000	ON no load		3	O	ША
REG1				I		
Output voltage 1	V _O 1	I _O = 30mA, ECO = H	2.74	2.8	2.86	V
Output voltage 2	V _O 1E	I _O = 30mA, ECO = L	2.71	2.8	2.89	V
Output voltage 3	ΔV _O 1	(I _O = 30mA, REG1 output voltage at ECO = H) -	0	15	35	mV
		(I _O = 10mA, REG1 output voltage at I _O = 10 mA				
		and ECO = L)				
Output voltage 4	∆V _O 2	I _O = 30mA	-35		35	mV
		(charge-pump on-time REG1 output voltage) –				
Drop out voltogo	VDR1	(charge-pump off-time REG1 output voltage)		0.04	0.06	V
Drop out voltage		VBAT = 2.7V, I _O = 30mA		0.04	0.06	
Load regulation	ΔV _{OLO} 1	I _O = 1 to 150mA		10	50	mV
Line regulation	ΔV _{OLN} 1	VBAT = 3.3 to 4.5V, I _O = 1mA		10	60	mV
Output voltage temperature coefficient	ΔV _O 1/ΔTj	Ta = -25 to 75°C, $I_O = 30$ mA		±100		ppm/°C
Ripple rejection	V _R 1	VBAT = 3.6V, I _O = 30mA, VRR = -20dBV,		65		dB
Tupple rejection	YK.	f _{RR} = 1kHz				u _D
Output noise voltage	V _{ON} 1	I _O = 30mA, 20Hz < f < 20kHz		75		μVrms
REG2	•			•		
Output voltage 1	V _O 2	I _O = 30mA, ECO = H	2.55	2.6	2.65	V
Output voltage 2	V _O 2E	I _O = 30mA, ECO = L	2.53	2.6	2.67	V
Drop out voltage	VDR1	VBAT = 2.5V, I _O = 30mA		0.06	0.12	V
Load regulation	ΔV _{OLO} 2	I _O = 1 to 100mA		10	100	mV
Line regulation	ΔV _{OLN} 2	VBAT = 3.3 to 4.5V, I _O = 1mA		10	60	mV
Output voltage temperature	ΔV _O 2/ΔΤj	Ta = -25 to 75°C, $I_O = 30 \text{mA}$		±100		ppm/°C
coefficient		<u> </u>				
Ripple rejection	V _R 2	VBAT = 3.6V, I _O = 30mA, VRR = -20dBV,		65		dB
		f _{RR} = 1kHz				
Output noise voltage	V _{ON} 2	$I_O = 30 \text{mA}, 20 \text{Hz} < f < 20 \text{kHz}$		75		μVrms

Continued on next page.

LV5106FN

Parameter	Symbol	Conditions		Ratings		
i didilicici	Symbol	Conditions	min	typ	max	Unit
REG3	1					
Output voltage 1	VO3	I _O = 30mA, ECO = H	2.45	2.5	2.55	V
Output voltage 2	V _O 3E	I _O = 30mA, ECO = L	2.43	2.5	2.57	V
Drop out voltage	VDR3	VBAT = 2.4V, I _O = 30mA		0.06	0.12	V
Load regulation	∆V _{OLO} 3	I _O = 1 to 50mA		10	50	mV
Line regulation	∆V _{OLN} 3	VBAT = 3.3 to 4.5V, I _O = 1mA		10	60	mV
Output voltage temperature coefficient	ΔV _O 3/ΔTj	Ta = -25 to 75°C, I _O = 30mA		±100		ppm/°
Ripple rejection	V _R 3	VBAT = 3.6V, I_O = 30mA, VRR = -20dBV, f_{RR} = 1kHz		65		dB
Output noise voltage	V _{ON} 3	$I_O = 30 \text{mA}, 20 \text{Hz} < f < 20 \text{kHz}$		75		μVrm
REG4						
Output voltage	V _O 4	I _O = 30mA	2.91	3	3.09	V
Drop out voltage	VDR3	VBAT = 2.9V, I _O = 30mA		0.06	0.12	V
Load regulation	ΔV _{OLO} 4	I _O = 1 to 50mA		10	50	mV
Line regulation	ΔV _{OLN} 4	VBAT = 3.3 to 4.5V, I _O = 1mA		10	60	mV
Output voltage temperature coefficient	ΔV _O 4/ΔTj	Ta = -25 to 75°C, I _O = 30mA		±100		ppm/°
Ripple rejection	V _R 4	VBAT = 3.6V, I_O = 30mA, VRR = -20dBV, f_{RR} = 1kHz		55		dB
Output noise voltage	V _{ON} 4	I _O = 30mA, 20Hz < f < 20kHz		75		μVrm
DET1						
Detection voltage	VD1	H→L	2.45	2.5	2.55	V
Hysteresis width	ΔV _H 1		75	125	175	mV
Detection voltage temperature	ΔVD1/ΔΤj	Ta = -25 to 75°C		±100		ppm/°
coefficient						
VBATDET						
Detection voltage	VDB	H→L	3.04	3.1	3.16	V
Hysteresis width	ΔVHB		93	155	217	mV
Output pull-up resistance	RPDETB		1.4	1.8	2.2	МΩ
Detection voltage temperature coefficient	ΔVDB/ΔTj	Ta = -25 to 75°C		±100		ppm/°
Charge pump						
Output voltage 1	VCPO1	VBAT = 3.2 to 5.9V, Load current 80mA	4.8	5	5.2	V
Oscillation frequency	CPOSC		0.7	1	1.3	MHz
Output ripple	VRCP	VBAT = 3.6, Load current 80mA		±200		mVp-
Efficiency	η	VBAT = 3.2, Load current 80mA		72		%
LED driver						
LEDR output voltage	VLR	I _O = 40mA	0	0.1	0.2	V
LEDG output voltage	VLG	I _O = 40mA	0	0.1	0.2	V
LEDB output voltage	VLB	I _O = 40mA	0	0.1	0.2	V
LEDF output voltage	VLF	I _O = 40mA	0	0.15	0.3	V
LEDR OFF leak	ILR			0	1	μА
LEDG OFF leak	ILG			0	1	μΑ
LEDB OFF leak	ILB			0	1	<u>.</u> μΑ
LEDF OFF leak	ILF			0	1	μА
Mic bias	<u> </u>	1		-	*	r ,
Output ON resistance	RMO	I _O = 10mA		10		Ω
OFF leakage current	ILM	.0		0	1	<u>μ</u> Α
Output voltage (GP_0, 1)	ILIVI	I		0	1	μА
Output H level	VOH	I _O = 1mA	REG10		REG10	V
			-0.3			

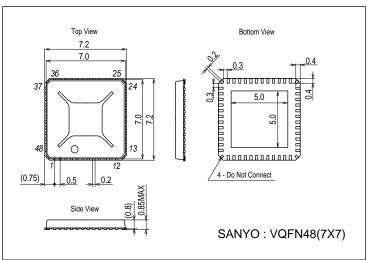
 $I_O = 1mA$

 V_{OL}

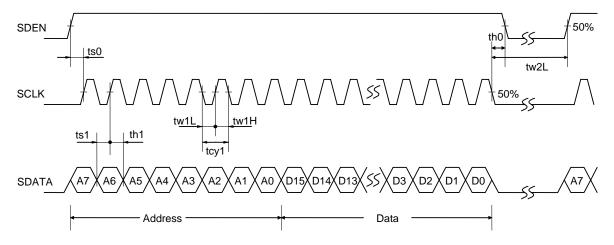
Output L level

Continued on next page.

0.3


0

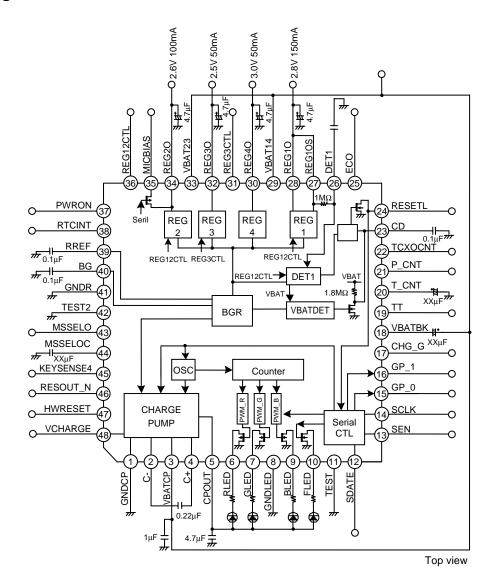
LV5106FN


Parameter	Cumbal	O a series		Ratings		
	Symbol	Conditions	min	typ	max	Unit
Input voltage 1 (SDATA, S	EN, SCLK)					
H level	V _{INH} 1	Input H level	REG10 ×0.8		REG10	V
L level	V _{INL} 1	Input L level	0		REG10 ×0.2	V
Input voltage 2 (T_CNT, TO	CXOCNT, ECO, RE	G3CTL, REG12CTL, PWRON, RTCINT, MS	SELO, MSSELOC, KE	YSENSE4,	HWRESET)	
H level	V _{INH} 2	Input H level	REG40 ×0.8		REG40	V
L level	V _{INL} 2	Input L level	0		REG40 ×0.2	V
Input voltage 3 (RESOUT_	N)	1				
H level	V _{INH} 3	Input H level	REG40 ×0.8		REG40	V
L level	V _{INL} 3	Input L level	0		REG40 ×0.2	V
Input voltage 4 (CHG_G)	1				<u>.</u>	
H level	V _{INH} 4	Input H level	REG40 ×0.8		6	V
L level	V _{INL} 4	Input L level	0		REG40 ×0.2	V
Input voltage 5 (Vcharge)	1	1				
H level	V _{INH} 5	Input H level	4.4		6	V
L level	V _{INL} 5	Input L level	0		3.6	V
Input voltage 6 (VBATBK)	1				<u>.</u>	
H level	V _{INH} 6	Input H level	REG40 ×0.8		VBAT	V
L level	V _{INL} 6	Input L level	0		REG40 ×0.2	V
Serial bus : Serial transfer timing	•		·			
Cycle time	tcy1	SCLK clock cycle	300			ns
Data setup time 1	ts0	SDEN setup time for rise of SCLK	150			ns
Data setup time 2	ts1	SDATA setup time for rise of SCLK	150			ns
Data hold time 1	th0	SDEN hold time for fall of SCLK	150			ns
Data hold time 2	th1	SDATA hold time for rise of SCLK	150			ns
Pulse width 1	tw1L	SCLK L-period pulse width	150			ns
Pulse width 2	tw1H	SCLK H-period pulse width	150			ns
Pulse width 3	tw2L	SDEN L-period pulse width	1			μs

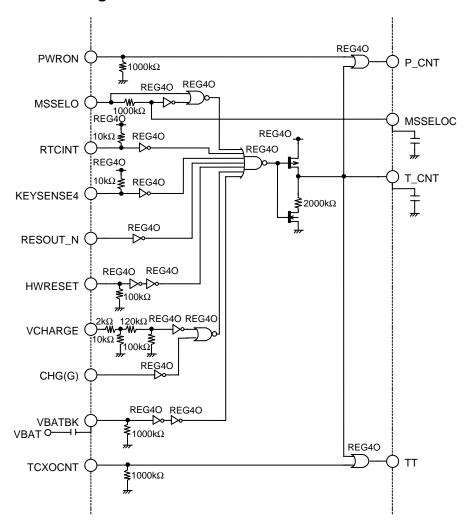
Package Dimensions unit: mm (typ)

3272

Serial transfer timing conditions


Data length : 24bit Clock frequency : 3MHz or les

"SDATA" is taken in at fall of "SDEN" when "SCLK" of 24 clock is entered during H period of "SDEN."


(Note) "SDATA" is not taken in when "SCLK" is 23 clock or less during H period of "SDEN."

When "SCLOCK" exceeds 25 clock, "SDATA" is taken in at the 24th clock, and subsequent "SDATA" is ignored.

Block Diagram

Power Control Block Diagram

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2007. Specifications and information herein are subject to change without notice.