

SANYO Semiconductors DATA SHEET

BI-CMOSIC Single chip Tuner IC for Car Radio

Overview

LV25200M is a tuner IC for car radio, which incorporates the AM/FM Tuner, PLL, AM/FM Noise Canceller (NC), FM Stereodecoder (MPX), Multipath-noise Rejection Circuit (MRC). This IC enables development of the low-cost analog tuner for OEM.

Functions

• AM+FM-FE+IF+NC+MPX+MRC+PLL

Features

• World-wide compatible tuners

A single tuner module is enough to supply the world-wide compatible tuners. FM is compatible with US EURO, Japan bands while AM is compatible with LW, MW, SW, Weather-Band. With the image cancel mixer incorporated in FM MIX, the external RF AMP can be deleted. Compatible with RDS. PLL fast locking.

- Self-contained type IF band variable filter incorporated Detects any neighboring interfering station and varies the IF filter band, enabling superior selectivity characteristic.
- Auto alignment EEPROM necessary FM RF, VCO, Null-voltage, Mute-on, Mute-ATT, SNC, HCC, Station detector, Gain AGC sensitivity, CCB bus compatible
- Reduced parts quantity
- Parts quantity reduced from our conventional products
- Other functions

AM noise canceller (genuine compatible)

- CCB is a registered trademark of SANYO Electric Co., Ltd.
- CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} _H max	PIN 5, 77	8.7	V
	V _{CC} _L max	PIN 21, 27, 50	5.7	V
Maximum input current	V _{IN} max	PIN 17, 18, 19	-0.3 to +5.0	V
Maximum output current	V _O max	PIN 20	-0.3 to +6.5	V
Allowable power dissipation	Pd max	(Ta≤85°C)	950	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

Recommended Operating Conditions at $Ta=25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC} _H	PIN 5, 66, 75, 76, 77	8.0	V
	V _{CC} _L	PIN 21, 27, 50	5.0	V
Operating supply voltage range	VCcop_H	PIN 5, 66, 75, 76, 77	7.5 to 8.5	V
	VCcop_L	PIN 21, 27, 50	4.5 to 5.5	V
Input High level voltage	VIH	PIN 17, 18, 19	2.5 to 4.0	V
Input Low level voltage	VIL	PIN 17, 18, 19	0 to 0.8	V
Input amplitude voltage	VIN	PIN 17, 18, 19	0 to 4.0	Vp-p
Input pulse width	tφW	PIN 19	0.45 or more	μs
Setup time	Tsetup	PIN 17, 18, 19	0.45 or more	μs
Hold time	Thold	PIN 17, 18, 19	0.45 or more	μs

Package Dimensions

unit : mm (typ)

3255

Reset at Power ON

Recommended Operating Conditions at Ta=25°C, GND=0V

Parameter	Symbol	Conditions	Ratings	Unit
Operating supply voltage	Vcop_H	PIN 5, 66, 75, 76, 77	7.5 to 8.5	V
	Vcop_L	PIN 21, 27, 50	4.5 to 5.5	V
Internal logic voltage	V _{DD} 4	PIN 13	3.7 to 4.3	V
Internal register hold voltage	Vhmin	PIN 13, Design reference value	V _{DD} 4 to 2.2	V
Internal register reset voltage	Voff	PIN 27, 50, Design reference value	0 to 0.2	V
Internal register reset power ON time	tPOR	PIN 27, 50, Design reference value	30 to 3000	μs

AC Characteristics

Operating Characteristics at Ta=25°C, V_{CC}=8.0V, V_{DD}=5.0V

www.with the designated measuring circuit outside standard.

Except that this measurement was made with the IC socket [Yamaichi Denki Kogyo Co., Ltd. IC51-0644-807]. Audio filter: IHF BPF used

[FM	characteristics	FM FE MI	IX input (NO-Dummy)

				CCB Command										
	Parameter	Symbol	Conditions	R	IN2	IN3-1	IN3-2	IN3-3	IN3-4	IN3-5	min	typ	max	Unit
1-1	Current drain -8V	Icco-8V	No input FM mode I5+I66+I75+I76+I77	19	37	25	25	25	25	25	50	62	74	mA
1-2	Current drain -5V	Icco-5V	No input FM mode I21+I27+I50	19	37	25	25	25	25	25	44.5	51	58	mA
1-3	Demodulation output	Vo-FM	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 25	19	37	25	25	25	25	25	220	277	350	mVrms
1-4	Pin 52 RDS demodulation output	Vo-52	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 52	19	37	25	25	25	25	25	270	340	425	mVrms
1-5	Channel balance	СВ	98.1MHz, 60dBμV, 1kHz, pins 25 and 26	19	37	25	25	25	25	25	-1	0	1	dB
1-6	Total harmonic distortion factor	THD- Fmmono (1)	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 25	19	37	25	25	25	25	25		0.2	1	%
1-7	Total harmonic distortion	THD- Fmmono (2)	98.1MHz, 60dBμV, 1kHz, 150%mod, pin 25	19	37	25	25	25	25	25		0.3	2.5	%
1-8	Signal to noise ratio (MONO)	S/N-FM- MONO	98.1MHz, 60dBμV, 1kHz, 100%mod,	19	37	25	25	25	25	25	60	67		dB
1-9	Signal to noise ratio (ST)	S/N-FM-ST	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 25, pilot=10%	19	37	25	25	25	25	25	54	58		dB
1-10	AM suppression ratio	AMR	98.1MHz, 60dBμV, 1kHz, 100%mod, 30% in AM mode, fm=1kHz, pin 25	19	37	25	25	25	25	25	54	61		dB
1-11	Muting attenuation (1)	Att-1	98.1MHz, 60dBµV, 1kHz, with V33=0→2V, pin 25 attenuation	19	37	25	25	14	25	25	-30	-25	-20	dB
1-12	Muting attenuation (2)	Att-2	98.1MHz, 60dBµV, 1kHz, with V33=0→2V, pin 25 attenuation	19	37	25	35	25	25	25	-20	-16	-11.2	dB
1-13	Muting attenuation (3)	Att-3	98.1MHz, 60dB μ V, 1kHz, with V33=0 \rightarrow 1V, pin 25 attenuation	19	37	25	35	25	25	25	-11	-6	-1	dB
1-14	Separation	Separation	98.1MHz, 60dBμV, mod=30%, pilot=10%, pin 25 output ratio [IN3-5 D0-5] Separation control adj	19	37	25	25	25	25	25	27	38		dB
1-15	Stereo ON level	ST-ON	Pilot demodulation at which V39<0.5V is established	19	37	25	25	25	25	25	1.9	4.1	6.3	%
1-16	Stereo OFF level	ST-OFF	Pilot demodulation at which V39>3.5V is established	19	37	25	25	25	25	25	1	3		%
1-17	Main distortion factor	THD-Main L	98.1MHz, 60dBμV, L+R=90%, pilot=10%, pin 25	19	37	25	25	25	25	25		0.3	1.2	%
1-18	SNC output attenuation	AttSNC	98.1MHz, 60dBµV, L-R=90%, pilot=10%, V28=3V→0.6V, pin 25; standard for single block	19	37	25	25	25	25	25	-10	-6	-2	dB
1-19	HCC output attenuation (1)	FM HCC	98.1MHz, 60dBµV, 10kHz, L+R=90%, pilot=10%, V29=3V→0.6V, pin 25; standard for single block	19	37	25	25	25	25	25	-6	-3	-0.5	dB
1-20	HCC output attenuation (2)	FM HCC	98.1MHz, 60dBµV, 10kHz, L+R=90%, pilot=10%, V29=3V→0.1V, pin 25; standard for single block	19	37	25	25	25	25	25	-14.5	-10.5	-6.5	dB
1-21	Input limiting voltage	Vi-lim	98.1MHz, 60dBµV, 30%mod, MIX input at which the input reference output is down by -3dB, V42=0V, V29=0V, with MUTE=OFF	19	37	25	25	25	25	25	-6	-1	1	dBμV
1-22	Muting sensitivity	Vi-mute	MIX input level at V42=1V, non-mod	19	37	25	25	25	25	25	0.1	5	9.9	dBμV

Conti	nued from preceding	page.		<u> </u>			-							1
	_			<u> </u>	-	CCB	Com	mand	1	1				
www	Parameter .DataSheet4U.com	Symbol	Conditions	Ĩ	IN2	IN3-1	IN3-2	IN3-3	IN3-4	IN3-5	min	typ	max	Unit
1-23	SD sensitivity	SD-senFM	MIX input level at which SD pin is ON, shifter-adj, non-mod	20	37	25	25	25	25	25	20	25	30	dBμV
	IF count sensitivity	IF-count- sens.FM	IF count sensitivity at MIX input, non-mod	20	37	25	19	25	25	25	16			dBμV
1-24	S-meter DC output	VSMFM-1	No input,	19	37	25	25	25	25	25			0.5	V
		VSMFM-2	10dBµV,	19	37	25	25	25	25	25		0.75		V
		VSMFM-3	30dBµV, pin 38 DC output non- mod [IN3 2 D0 4] S meter shift adi	19	37	25	A1	25	25	25	1.8	1.85	1.9	V
		VSMFM-4	50dBµV,	19	37	25	25	25	25	25		3.3		V
		VSMFM-5	80dBµV,	19	37	25	25	25	25	25			4.8	V
1-24	S-meter AC pin DC	VSMFM-A1	No input,	19	37	25	25	25	25	25			0.45	V
	ουτρυτ	VSMFM-A2	10dBμV,	19	37	25	25	25	25	25		0.85		V
		VSMFM-A3	pin 40 DC output non-mod 30dBμV,	19	37	25	25	25	25	25	1.51	1.78	2.1	V
		VSMFM-A4	50dBμV,	19	37	25	25	25	25	25		3.05		V
		VSMFM-A5	80dBμV,	19	37	25	25	25	25	25			4.8	V
1-25	S-meter inclination	S-curve1	Holds [IN3-2 D0-4] data,	19	37	25	25	25	25	25	0.85	1.1	1.4	V
	standard - 1		Which was obtained by deducting (VSMFM-2) from VSM (VSMFM-3)											
1-26	S-meter inclination standard - 2	S-curve2	Holds [IN3-2 D0-4] data, which was obtained by deducting (VSMEM-3) from VSM (VSMEM-4)	19	37	25	25	25	25	25	1	1.45	1.9	V
1-27	Mute drive output	VMUTE-60	$60dB\mu V$, pin 42 output DC output non-mod	19	37	25	25	25	25	25		0.15	0.3	V
1-28	Noise convergence - 1	FM NOISE-20	60dBμV.98.1MHz, 30%mod, input reference, output level of the input -20dBμV, MUTE=ΩEF(42pin=GND)	19	37	25	25	25	25	25	-14	-9	-4	dB
1-29	N-AGC ON input	VNAGC	98.1MHz, non-mod, MIX input level at which pin 1 becomes 0.6V or more	19	37	25	25	33	25	25	66	75	84	dBµV
1-30	W-AGC ON input	VWAGC	98.1MHz, non-mod, pin 38 =1.0V applied (Keyed on), MIX input level at which pin 1 becomes 0.6V or more	19	37	25	25	35	25	25	82	90	98	dBµV
1-31	Image obstruction ratio-1		Removal amount of 108.1M +21.4MHz	21	37	25	25	25	25	25	15			dB
1-32	Image obstruction ratio-2		Removal amount of 90M -21.4MHz	28	37	25	25	25	25	25	15			dB
	SD bandwidth - 1	BW-mute1	98.1MHz, non-mod, 50dBµV, Bandwidth at which SD pin is turned ON	20	37	23	25	37	25	25	70	100	130	kHz
	SD bandwidth - 2	BW-mute2	98.1MHz, non-mod, 50dBµV, Bandwidth at which SD pin is turned ON	20	37	23	25	38	25	25	130	200	270	dB
1-33	Conversion gain	A.V.	98.1MHz, 60dBµV, non-mod, FECF output	28	37	25	25	25	25	25	85	130	200	mVrms

[FM	IF Filter charac	teristics] F	FM IF input											
						ССВ	Comr	nand						
www	Parameter DataSheet4U.com	Symbol	Conditions	IN1	IN2	IN3-1	IN3-2	IN3-3	IN3-4	IN3-5	min	typ	max	Unit
2-1	IF variable filter gain-narrow band	FIL-G-N	70dBμV, pin 54 AC (450kHz) output non-mod, After CF adjustment, fit in through BW/G adjustment. Narrow-Fix MODE	19	37	21	25	25	25	25	79	84	89	
2-2	IF variable filter	FIL-BW-N	Pin 54 -AC output monitor. Confirm the 2dB or more level down at the ±25kHz point with reference to the center frequency of 450kHz. -3dB bandwidth. Narrow-Fix MODE	19	37	21	25	25	25	25	2			dB
2-3	IF variable filter	FIL-BW-W	Pin 54-AC output monitor. Confirm no level down exceeding 3 dB at the ±80kHz point with reference to the center frequency of 450kHz. -3dB bandwidth. Wide-Fix MODE	19	37	23	25	25	25	25			3	dB

[NC block] NC input (48pin), S-meter AC input (40pin)

				CCB Command										
	Parameter	Symbol	Conditions	N	IN2	IN3-1	IN3-2	IN3-3	IN3-4	IN3-5	min	typ	max	Unit
3-1	FM NC gate time	FM TGATE	NC input, pulse cycle=1kHz, 38pin=2V applied, pulse width=1µs, at 100mVp-o pulse input (after MVCO adjustment)	19	37	25	25	25	25	25	36	40	44	μs
3-2	FM NC noise sensitivity	SN-DETOUT	NC input (pin 48), 38pin=2V applied, measure the pulse input level at which the noise canceller starts operation, pulse cycle=1kHz, pulse width=1µs	19	37	25	25	25	25	25	17	30	43	mVp-o
3-3	FM NC noise sensitivity	SN-Vsm	S-meter (AC) input (pin 40), 38pin=0V applied, measure the pulse input level at which the noise canceller starts operation, pulse cycle=1kHz, pulse width=1µs	19	37	25	25	25	25	25		46		mVp-o
3-4	AM NC gate time	AM TGATE(1)	S-meter (AC) input (pin 40), pulse cycle=1kHz, pulse width=1µs, measurement at pin 33. 38pin=1.5	36	37	26	26	26	26	26	345	450	555	μs
3-5	AM NC noise sensitivity	SN	S-meter (AC) input (pin 40), measure the pulse input level at which the noise canceller starts operation, pulse cycle=1kHz, pulse width=1µs	36	37	26	26	26	26	26		24		mVp-o

[Multipath-noise rejection circuit] MRC input (pin 41)

			CCB Command											
	Parameter	Symbol	Conditions	IN1	IN2	IN3-1	IN3-2	IN3-3	IN3-4	5-ENI	min	typ	max	Unit
4-1	MRC output	VMRC	Pin 39 voltage when 3.5 V is applied to V38	19	37	25	25	25	25	25	2.76	2.96	3.16	V
4-2	MRC operation level	MRC-ON	SG (AG5) out level when pin 38 =5V and pin 39=2.6V, f=70kHz	19	37	25	25	25	25	25	50	71	100	mVrms

[AM	characteristics	AM AMA	NT input											
						ССВ	Comr	mand						
www	Parameter DataSheet4O.com	Symbol	Conditions	IN1	IN2	IN3-1	IN3-2	IN3-3	IN3-4	IN3-5	min	typ	max	Unit
5-1	Practical sensitivity	S/N-30	1MHz, 30dBµV, fm=1kHz, 30%mod, pin 25	36	37	26	26	26	26	26	20			dB
5-2	Detection output	Vo-AM	1MHz, 74dBμV, fm=1kHz, 30%mod, pin 25	36	37	26	26	26	26	26	84	105	131	mVrms
5-3	AGC-F.O.M	VAGC-FOM	1MHz, 74dBµV, output reference, input width at which the output decreases by 10dB, pin 25	36	37	26	26	26	26	26	50	54.5	59	dB
5-4	Signal-to-noise ratio	S/N-AM	1MHz, 74dBµV, fm=1kHz, 30%mod	36	37	26	26	26	26	26	51	60		dB
5-5	Total harmonic distortion ratio - 1	THD-AM-1	1MHz, 74dBµV, fm=1kHz, 80%mod	36	37	26	26	26	26	26		0.3	1	%
5-6	Total harmonic distortion ratio - 2	THD-AM-2	1MHz, 120dBµV, fm=1kHz, 80%mod	36	37	26	26	26	26	26		0.5	1.5	%
5-7	AM HCC output attenuation	AM HCC	1MHz, 74dBµV, fm=4kHz, 30%mod, V29=3V→0.6V, 25pin	36	37	26	26	26	26	26	5	9	13	dB
5-8	S-meter DC output	VSMAMDC-1	No input, 38pin DC output	36	37	26	26	26	26	26	0	0.1	0.5	V
		VSMAMDC-2	1MHz, 30dBµV, non-mod, 38pin DC output	36	37	26	26	26	26	26	1.2	1.5	1.9	V
		VSMAMDC-3	1MHz, 130dBμV, non-mod, 38pin DC output	36	37	26	26	26	26	26	2.85	3.6	4.9	V
5-9	S-meter AC output	VSMAMAC-1	No input, 40pin DC output	36	37	26	26	26	26	26		0	0.5	V
		VSMAMAC-2	1MHz, 74dBµV, non-mod, 40pin DC output	36	37	26	26	26	26	26		0.75		V
5-10	Wide band AGC sensitivity	W-AGCsen1	1.4MHz, input at V48=0.7V	36	37	26	26	26	26	26	82	92	102	dBμV
5-11	SD sensitivity	SD-senAM	1MHz, ANT input level at which the SD pin is turned ON	37	37	26	26	26	26	26	25	30	35	dBμV

Function

1. AM / FM front-end block		
FM Image rejection Mixer		
AM Double balance Mixer		
Pin diode drive AGC output		
Keyed AGC adjustment	4 bit DAC	
Differential IF amplifier		
Wide AGC sensitivity setting	4 bit DAC	
Narrow AGC sensitivity setting	4 bit DAC	
Local oscillator	160MHz to 260MHz	
FM Local OSC divider	1/1 1/2 1/3	
AM Local OSC divider	1/10, 1/8, 1/6, 1/4	
2. FM IF block		
IF Limiter Amplifier 6 stages		
S-meter shifter	5 bit DAC	
S-meter output (DC/AC)		
Multipath detector (dedicated FM S-meter)		
Quadrature detector	Vnull adj-5bit, QDP adj-4bit	450kHz
AF preamplifier (Audio mute)		
AFC output		
Variable bandwidth control	CF adj-5bit DAC	
	BW/Gain adj-5bit DAC	
	Gain adj-3bit DAC	
	(for setting filter)	

Continued from preceding page.		
Soft mute setting	5 bit DAC	
Mute attenuation setting	6 bit DAC	-0.5dB to -25dB
IF counter buffer (FM circuits)	10.7MHz	
SD (IF counter buffer activation level) setting	5 bit DAC	
SD output (active-high) (also used by AM circuits)		
IF output Driver for DSP (AF out, non-muting)		
SD: Station Detector		
IF Gain	4 bit DAC	
3. AM Block (back end of AM tuner)	1	
Double balance 2 nd mixer		
IF amplifier	4 bit DAC	
AM detector		
RF Narrow AGC	4 bit DAC	
Wide AGC	4 bit DAC	
Pin diode drive AGC output		
S-meter output	2 bit DAC	
IF counter buffer		450kHz
SD (IF counter buffer activation level) setting	5 bit DAC	
SD output (active-high)		
Detector output frequency adjusting pin (Low-cut, De-emphasis)		
4. FM NC		
High-Pass-Filter (1st-order)		
Delay circuit of Low-Pass-Filter (4th order)		
Noise-AGC (Sensitivity:2 Bit-control)	2 bit DAC	
Pilot signal compensation		
Noise sensitivity setting		
Modulation index		
5 AM NC		
AM Noise canceller Gate-Time	6 bit DAC	
AM Noise canceller OFF Level	5 bit DAC	
6. MPX	<u> </u>	<u> </u>
VCO (Free-Run Frequency:6 Bit-control)	6 bit DAC	304kHz
Level following pilot canceller	2 bit (3 step adj.)	
Automatic stereo/mono switching		
VCO oscillator stop (AM mode)		
Forced monaural		
Stereo indicator (active-low)		
Anti-birdie filter (f=114kHz, 190kHz)		
SNC (stereo noise control)	5 bit DAC	
HCC (high-cut control)	5 bit DAC	
Separation setting	6 bit	64 steps
7. MRC (Multipath-noise Rejection Circuit)	1	· ·
Noise Amplifier Gain (sensitivity setting)	2 bit	4 step
DC Level-Shifter		
SNC driving		

Pin Function

Pin No.	Function name	Block
www.Datas	FM-ANT-D	FE
2	FM-RF-AGC	FE
3	GND (FE)	
4	AM-MIX-IN2	AM
5	OSC-V _{CC}	
6	AM/FM-OSC (B)	FE
7	AM/FM-OSC (C)	FE
8	PLL-LPF	PLL
9	FM FET	PLL
10	AM FET	PLL
11	CPAM	PLL
12	CPFM	Common
13	PLL V _{DD}	MPX
14	ST/SD, VCO monitor and PLL-TEST	PLL
15	SepADJ.	MPX
16	GND (Analog)	
17	CE	PLL
18	DI	PLL
19	CL	PLL
20	DO	PLL
21	V _{CC} (X'tal)	
22	X'tal-OUT	X'tal
23	X'tal-IN	X'tal
24	GND (X'tal)	
25	MPX-L-OUT	MPX
26	MPX-R-OUT	MPX
27	V _{CC} 5V (Digital)	
28	SNC	MPX
29	HCC	MPX
30	MPX-PCO1	MPX
31	MPX-PCO2	MPX
32	GND (Digital)	
33	NC-Gate- monitor	NC
34	MPX-PLL-IN	MPX
35	HCC capacity	MPX
36	Noise-Sens.	NC
37	Noise-AGC	NC
38	Vsm (Main)	IF
39	MRC-OUT	MRC
40	Vsm2 (Sub)	IF

Pin-No.	Function name	Block
41	MRC-AC-IN	MRC
42	Mute-Drive	IF
43	AFC	IF
44	QD-Cap.	IF
45	QD-Cap.	IF
46	Vref 2.7V	Common
47	IF-Det-OUT	IF
48	NC-IN	NC
49	ModIndex	NC
50	V _{CC} 5V (Analog)	
51	Interfering signal detected	FIL
52	RDS-OUT	IF
53	PLL-TEST	PLL
54	IF Filter OUT	FIL
55	AM-IFAGC (load for Vt setting)	AM
56	Pilot-Det/AM-LC	MPX/AM
57	IF-AGC	AM
58	AM-W-AGC	AM
59	AM-RF-AGC (BYPASS)	AM
60	AM-IF-IN	AM
61	AM-IN-IN2	AM
62	FM-IF-IN (BYPASS)	IF
63	FM-IF-IN	IF
	AM-2nd-MIX-IN	AM
64	AM-RF-AGC	AM
65	1st-IF-OUI	FE
66	AM-MIX2-OUT	AM
67	Vref 4.9V	Common
68	RF-DAC1	FM
69	AM-2nd-MIX-IN (BYPASS)	AM
70	RF-DAC2	FM
71	IF-IN(BIAS)	FE
72	FM-1st-IF-IN	FE
73	AM-ANT-D and PLL-TEST	AM
74	N-AGC-IN	FE
75	MIX-OUT	FE
76	MIX-OUT	FE
77	V _{CC} (8V)	
78	AM-MIX-IN	AM
79	FM-MIX-IN	FE
80	FM-MIX-IN	FE

Block Diagram

Pin Discription

Unit (Resistance: Ω , Capacitance: F)

ww Pin Dat	aSheet Function	Discription	Internal Equivalent Circuit
1	Antenna Damping Drive pin	Pin 2: Antenna damping current flows when the RF AGC voltage becomes V _{CC} -Vbe.	VCC(PIN77)
2	RF AGC	RF AGC voltage. Voltage=Hi (around 8V) with AGC OFF. The voltage lowers when a level is inserted into the AGC circuit. AGC is applied at the voltage of V _{CC} - Vbe.	UCC(PIN77)
3	FE.GND		FE GND(F.E.)
5	OSC V _{CC}	OSC dedicated V _{CC}	8V V _{CC} (VCO.)
6 7	FM/AM OSC IN FM/AM OSC OUT	OSC pin	VCC(PIN5)

Continued	from preceding page.		Unit (Resistance: Ω, Capacitance: F)
Pin	Function	Discription	Internal Equivalent Circuit
9 10 11 12	Tuning voltage output LPF output FET for FM FET for AM Charge pump for FM Charge pump for AM	FM: PLL filter formed with pins 9 to 12 (Pins 10 and 11 to be left OPEN) AM: PLL filter formed with pins 10 and 11. In this case, the low pass filter is formed with the internal impedance ($100k\Omega$) and external capacity. Simultaneous use of AM and FM filters (pins 9 to 12) is possible through mode changeover. In this case, internal impedance ($100k\Omega$) is short-circuited.	VCC(PIN77) VDD(PIN27) VDD(P
13	V _{DD} for PLL	PLL regulator output (4V)	GND (PIN3)
14	AM/FM SD pin STEREO indicator & VCO Monitor	STEREO indicator at reception: Low: STEREO High: MONO At SEEK: AM/FM SD ON=High OFF=Low Pin 14 output is output from DO (for SD information output). VCO monitor (at IN3-5 D6=H) Saw-tooth wave of MPX-VCO frequency is output, which is monitored for VCO adjustment (Adjust with IN3-5 D0-5.)	AM FM SD INDICATOR I dek SEEK/STOP SWITCH VDD
15	Separation adjustment pin	The input level of sub-decoder is varied through BIT control. (The output level of MONO and MAIN remains unchanged.)	

Continued	I from preceding page.		Unit (Resistance: Ω , Capacitance: F)
Pin	Function	Discription	Internal Equivalent Circuit
ww % .Dat	N.C, MPX, MRC And PLL-GND		
17	CE	Pin to set the high level during serial data input (D1) to LV25200M or serial data output (DO).	
18	DI	Input pin for serial data for transfer from the controller to LV25200M	
19	CL	Clock for synchronization with the data during serial data input (DI) to LV25200M or serial data output (DO)	
20	DO	Output pin of serial data to be transferred from LV25200M to the controller	GND(PIN16)
21	V _{CC} 5V	X'tal-OSC dedicated V _{CC}	
22 23	X'tal-OSC-OUT X'tal-OSC-IN	Connect X'tal oscillator for 20.5MHz between pins 22 and 23. Connect capacitors, each 12pF, between pins 22 and 23 and GND.	UCC(PIN21)
24	GND	X'tal-OSC dedicated GND	

Continued	from preceding page.		Unit (Resistance: Ω , Capacitance: F)
Pin	Function	Discription	Internal Equivalent Circuit
25 Dai 26	MPX output (LEFT) MPX output (RIGHT)	MPX output Output impedance changed over with the de-Emphasis changeover Bit (IN3-4 D20) Low= $3.3k\Omega$ High= $5k\Omega$ (The figure in the right shows a case of $5k\Omega$.) (50/75 μ s changeover with the external capacity of 0.015 μ F)	UCC(PIN77)
27	V _{CC} 2 (5V)	V_{CC} for PLL and Digital system V_{CC}	
28	SNC control input pin	With the pin 28 input voltage, the attenuation of (L-R) Decode is controlled. ↓ Decrease Separation. ↓ The noise felt in the Stereo mode is reduced. (Threshold can be controlled with 5Bit.)	VCC(PIN77)
29	HCC control input pin	With the pin 29 input voltage, attenuation of the high pass component is controlled. ↓ At weak input, high pass is cut to reduce the noise feeling. Same control for FM/AM HCC (f characteristics changed over automatically between AM and FM modes.) (Threshold can be controlled with 5Bit.)	UCC(PIN77)
30 31	Phase-Comparator for MPX		
32	GND		
33	NC-Gate Trigger-OUT	Normal: High (V _{DD} potential) Gate: Low (0V) Note) Monitor output is not made unless the Bit setting of Pilot-Cancel is set to 11 (PICAN=OFF).	VCC(PIN77) 20K 20K 20K 20K 33 20K 1K 1K 1K 6ND(PIN32)

Continued	Continued from preceding page. Unit (Resistance: Ω, Capaci						
Pin	Function	Discription	Internal Equivalent Circuit				
ww 34 .Dat	a MPX-PLL input	LPF formed with internal resistance 30kΩ and pin 34 eternal capacity ↓ HPF formed by subtracting the above LPS passage signal from the Composite signal. ↓ Supply to MPX-PLL circuit	UCC(PIN50)				
35	HCC capacitor pin	With pin 35 external capacity, High-Cut frequency characteristics are set. The value of internal resistance R35 is changed over in AM/FM mode: FM mode: R35=30k Ω AM mode: R35=100k Ω					
36 37	Noise detection sensitivity AGC adj pin	With the noise sensitivity setting pin of pin 36, set the medium electric field (about $50dB\mu$). Then, with the AGC-Adj pin of pin 37, carry out setting in the weak field (20 to $30dB\mu$).	UCC(PIN50) 3K 1K 15K 3K 1K 15K 3K 1K 10K 37 GND(PIN16)				
38 40	AM/FM S-meter (DC)	Current drive type S-meter output Pin 38: Eliminate the AC component by external capacity Pin 40: Leaves the AC component (Pin for NC noise extraction and for multipath noise extraction)	VCC(PIN50) VCC(PIN77) Image: strain st				

Continued from preceding page. Unit (Resistance: Ω, Capacit							
Pin	Function	Discription	Internal Equivalent Circuit				
ww 99 Da	MRC output (for SNC Control)	Time constant for Multipath-Noise Detector is determined with the following: 100Ω and C2 during discharge Iconst and C2 during charge Iconst can be changed over with 2Bit (MRC-Time-Constant)	VCC(PIN77)				
41	MRC AC input pin	From AC-S-meter (pin 40), enter the AC component. Amp-Gain, and frequency characteristics are determined with C41, (R41+1kΩ [internal resistance]) and 30kΩ (internal resistance). Amp-Gain can be controlled with 2Bit.					
42	Mute Drive	 The MUTE time constant is determined as follows by CR: Attack time TA=10kΩ (R1) × C42 Release time TR=50kΩ (R2) × C42 Noise convergence adjustment MUTE OFF function MUTE is turned OFF when pin 42 is short- circuited with GND. 	VCC(PIN50) PUTE-DRIVE 10K Mute AMP 42 500 50K 50K 50K				
43	AFC	Null voltage As compared with pin 46 2.7V	2. 70+Ube 389 1/7 GND(PIN32) 43 589 1/7 10k 10k 389 1/4 389 1/4 389 1/4 389 1/4 10k 5389 1/4 5389 1/4 5389 1/4 5389 1/4 5389 1/4 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7 5389 51/7				

Continued	from preceding page.		Unit (Resistance: Ω, Capacitance: F)
Pin	Function	Discription	Internal Equivalent Circuit
ww. ⁵⁹ .Dat	AM REAGC BYPASS	RF AGC rectifier capacitor Determination of the distortion ratio during low-frequency modulation Increase C59 and C64; Distortion \rightarrow improved Response \rightarrow slow Decrease C59 and C64; Distortion \rightarrow worse Response \rightarrow quick	Vec (PIN 77)
64	RF AGC	RF AGC rectifier capacitor Determination of distortion ratio during low-frequency modulation Increase C59 and C64; Distortion \rightarrow improved Response \rightarrow slow Decrease C59 and C64; Distortion \rightarrow worse Response \rightarrow quick	AGC DET GND(PI32) GND(PI32) 777 GND(PI32) 777 GND(PI32) 777 GND(PI32) 777 GND(PI32) 777 GND(PI32) 777 GND(PI32) 777 GND(PI32)
60 61	AM IF AMP IN	AM 450kHz AMP input Input impedance=2kΩ	
62 63	FM 2 nd MIX input FM AMP input	FM 2 nd MIX 10.7MHz → 450kHz FM AMP (10.7MHz) AMP for S-meter voltage	Limmiter AMP 2nd MIX
65	AM/FM 1 st IF AMP OUTPUT	Output impedance=330Ω	S0 GND(PIN3)

FM/AM level Diagram

www.EMataSheet4U.com

Input Condition : FM 98.1MHz, mod off, 30dBuV

[AM]

Input Condition : AM 1MHz, mod off, 50dBuV

Serial Bus Data Timing

CE: Chip enable

DI: Input data DO: Output data

<<CL stopped at "L" level >>

<<CL stopped at "H" level >>

Parameter	Symbol	Pin	Conditions	min	typ	max	unit
Data setup time	ts∪	DI, CL		0.45			μs
Data hold time	tHD	DI, CL		0.45			μs
Clock L level time	t _{CL}	CL		0.45			μs
Clock H level time	^t CH	CL		0.45			μs
CE wait time	t _{EL}	CE, CL		0.45			μs
CE setup time	t _{ES}	CE, CL		0.45			μs
CE hold time	^t EH	CE, CL		0.45			μs
Data latch change time	tLC					0.45	μs
Data output time	^t DC	DO, CL	Varies depending on the pull-			0.0	
	^t DH	DO, CE	up resistance			0.2	μs

Serial Data I/O Method

This is the Sanyo Audio IC serial bus format. Data I/O is made with CCB (Computer Control Bus). LV25200M is the 8-bit address type CCB.

i) Serial data input (IN1/IN2/IN3) t_{SU}, t_{HD}, t_{ES}, t_{EL}, t_{EH}, > 0.45 μ s t_{LC} < 0.45 μ s

ii) Serial data output (OUT) t_{SU}, t_{HD}, t_{ES}, t_{EL}, $> 0.45\mu$ s t_{DC}, t_{DH} $< 0.2\mu$ s (*1)

(*1) As the DO pin is the Nch open drain pin, so that the data change time varies depending on the pull-up resistance and substrate capacity.

(*2) Normally, keep the DO pin in the OPEN state.

www.DataSheet4U.com No.A0976-30/45

BIT Control Standard: Reference Value

1. FM S-meter shifter

	MSB	4U.cq	Sheet	Data	WLSB
Function	D32-4	D32-3	D32-2	D32-1	D32-0
Vsm(DC)=1.85V: +8dB	0	0	0	0	0
↑ (
Vsm(DC)=1.85V: 0dB	1	0	0	0	0
\rightarrow					
Vsm(DC)=1.85V: -7dB	1	1	1	1	1

2-1. FM Mute-ON-adj

2-2. AM NC stop

				J									
LSE	3			MSB		LSE			I	MSB			
D32-5	D32-6	D32-7	D32-8	D32-9	Function	D32-5	D32-6	D32-7	D32-8	D32-9	Function		
0	0	0	0	0	-3dB Limitting sens: -6dB	0	0	0	0	0	Vsm (DC) for AM NC STOP=0.3V		
					↑						Ŷ		
1	1	1	1	0	-3dB Limitting sens: 0dB	0	0	0	0	1	Vsm (DC) for AM NC STOP=2.3V		
					\downarrow						\downarrow		
1	1	1	1	1	-3dB Limitting sens: +10dB	1	1	1	1	1	Vsm (DC) for AM NC STOP=4.2V		

3-1. FM Mute-ATT

3-2. AM NC Gate-Time

LS	В			I	MSB		LS	В			Ν	1SB	
D32-10	D32-11	D32-12	D32-13	D32-14	D32-15	Function	D32-10	D32-11	D32-12	D32-13	D32-14	D32-15	Function
0	0	0	0	0	0	MUTE attenuation: -0.5dB	0	0	0	0	0	0	INPUT=60dBµV: 1000µs
						↑							\uparrow
0	0	0	0	0	1	MUTE attenuation: -13dB	0	0	0	0	0	1	INPUT=60dBμV: 350μs
						\downarrow							\downarrow
1	1	1	1	1	1	MUTE attenuation: -25dB	1	1	1	1	1	1	INPUT=60dBμV: 200μs

4. FM weak input Mute changeover

(FM Mute-ON-adj:0000)

LSB		MSB	
D32-16	D32-17	D32-18	Function
0	0	0	INPUT=-20dBµV V42: 1.45V
			Ŷ
1	1	0	INPUT=-20dBµV V42: 2.0V
			\downarrow
1	1	1	INPUT=-20dBµV V42: 2.7V

5-1.	FM S	SD A	Adjus	t		5-2.	AM	SD A	Adjus	t	
LSE	3			MSB		LSB				MSB	
D32-19	D32-20	D32-23 D32-22 D32-22		D32-23	Function	D32-19	D32-20	D32-21	D32-22	D32-23	Function
0	0	0	0	0	SD on level: -19dB	0	0	0	0	0	SD on level: -13dB
					↑						\uparrow
0	0	0	0	1	SD on level: 0dB	0	0	0	0	1	SD on level: 0dB
					\downarrow						\downarrow
1	1	1	1	1	SD on level: +20dB	1	1	1	1	1	SD on level: +25dB

6-1. FM IF-Gain

LSB			MSB	
D32-24	D32-25	D32-26	D32-27	Function
0	0 0 0		0	450kHz limit AMP: -6dB
				↑
0	0	0 1		450kHz limit AMP: 0dB
				\downarrow
1	1	1	1	450kHz limit AMP: +6dB

7-1. FM W-AGC

7-2. AM W-AGC

LSB			MSB		LSB			MSB	
D33-0	D33-1	D33-2	D33-3	Function	D33-0	D33-1	D33-2	D33-3	Function
0	0	0	0	W-AGC on level: -2dB	0	0	0	0	N-AGC on level: -9.5dB
				↑					↑
0	0	0	1	W-AGC on level: 0dB	0	0	0	1	N-AGC on level: 0dB
				\downarrow					\downarrow
1	1	1	1	W-AGC on level: +2dB	1	1	1	1	W-AGC on level: +6dB

8-1. FM N-AGC

8-2. AM N-AGC

LSB			MSB		LSB			MSB	
D33-4	D33-5	D33-6	D33-7	Function	D33-4	D33-5	D33-6	D33-7	Function
0	0	0	0	N-AGC on level: -9dB	0	0	0	0	N-AGC on level: -10dB
				\uparrow					↑
0	0	0	1	N-AGC on level: 0dB	0	0	0	1	N-AGC on level: 0dB
				\downarrow					\downarrow
1	1	1	1	N-AGC on level: +6dB	1	1	1	1	N-AGC on level: +6.5dB

9-1. F	FM Ke	yed-A	GC	(9-2. AM IF-Gain							
LSB		-	MSB		LSB	-		MSB				
W DV.E 33-8	1atoShee033-11 033-10		33-11	Function	D33-8	D33-9	D33-10	D33-11	Function			
0	0	0	0	V38 for Keyed AGC ON: 0.12V		0	0	0	AM 450kHz AMP Gain: -7.5dB			
				\uparrow					\uparrow			
0	0	0	1	V38 for Keyed AGC ON: 1.2V	0	0	0	1	AM 450kHz AMP Gain: 0dB			
				↓ ↓					\downarrow			
1	1	1	1	V38 for Keyed AGC ON: 2.1V	1	1	1	1	AM 450kHz AMP Gain: -4.5dB			

10-1. FM Mute-ATT-SW

10-2. AM Vsm-shifter

10 1.1 101 10		•••	10 2.1101 1	Sin Sinter	
LSB MSE			LSB	MSB	
D33-25	D33-26	Function	D33-25	D33-26	Function
0	0	MUTE attenuation at V42=1V: -6dB	0	0	Vsm(DC)=1.5V ANT IN: 30dBµV
1	0	MUTE attenuation at V42=1V: -8dB	1	0	Vsm(DC)=1.5V ANT IN: 38dBµV
0	1	MUTE attenuation at V42=1V: -13dB	0	1	Vsm(DC)=1.5V ANT IN: 45dBµV
1 1		MUTE attenuation at V42=1V: -19dB	1	1	Vsm(DC)=1.5V ANT IN: 55dBµV

11-1. FM SNC DAC

	MSB	ſ			LSB
Function	D34-10	D34-9	D34-8	D34-7	D34-6
SEPARATION=15dB INPUT: -26dB	0	0	0	0	0
SEPARATION=15dB INPUT: -6dB	0	1	0	0	0
SEPARATION=15dB INPUT: 0dB	1	0	0	0	0
SEPARATION=15dB INPUT: +5dB	1	1	0	0	0
SEPARATION=15dB INPUT: +11dB	1	1	1	1	1

12-1. FM HCC DAC

12-1	. FM	HC	C DA	ьC		12-2	. AM	I HC	C DA	AC		
LSE	3			NSB		LSE	3			MSB		
D34-11	D34-12	D34-13	D34-14	D34-15	Function	D34-11	D34-12	D34-13	D34-14	D34-15	Function	
0	0	0	0	0	V29 at 10kHz mod, -6dB: 0.4V	0	0	0	0	0	V29 at 4kHz mod, -6dB: 0.04V	
					\uparrow						\uparrow	
0	0	0	0	1	V29 at 10kHz mod, -6dB: 0.85V	0	0	0	0	1	V29 at 4kHz mod, -6dB: 0.82V	
					\downarrow						\downarrow	
1	1	1	1	1	V29 at 10kHz mod, -6dB: 1.3V	1	1	1	1	1	V29 at 4kHz mod, -6dB: 1.3V	

13-1. MRC Time constant

LSB	MSB						
D35-27	D35-28	Function					
0	0	Pin 39 output current: 2.9µA					
1	0	Pin 39 output current: 2.2µA					
0	1	Pin 39 output current: 1.5µA					
1	1	Pin 39 output current: 0.8µA					

www.DataSheet4U.com No.A0976-34/45

No.	Control block/data		Description									
ww (1) Da	Programmable divider data	¤ Data to s	ⁿ Data to set the dividing ratio of the programmable divider. Binary value with P0 as LSB and P15 as MSB									
	P0 to P15	Binary val	Binary value with P0 as LSB and P15 as MSB									
(2)	AM OSC dividing ratio	¤ OSC divi	ding ratio		AM/FM							
		OSC D	01	OSC D2	Div	iding ratio			P0 to P15			
	OSC D1,OSC D2	0		0	10)-division						
		0		1	8	-division						
		1	1 0 6-division		-division							
		1		1	4	-division						
(3)	General-purpose counter	¤ General-	purpose	counter me	easuremen	it start data			CTS			
	measurement start control								GT0,GT1			
		CTE =	=1: Count	start					CTP			
	CTE	=	=U: Count reset									
(4)	Reference divider data	¤ Reference	ce freque	ncy (fref) s	election da	ata Data						
	P0 to P3	R3	R2	R1	R0	Refei	rence frequency (KH	Z)				
	KU 10 K3	0	0	0	0		Do not use					
		0	0	0	1		100					
		0	0	1	0		25					
		0	0	1	1		25					
		0	1	0	0		12.5					
		0	1	0	1		6.25					
		0	1	1	0		3.125					
		0 1		1	1		3.125					
		1	0	0	0		10					
		1	0	0	1		Do not use					
		1	0	1	-		5					
			0	1	0		5					
		1	0	1	1		1					
		1	1	0	0		Do not use					
		1	1	0	1		Do not use					
		1	1	1	0		Do not use					
		1	1	1	1		Do not use					
(5)	Stop of programmable	¤ DVS=0:	PLL-IN p	n in IC sto	pped (pulle	ed-down)			CTS			
	divider	1:1	PLL-IN pi	n in IC sel	ected	,			GT0,GT1			
			Set numb	er of divisi	ions (N): 27	72 to 65536			CTP			
	DVS	1	Input freq	uency ran	ge: 120 to	270MHz			CTC			
		* For detail	ls, refer t	o "Program	nmable Div	ider Compositi	on."					
(6)	Tuner mode changeover	¤ AM/FM n	node cha	ngeover					P0 to P15			
	AM/FM	1=AM 0)=FM						OSC D1,D2			
(7)	I uner mode changeover	¤ Data to c		the mode	of tuner				MODE1,			
	SEEK1 SEEK2	SEI	EK1	SE	EEK2	IF buffer	control output		WODE2			
		(0	-	0	Do	o not use					
		1		0			STOP					
		0			1		RDS	S				
			1		1							

Description Of Control Data

No.	Control block/data				Descrip	tion			Related data
(8)	PLL filter changeover	¤ Data to se	lect/change	over the PLL	filter			* don't care	AM/FM
www.Da	itaSheet4U.com	MODE1	MODE2	AM/FM	SEEK1	SEEK2	AM filter	FM filter	SEEK1,
	MODE1,MODE2	0	0	0	*	*	OFF	ON	SEEK2
		0	0	1	*	*	ON	OFF	
		1	0	0	1	1	OFF	ON	
		1	0	0	0	1	OFF	ON	
		1	0	0	1	0	ON	OFF	
		1	0	1	*	*	ON	OFF	
		0	1	0	1	1	OFF	ON	
		0	1	0	0	1	OFF	ON	
		0	1	0	1	0	ON	ON	
		0	1	1	*	*	ON	ON	
(9)	OSC dividing ratio control	¤ Data to se	t the OSC d	ividing ratio	at reception	of AM/FM/V	VB		AM/FM
		WEAT	HER	DIV_SW3	3	Dividing ratio	c		P0 to P15
	WEATHER	0		0		2-division			OSC D1,
	DIV_5VV3	0		1		3-division			030 02
		1		0		1-division			
		1		1		1-division			
(10)									
(10)	Control data	"Data to desi	gnate I/O of	the I/O port elect "0" nor	mally				
	Control data	=1: 0	utput port	Select "1" for	r IC test				
		* Select "0"	or cases oth	ner than IC t	est.				
(11)	X-TAL OSC	Data to detune the reference frequency X'tal=20.5MHz when beat has occurred							
	Fine adjustment data	Variable by	Variable by about 100Hz per bit in eight steps of 0 to 7 bits						
		A tai to be loaded with the external capacity at the 3-bit (110) setting							
			X'tal OSC A	.DJ					
			000	+390Hz					
			010	+250HZ					
			110	X'tal (center	r value)				
			001	-100Hz	(ulue)				
			101	-190Hz					
			011	-280Hz					
			111	-350Hz					
(10)		Data ta ana				al a			
(12)	AMSD speedup	"SDSPEED"	=0: NORMA	L mode	i the Aivi mo	de			
	SDSPEED		=1: speedu	p mode					
(13)	DO pin	¤ Data to co	ntrol the DC	pin output					
	Control data	IL1	110		IN				
		0	0	Open	- (DIN(42)				
		1	0	SD pin state	(not used)				
		1	1	Do not use	(not used)				
		Note) Do no	t use with X	J-∠ pins are	OP (DO doe	as output po	ວາເຣ. e)		
(14) AM/FM-AGC ON Data to make AGC of each of AM and FM effective									
	Control data	"FMAGC_O	N"=0: NORN	/IAL mode	For FM	1			
			=1: Force	d ON mode	J				
	FMAGC_ON	"AMAGC_ON"=0: NORMAL mode For AM							
(15)	AMAGC_UN		the input so	a ON mode	J CTC=1				
(13)	deterioration control data	* Do not atte	empt change	of bits durir	ng count (ex	cept for EVF	२).		
	CTC						,		

Continue	ed from preceding page.					Doporintio	<u> </u>		Polatad data
INO.		Data ta	Description						
(16) www.Da	General-purpose counter	¤ Data to c	mode) a	e the general	-purpo	se counter r	neasurement ti de)	ime	
	Control data	(inequency	mode) e		requer		ment		
	GT0, GT1	CT1	СТО			N/s	it time	Cycle measurement	
	CTP		GIU	Measurer	ment			mode	
			_	ume					
		0	0	4ms		3 to 4ms	1 to 2ms	1 cycle	
		0	1	8ms		3 to 4ms	1 to 2ms	1 cycle	
		1	0	32ms	6	7 to 8ms	1 to 2ms	2 cycles	
		1	1	64ms	3	7 to 8ms	1 to 2ms	2 cycles	
		¤ CTP=0:	General-	purpose cour	nter inp	out stopped	at counter rese	et (CTE=0)	
		=1: 0	General-	purpose cour	nter inp	out not stopp	ed and the wa	it time shortened at	
		(ounter re	eset (CTE=0))				
		Exce	pt that In	nmediately at	fter set	tting of CTP	=1, it is necess	ary to wait for counter start	
(47)	DO sis costal data	till th	e genera	I-purpose col	unter II	nput pin is b	lased.		
(17)	DO pin control data		letermine						
	סוו	ULL		DIT			1		
	DT0, DT1	0		0		0	Low when un	юскеа	
	- /	0		0		1	Do not use		
		0		1		0	end-UC		
		0		1		1	IN (*1)		
		1		0		0	Open		
		1		0		1	Do not use		
		1		1		0	end-UC		
		1		1		1	IN (*1)		
		end-UC: Count over of the general-purpose counter							
		DO							
						(I-1 cl	nange)		
(10)	Unlock datastian data	m Data ta c	alaat tha	nhaaa arrar	(4 F) d	otootion wid	th in order to a	acal DL for looking	
(10)		Phase erro		ting the dF d	(φ⊑) u etectio	in width sho	wn in the table	below is determined to	
	UL0, UL1	indicate un	lock. At i	unlock, the d	etectio	n pin (DO) l	becomes Low.		2.0, 2.1
	,	UL1		ULO	₀E de	tection widt	h De	tection pin output	
		0		0	1	Stop		Onen	
		0		1		0			
		0		1		0	ψι		
		1		0		±0.5μs	¢E ex	tended by 1 to 2ms	
				1		±1μs	φE ex	ttended by 1 to 2ms	
			φE						
							- Extensio	on	
			DO			1 to 2ms	>		
					\leftarrow	Unlock o	output \longrightarrow		
(19)	IF count operation control	¤ Data to s	elect the	general-pur	pose c	ounter input	pin (HCTR) in	IC	
	data	CTS=1: I	ISTR pir	n in IC selecte	ed				
	CTS	0: I	ICTR pir	n in IC pulled	down				_
(20)	Sub-charge pump control	¤ Data to c	ontrol th	e sub-charge	e pump)			UL0, UL1,
	data	PDC1	F	PDC0		Sub	-charge pump	state	DLC
		0		*			High impedanc	e	
	PDC0, PDC1	1		0		Charge p	ump operating	(unlocked)	
		1		1		Charge	oump operating	(normal)	
				•				(*: don't care)	
		* The sub-	charge p	ump output i	s conn	ected intern	ally with the LF	PF FET gate.	
		The sub-	charge p	ump and the	PD (m	nain charge	pump) pin are	combined to form the fast	
		lockup ci	cuit.						
		* Except th	at this m	ay not be eff	rective	depending of	on the filter mu	ltiplier (lighter filter).	

Continue	a from preceding page.			Descriptio			Delated data		
INO.				Descriptio			Related data		
(21) www.Da	Phase comparator control ta Sheet4U.com	a Data to con							
	uala	DZ1	DZ0	Deadbar	n mode				
	D70 D71	0	0	DZ	A	 •			
		0	1	DZ	В				
		1	0	DZ	С				
		1	1	DZ	D				
		* DZA at powe	er ON and po	wer reset		I I			
(22)	Charge pump control data	¤ Data to set	the charge pu	mp output to the low le	vel (V _{SS} level) in a	forced manner.			
		DLC=1: Lov	v level						
	DLC	=0: No	rmal operatio	า					
		* When the V	Vhen the VCO control voltage (Vtune) is deadlocked because VCO stops oscillation at						
		0V, this data s	V, this data sets the charge pump output to the low level and Vtune to $V_{CC},$ enabling						
		escape from t	he deadlock s	state. Normal operation	mode at power ON	and power reset			
(23)	IC test data	¤ IC test data							
		Set as follow	WS:						
	TEST0	TEST0=0	TEST0=0						
	TEST1	TEST1=0 TEST2=0							
	12012	* All of test da	ta is sat to "N	' at nower ON and now	vor rosot				
(24)	RF-DAC control	¤ Causes ann	lication of the	control voltage to the l	RF tuning circuit (va	ractor).			
()	D31-0 to D31-8	9BIT							
(25)	Internal monitor changeover	¤ Data to cha	naeover the ir	nternal monitor.					
· ,	data	1BIT							
	D31-9								
(26)	ANT-DAC control	¤ Causes application of the control voltage to the ANT tuning circuit (varactor).							
	D31-10 to D31-18	9BIT							
(27)	MSLOP Control changeover	a Data to change over the FM MUTE curve inclination.							
	data	1BIT MSLOP							
	D31-19	0	Mute_D (ste	ep inclination)					
		1	1 Mute_D (gentle inclination)						
(28)	Band variable filter control	¤ Narrow/wide	e band - (MIN	/MAX) data to set the b	and variable filter				
	data	Each 3bits f	or narrow and	I wide bands					
	D31-20 to D31-25	Band va	ariable filter	N/MAC control volue					
		Narrow			MT Cont				
				D23 D	24 D25				
			000 N	1in (40k)	0 0 Max (220k)				
			100	1(00				
			010	0	10				
			•						
			101	1 (01				
			011 111 N	1ax (80k) 1	1 1 1 1 Min (150k)				
(29)	Band variable filter mode	v Data to set t	the mode of h	and variable filter					
(=0)	setting	2BIT							
	D31-26 to D31-27	Filter-Fix_SW							
		D26	D27	Filter-Mode					
		0	0	Variable					
		1	0	Narrow-Eix					
			1	Wido Fix					
		0	1	Wide-Fix					
		1	1	Dont Care					
(30)	DAC TEST select data D31-29	¤ Data to sele	ct the output	circuit of internal DAC	circuit				
(31)	S-meter shifter control	provide the control in the cont							
	D32-0 to D32-4	5BIT							
(32)	FM MUTE-ON-adj/	¤ FM: Control	s FM MUTE-0	ON-adj characteristic.					
	AM NC stop control	AM: Control	s the sensitiv	ity of AM NC stop.					
(00)	D32-5 to D32-9	5BIT							
(33)	FM MUIE-AII/	× FM: Control	s⊢M MUIE-A		aractorictic				
	AIVI NC Gate-Time control	AIVI: Control	is the width of	AW NC Gate-Time cha	aracteristic.				
	002-10 10 002-10						1		

Continue	d from preceding page.		
No.	Control block/data	Description	Related data
(34)	Weak input	¤ Changes over weak input MUTE.	
vv vv vv . D a	MUTE changeover	3BIT	
	D31-16 to D31-18		
(35)	AM/FM SD-adj	¤ Controls SD characteristic of AM/FM.	
	NC-AGC threshold voltage	Sets the threshold voltage of NC-AGC.	
	setting data	5BIT	
(D31-19 to D32-23		
(36)	FM IF-Gain	Controls Gain of FM IF limiter AMP.	
	AMINC Gain control data	Controls also Gain of IF limiter AMP in the AM mode similarly to the FM mode.	
(07)	D32-24 to D32-27		
(37)	TUNER OFF setting data	^{III} Data to set the mode to turn OFF the tuner.	
	D32-20		
(38)	AM/FM WAGC setting data	¤ Data to set the AM/FM WAGC sensitivity.	
	D33-0 to D33-3	4BIT	
(39)	AM/FM NAGC setting data	¤ Data to set the AM/FM NAGC sensitivity.	
	D33-4 to D33-7	4BIT	
(40)	Keyed-AGC/	¤ Controls FM Keyed-AGC sensitivity.	
	AM-IF-Gain setting data	Controls AM-IF-GAIN.	
(11)	D33-8 to D33-11		
(41)	SD detection bandwidth	× Used to set the SD detection bandwidth at FM-SEEK.	
	setting/band variable filter	Used to set the start point of band variable filter at FM reception.	
	start point setting data	4811	
(D33-12 to D33-15		
(42)	Null Voltage setting data	∝ Controls the FM Null voltage.	
(10)	D33-16 to D33-20	5BIT	
(43)	QDP-ADJ setting data	Controls the FM QDP voltage.	
(4.4)		4DII	
(44)	S motor shifter control	AM: Controle S motor shifter circuit output value	
	D33-25 to D33-26	2BIT Mute-ATT-SW/AM-Vsm-Shift	
	000-2010 000-20	0 0 Low (steep inclination)	
		10	
		01	
		1 1 High (gengle inclination)	
(45)	VREE2 7V adi control	r Sets the Vref2 7V output voltage to the target value	
(43)	D33-27 to D33-28	2BIT Vrof2 7V AD I	
	000-21 10 000-20		
	• · · · ·		
(46)	Separation control	Controls separation of L/R output level in the FM stereo mode.	
(47)	D34-0 to D34-5	OBII	
(47)	FM SNU/		
	AIVI-KE-AGU AMP	Sets ANI-RE-AGE AMP (genue inclination side) threshold voltage.	
	inclination side) actting data		
	$D34_6$ to $D34_10$		
(48)	EM/AM HCC setting data	v Sets HCC characteristic of EM and AM	
(,07)	D34-11 to D34-15	5BIT	
(49)	SNC inclination setting data	Bits inclination of SNC voltage (sets the separation curve)	
(10)	D34-16 to D34-17	2BIT SNC inclination	

Continue	ed from preceding page.							
No.	Control block/data	Description	Related data					
(50) www.Da	Pilot cancel control	A Data to control the pilot cancel degree.						
	D34-10 (0 D34-19	0.0 Center (AM-NC=OFF)						
		1 0 Low (same as above)						
		0 1 High (same as above)						
		1 1 OFF (AM-NC=ON)						
(51)	De-emphasis select data	¤ Data to select the De-Emphasis constant of L/R output.						
	D34-20	1BIT <u>De-e</u> mphasis						
		0 50µs						
		1 75μs						
(52)	Force NOMO setting data	Data to force L/R output to the MONO mode.						
	D34-21	1BIT 0 Normal						
		1 Forced MONO						
(53)	Noise-AGC	pata to change the sensitivity by applying the Noise-AGC. Threshol	d voltage in a forced					
(00)	Threshold voltage forced	manner.						
	application data	1BIT Noise-AGC						
	D34-23	Threshold voltage forced application						
		0 OFF (Normal)						
(54)	Noise sensitivity setting data	a Controls the noise detection sensitivity.						
	D34-24 to D34-25 2B1 Noise-Sens setting							
		01 ↓						
		1 1 Difficult to detect						
(55)	AC S-meter	¤ S-meter output (Vsm2 sub):						
	Load changeover data	Data to change over the output impedance (internal load resistance) of pin 40						
	D34-26	1BIT AC-S meter load changeover						
		0 Hi (7kΩ)						
		1 Low (3.5kΩ)						
(56)	Noise-AGC limit setting data	ⁿ Data to changeover the AGC limiter of noise canceller.						
	D34-27	1BII Noise-AGC						
		U No Limit (AGC easy to be effective)						
(57)	D34-28							
		0 0 : Normal setting						
		1						
(58)	MPX VCO control data	¤ Data for control to the MPX-VCO block free-run oscillation frequence	cy of 304kHz					
15.5	D35-0 to D35-5	6BIT						
(59)	VCO ON measurement bit	¤ MPX-VCO block free-run oscillation frequency						
	0-000	риппу measurement. піўл 1BIT						
(60)	HCC SW changeover bit	pata to change the HCC function AM/FM mode						
()	D35-6	1BIT H <u>CC</u> SW						
		1 FM						
		0 AM						
(61)	Filter-Wide fixed sensitivity/	¤ Sets the Filter-Wide fixed sensitivity.						
	AM-RF-AGC AMP	Sets the AM-RF-AGC AMP (steep inclination side) threshold voltage	je.					
	Threshold value (steep	4BIT						
	inclination side) setting data	j data						
(62)	D35-8 to D35-11 Filter initial adjustment bit	n Data for various initial settings of the filter						
(02)	D35-12 to D35-24	13BIT						
		D12-14 Gain Gain adjustment	<u> </u>					
		D15-19 CF CF adjustment	<u> </u>					
1		D20-24 BW/G BW/G adjustment						

Continue	ontinued from preceding page.						
No.	Control block/data	Description	Related data				
(63) www.Da	MRC Sensitivity Setting data D35-25 to D35-26	Data for sensitivity setting of MRC 2BIT MRC sensitivity					
(64)	MRC Time constant setting data D35-27 to D35-28	MRC time constant (Attack/Release Time) setting data 2BIT MRC time constant (Attack: Release Time) 0 0 Short 1 0 0 1 1 1					
(65)	D31-29 to D31-31 D32-29 to D32-31 D33-29 to D33-31 D34-29 to D34-31	¤ Sub-Code Address Each 3 bits					

DO Output Data (Serial Data Output) Composition

No.	Control block/data	Description	Related data
(1)	I/O port data	¤ I/O port; Data latching the state of pin 14 and other pins become I1 to I5. Latched when the	TEST-BIT
		data output mode becomes effective.	(I/O-PORT)
	I5 to I1	Pin state=Hi: 1	
		=Low: 0	
		Currently, only pin 14 (SD state)	
(2)	General-purpose	¤ Data latching the content of general-purpose counter (20-bit binary counter) becomes	CTS0
	counter binary data	C19 to C0.	CTS1
		C19 \leftarrow MSB of binary counter	CTE
	C19 to C0	C0 ← LSB of binary counter	

Programmable Divider Composition

DVS	Set number of divisions (N)	Input frequency range (f [MHz])	PULL-IN pin in IC
1	272 to 65535	$120 \le f \le 270$	Selected
0	-	-	Stopped

* The input sensitivity is not shown here because the IC inside is closed.

Composition of The General-Purpose Counter

The general-purpose counter consists of 20-bit binary counters. The count result can be read from MSB through the DO pin.

On the basis of GT0 and GT1 data, the measurement time for frequency measurement using the general-purpose counter can be selected from four types: 4,8,32,64 ms. By determining how many pulses are entered in the general-purpose counter within one of these periods, the frequency of signal entered in HCTR in IC can be determined.

CTP data: Data to determine the general-purpose counter input pin (HCTR) state at reset of this counter (CTE=0) CTP = 0: General-purpose counter input pin turned OFF (pulled down)

= 1: General-purpose counter input pin not pulled down, but the wait time reduced to 1- 2 ms. When setting CTP=1, it must be set first not later than 4 ms before count start (CTE=1). When the counter is not to be used, set CTP=0.

		Frequency measurement mode				
GT1	GT0	Macouroment time	Wait time			
		measurement ume	CTP=0	CTP=1		
0	0	4ms	3 to 4ms			
0	1	8ms		1 to 2ms		
1	0	32ms	7 to 8ms	1 to 21115		
1	1	64ms				

IF Counter Operation

Before count start with the general-purpose counter, set CTE=0 to reset the counter beforehand.

The general-purpose counter starts counting by setting the serial data to CTE=1.

Then, the count result of the counter must be read out while CTE=1.

(With CTE=0, the general-purpose counter is reset.)

The signal entered in the HCTR pin in IC is divided into one half internally, and transmitted to the general-purpose counter.

Accordingly, the count result of general-purpose counter is the one-half value of the actual frequency entered in the HCTR pin in IC.

For the integrating counter

During integrating counting, the counts are accumulated in the general-purpose counter.

Take care not to allow overflow of the counter.

Count value: O_H to FFFFF_H (1,048,575)

When the serial data (IN1) is re-transmitted while keeping CTE=1, the general-purpose counter restarts measurement and the integrating count results are added.

Phase Comparator/Charge Pump

(1) Phase comparator/charge pump operation

In the PLL circuit block shown in Fig. 1, the phase comparator compares the phase difference of the reference frequency(fr) and comparative frequency (fp) and outputs the phase difference components from the charge pump.

Fig. 1 PLL circuit block

Output characteristics of the phase comparator/charge pump are shown in Fig. 2.

The phase comparator outputs the output V ϕ that is proportional to the phase difference ϕ between fr and fp. By changing the setting of phase comparator dead zone mode, characteristics of phase comparator can be changed. Namely, the modes (DZA, DZB) to turn ON both P-CH and N-CH transistors of charge pump in case of extremely small phase difference and the mode (DZD) not to output the phase difference output in case of extremely small phase difference can be set.

The table below outlines characteristics in each dead zone mode.

Set data		Dood zono modo	Charge pump at phase difference 0	Dead zone width	Domotico
DZ1	DZ0	Dead zone mode	(Pch/Nch)	(Reference data)	Remarks
0	0	DZA	ON/ON	(-15[ns])	
0	1	DZB	ON/ON	- (-8[ns])	
1	0	DZC	ON or OFF	≈0 (0[ns])	Do not use
1	1	DZD	OFF/OFF	+ (+8[ns])	

(3) Guideline and cautions for selecting the Dead Zone mode

Features of each Dead Zone mode and criteria for selection are described below:

1) DZA mode

In the DZA mode, the correction signal is output from the charge pump even when the phase difference agrees between the reference frequency (fr) and comparative frequency (fp), which is advantageous in obtaining the high S/N ratio with ease. On the other hand, the side band of reference frequency component may occur, readily causing beats in case of strong input. This is a phenomenon occurring because the PLL loop reacts sensitively due to leak components through the mixer, modulating VCO. Occurrence of side band of reference frequency component in the local oscillator also causes leakage of reference components to IF, which tends to worsen the interference characteristics.

2) DZB mode

The DZB mode is characterized by the reduced voltage of correction signal from the DZA mode though, similarly to the case of the DZA mode, the charge pump outputs the correction signal even when the phase difference agrees between the reference frequency (fr) and comparative frequency (fp). This mode features in easier achievement of high S/N ratio than DZC/DZD and improved beat and interference resistances.

3) DZC mode

In the DZC mode, the correction signal is output from the charge pump according to the phase difference between the reference frequency (fr) and comparative frequency (fp). Extremely small noise may occur when the phase difference is around 0 [ns]. Do not use this mode at low temperature (-30° C or less) because the S/N ratio may be deteriorated.

4) DZD mode

In the DZD mode, the correction signal is output from the charge pump according to the phase difference between the reference frequency (fr) and comparative frequency (fp). The correction signal is not output when the phase difference is \pm several [ns]. Accordingly, the S/N ratio becomes lower than other dead-zone modes, but beat and interference resistances can be improved.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2007. Specifications and information herein are subject to change without notice.