Voltage Transducer LV 100-600 For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit). ## $V_{PN} = 600 \text{ V}$ ### **Electrical data** | $oldsymbol{V}_{ extsf{PN}}$ | Primary nominal r.m.s. voltage Primary voltage, measuring range | | 600
0 ± 900 | | V
V | |--|--|---------------------------------------|----------------------------------|--------------------|---------------| | I _{PN} | Primary nominal r.m.s. current | | 16.66 | | mΑ | | \mathbf{R}_{M} | Measuring resistance | | $\mathbf{R}_{_{ ext{M min}}}$ | $R_{\text{M max}}$ | c | | | with ± 15 V | @ ± 600 V _{max}
@ ± 900 V | 0
0 | 170
90 | Ω | | I _{sn}
K _n | Secondary nominal r.m.s. current Conversion ratio | | 50
600 V / | ′ 50 mA | mΑ | | V _C
I _C
V _d | Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | ± 15
10 + I _s
6 | | V
mA
kV | ## **Accuracy - Dynamic performance data** | X _G | Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$
Linearity | | ± 0.7 < 0.1 | | %
% | |----------------|--|------------|--------------|-----------------------|----------------| | I | Offset current @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$
Thermal drift of \mathbf{I}_{O}
Response time @ 90 % of $\mathbf{V}_{\mathrm{p}\mathrm{max}}$ | 0°C + 70°C | Typ
± 0.2 | Max
± 0.2
± 0.3 | mΑ
mΑ
μs | #### General data | \mathbf{T}_{A} | Ambient operating temperature | 0 + 70 | °C | |------------------|---|-------------|-----------| | T _s | Ambient storage temperature | - 25 + 85 | °C | | N | Turns ratio | 6000 : 2000 | | | Р | Total primary power loss | 10 | W | | $R_{_1}$ | Primary resistance @ T _A = 25°C | 36 | $k\Omega$ | | R_s | Secondary coil resistance @ T _A = 70°C | 60 | Ω | | m | Mass | 850 | g | | | Standards 1) | EN 50178 | | | | | | | #### **Features** - Closed loop (compensated) voltage transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0 - Primary resistor R₁ incorporated into the housing. ## **Advantages** - Excellent accuracy - Very good linearity - Low thermal drift - High immunity to external interference. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Uninterruptible Power Supplies (UPS) - Power supplies for welding applications. Note: 1) A list of corresponding tests is available 980709/3 ## **Dimensions LV 100-600** (in mm. 1 mm = 0.0394 inch) #### **Mechanical characteristics** - General tolerance - Fastening - Connection of primary - Connection of secondary - Connection to the ground - Fastening torque - ± 0.3 mm 2 holes Ø 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft. ## **Remarks** - \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT. - The primary circuit of the transducer must be linked to the connections where the voltage has to be measured. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.