

Current Transducer LTS 15-NP

 $I_{PN} = 15 At$

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical dat	a
-----------------------	---

I _{PN}	Primary nominal r.m.s. current		15	At
I _P	Primary current, measuring range		0 ± 48	At
ÎPDC	Overload capability		250	At
V _{OUT}	Analog output voltage @ I _P		2.5 ± (0.62	5· I _P / I _{PN}) V
	$I_p = 0$		2.5 1)	V
N_s	Number of secondary turns (± 0.1 %)		2000	
R_{\perp}	Load resistance		≥ 2	$k\Omega$
$R_{\scriptscriptstyle \mathrm{IM}}$	Internal measuring resistance (± 0.5 %)		83.33	Ω
TCR_{IM}	Thermal drift of R _M		< 50	ppm/K
$V_{\rm c}$	Supply voltage (± 5 %)		5	V
Ic	Current consumption @ $V_c = 5 \text{ V}$	Тур	$28+I_{S}^{2}+(V_{O})$	_{υτ} / R _L)mA

Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , $T_A = 25$ °C		± 0.2		%
	Accuracy with $\mathbf{R}_{\mathrm{IM}} @ \mathbf{I}_{\mathrm{PN}}$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$;	± 0.7		%
$\epsilon_{\scriptscriptstyle L}$	Linearity error		< 0.1		%
			Тур	Max	
TCV	Thermal drift of $\mathbf{V}_{\text{OUT}} \otimes \mathbf{I}_{\text{P}} = 0$	- 10°C + 85°C	65	120 p	pm/K
001	551	- 40°C 10°C		170 p	pm/K
TCE_{G}	Thermal drift of the gain	- 40°C + 85°C		50 ³⁾ p	pm/K
V _{OM}	Residual voltage @ $I_p = 0$, after an	overload of 3 x I _{PN}		± 0.5	mV
		5 x I _{PN}		± 2.0	mV
		10 x I _{PN}		± 2.0	mV
t ra	Reaction time @ 10 % of I _{PN}		< 100		ns
t,	Response time @ 90 % of I _{PN}		< 400		ns
di/dt	di/dt accurately followed		> 35		A/µs
f	Frequency bandwidth (0 0.5 dE	3)	DC 1	00	kHz
	(- 0.5 1 dE	3)	DC 2	200	kHz

General data

T_A	Ambient operating temperature	- 40 + 85	°C		
$T_{\rm s}$	Ambient storage temperature	- 40 + 100	°C		
m	Mass	10	g		
	Standards	EN 50178 : 1997			
		IEC 60950-1:2	IEC 60950-1:2001		

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- · Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Copyright protected.

Notes: 1) Absolute value @ $\mathbf{T}_{A} = 25^{\circ}\text{C}$, $2.475 < \mathbf{V}_{OUT} < 2.525$

2) Please see the operation principle on the other side

³⁾ Only due to **TCR**_M.

050713/15

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.$

Page 1/3

e-mail: tope@ms1.hinet.net

Current Transducer LTS 15-NP

Iso	Isolation characteristics				
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn Impulse withstand voltage 1.2/50 µs	3 >8	kV kV		
V _e	R.m.s. voltage for partial discharge extinction @ 10pC	Min >1.5	kV		
dCp dCl CTI	Creepage distance 4) Clearance distance 5) Comparative Tracking Index (Group III a)	Min 15.5 6.35 175	mm mm		

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\mathbf{V}}_{\mathbf{w}}$	Rated isolation voltage	Nominal voltage
Single isolation	600 V	600 V
Reinforced isolation	300 V	300 V

Notes : 4) On housing

⁵⁾ On PCB with soldering pattern UTEC93-703.

Safety

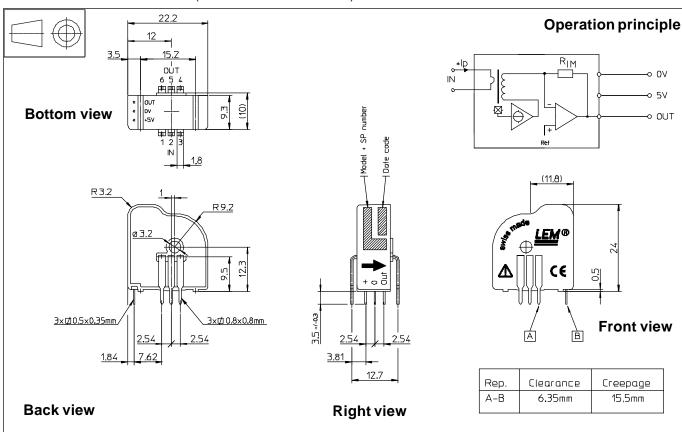
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

050713/15

Dimensions LTS 15-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage	Primary resistance \mathbf{R}_{P} [$\mathrm{m}\Omega$]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 15	2.5 ± 0.625	0.18	0.013	6 5 4 OUT OOO IN 1 2 3
2	±7.5	2.5 ± 0.625	0.81	0.05	6 5 4 OUT O-O O IN 1 2 3
3	± 5	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 0 IN 1 2 3

Mechanical characteristics

General toleranceFastening & connection of primary

 Fastening & connection of secondary Recommended PCB hole

Additional primary through-hole

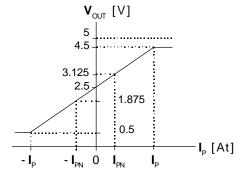
Recommended PCB hole

± 0.2 mm

6 pins 0.8 x 0.8 mm

1.3 mm

3 pins 0.5 x 0.35 mm


0.8 mm

Ø 3.2 mm

Remarks

- \mathbf{V}_{OUT} is positive when \mathbf{I}_{P} flows from terminals 1, 2, 3 to terminals 6, 5, 4.
- Temperature of the primary jumper should not exceed 100°C.

Output Voltage - Primary Current

050713/15

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.$