

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

(√) PRODUCT INFORMATION
() APPROVAL SPECIFICATION

This Product Information is subject to change after 3 months of issuing date

CUSTOMER	China Local
PROGRAM	-

MODEL	LTM200KT12
EXTENSION CODE	-

CUSTOMER APPROVAL & FEEDBACK

ARPPROVED BY	ROVED BY 12 / Nov ' 13 Nicolas		offers
PREPARED BY	12 / Nov ′ 13	Daniel Lee	०/ ८५०५

Application Engineering Group Samsung Display Co., Ltd.

Product Configuration Approval Sheet

Description

Items	Content
Customer	China Local
Product Name	LTM200KT12
Project Name	-

Customer System Configuration

	Items	Content
System Name		
Р	urpose	-
IC	Scalar	_
IC	LED Driver	_
Inpu	t Interface	-
0	S (AIO)	-
Graphi	c Card (AIO)	-

Notice: SDC product approval spec guarantees the customer system above.

P0.0 LTM200KT12

12. Nov. 2013

Contents

Revision History ((4)
1. General Description ((5)
2. Absolute Maximum Ratings(6	6)
3. Optical Characteristics (8	8)
4. Block Diagram (12	2)
5. Electrical Characteristics (1	3)
5.1 TFT LCD Module	
5.2 Back Light Unit	
5.3 LVDS Input Characteristics	
5.4 Timing Parameters	
5.5 Input Signals, Basic Display Colors and Gray Scale of Each Color	
5.6 Power ON/OFF Sequence	
5.7 Input Terminal Pin Assignment	
6. Outline Dimension (26	•
7. Packing (2	28)
8. General Precautions (30	0)
8.1 Handling Precautions	
8.2 Storage Precautions	
8.3 Operation Precaution	
8.4 Design Guide for System	

P0.0

LTM200KT12

12. Nov. 2013

Revision History

Version	Date	Page	Description
P0.0	12. Nov., 2013	All	Product information

P0.0 LTM200KT12

12. Nov. 2013

1. General Description

Overview

LTM200KT12 is a color active matrix liquid crystal display (LCD) that uses amorphous silicon TFT (Thin Film Transistor) as switching components. This model is composed of a TFT LCD panel, a driver circuit and a back light unit. The resolution of a 20.0" is 1600×900 (HD+) and this model can display up to 16.7 millions colors.

Features

Application

- Workstation & Desktop monitors
- Display terminals for AV Products
- Monitors for Industrial machine

DE (Data Enable) only mode

LVDS (Low Voltage Differential Signaling) interface (2pixel/clock)

RoHS, Halogen Free

White LED Edge slim Backlight (1-side)

TCO 6.0 compliance

General Information

ochicial Information		
Items	Specification	Unit
Pixel Pitch	0.27675(H) x 0.27675(W)	mm
Active Display Area	442.8(H) x 249.075(V)	mm
Surface Treatment	AG type, Haze 25% , Hard coating (3H)	-
Display Colors	16.7M (Hi-FRC)	colors
Number of Pixels	1,600 x 900	pixel
Pixel Arrangement	RGB vertical stripe	-
Display Mode	Normally White	-
Luminance of White	250(Typ.)	cd/m²
Power Consumption	Total 11.382 (Typ.) (Panel 1.5 W / BLU 9.882 W)	W

P0.0 LTM200KT12

12. Nov. 2013

Mechanical Information

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	462.3	462.8	463.3	mm	
Module size	Vertical (V)	271.5	272.0	272.5	mm	-
3120	Depth (D)	-	-	10.3	mm	-
Weight		-	-	1,700	g	LCD module only

Note (1) Mechanical tolerance is \pm 0.5mm unless there is a special comment.

2. Absolute Maximum Ratings

If the condition exceeds maximum ratings, it can cause malfunction or unrecoverable damage to the device.

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	V _{DD}	GND-0.5	6.5	V	(1)
Operating Temperature	T _{OPR}	0	50	°C	(2)
Storage temperature	T _{STG}	-20	60	°C	(2)
Glass surface temperature (Operation)	T _{SUF}	0	65	°C	(3)

Note (1) Ta = 25 ± 2 °C

P0.0 LTM200KT12

12. Nov. 2013

- (2) Temperature and relative humidity range are shown in the figure below.
 - a. 90 % RH Max. (Ta \leq 39 °C)
 - b. Maximum wet-bulb temperature at 39 °C or less. (Ta \leq 39 °C)
 - c. No condensation.
- (3) The maximum operating temperature of LCD module is defined with surface temperature of active area. Under any conditions, the maximum ambient operating temperature must keep keeping the surface of active area not higher than 65 °C

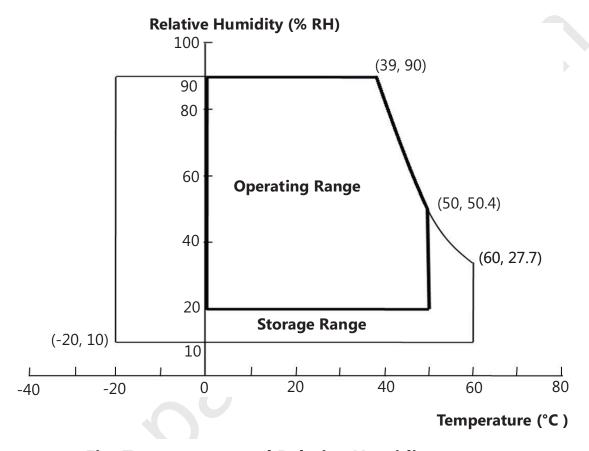


Fig. Temperature and Relative Humidity range

P0.0 LTM200KT12

12. Nov. 2013

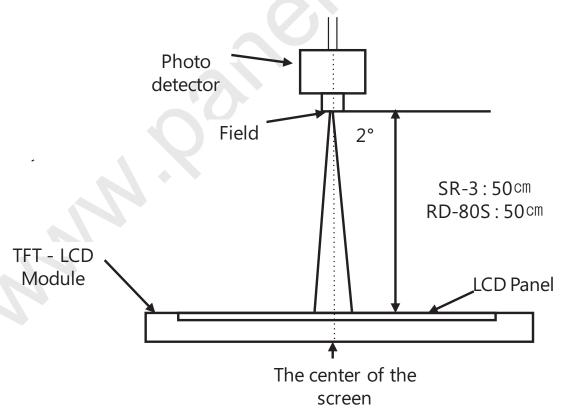
3. Optical Characteristics

The optical characteristics must be measured in a dark room or equivalent. Measuring equipment: SR-3, RD-80S (TOPCON), EZ-Contrast (Eldim)

 $(Ta = 25 + 2^{\circ}C \text{ VDD}=5V \text{ fv}= 60\text{Hz f} = 59.2\text{MHz if} = 360\text{mA})$

	($1a = 25 \pm 1$	2°C, VDD:	=5V, tv=	60Hz, †	DCLK = 59.2	MHz, It =	360mA)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ra (Center of sci		C/R		600	1000	-	2	(3) SR-3
Response Time	On/Off	Tr + Tf		-	5	10	msec	(5) RD-80S
Luminance of (Center of sci		Y _L		200	250		-	(6) SR-3
Brightness Unit	-	B _{uni}		-		25	%	(4) SR-3
	Red	Rx			0.637			
	Red	Ry	4		0.338			
	-	Gx		- 0.030	0.330			(7),(8)
Color Chromaticity		Gy	Normal		0.633	+0.030		
(CIE 1931)		Bx	$\theta_{L,R} = 0$		0.158			
		Ву	θ _{υ,p} =0 Viewing Angle		0.039			
		Wx			0.313			
	VVIIICE	Wy			0.329			
	Red	Ru'		-	0.441	-		SR-3
	rica	Rv'		-	0.526	-		
Color	Green	Gu'		-	0.133	-		
Chromaticity	Green	Gv'		-	0.573	-		
(CIE 1976)	6) Blue	Bu'		-	0.201	-		
	Did C	Bv'		-	0.111	-		
	White	Wu'		-	0.198	-		
		Wv'		-	0.468	-		

P0.0 LTM200KT12 12. Nov. 2013

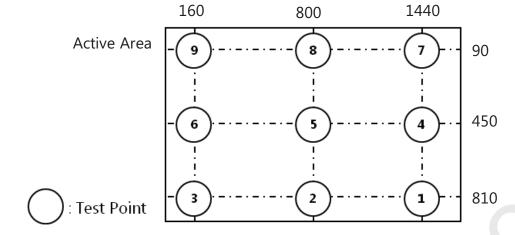


Item	Item			Min.	Тур.	Max.	Unit	Note
Color Gamut		-		-	72	-	%	
Color Temperature		-		-	6500	-	K	
	Hor.	θ	60.10	70	85	-		
Viewing Angle		θ_{R}		70	85	-		(8) EZ-
	Ver.	θ _U	CR≥10	70	80	-	Degrees	Contrast
		$\theta_{\scriptscriptstyle D}$		70	80	-		

Note (1) Test Equipment Setup

The measurement must be executed in a stable, windless and dark room between 30min after lighting the back light at the given temperature for stabilization of the back light. This must be measured in the center of the screen.

LED forward current : If = 360 mA Environment condition : Ta = $25 \pm 2 \,^{\circ}\text{C}$


P0.0 LTM200KT12

12. Nov. 2013

Global LCD Panel Exchange Center

SAMSUNG DISPLAY

(2) Definition of test point

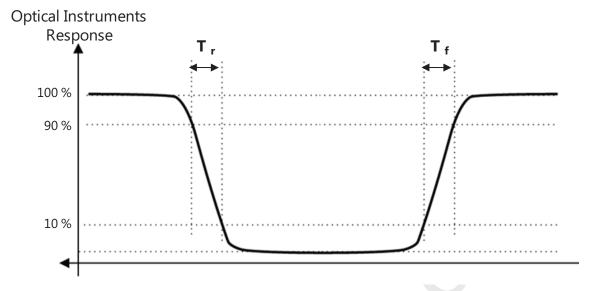
(3) Definition of Contrast Ratio (CR)

: Ratio of gray max (G_{max}) & gray min (G_{min}) at the center point (5) of the panel

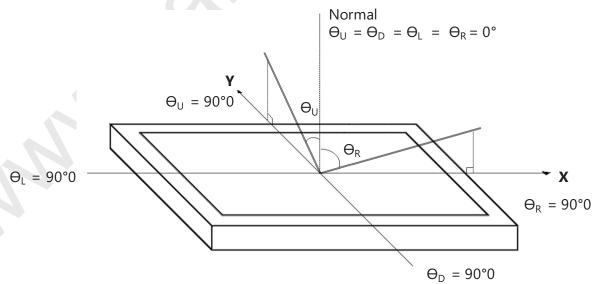
$$CR = \frac{G_{max}}{G_{min}}$$

 G_{max} : Luminance with all white pixels G_{min}: Luminance with all black pixels

(4) Definition of 9 points brightness uniformity


$$B_{uni} = 100 \times \frac{B_{max} - B_{min}}{B_{max}}$$

 B_{max} : Maximum brightness B_{min}: Minimum brightness


Global LCD Panel Exchange Center

SAMSUNG DISPLAY

(5) Definition of Response time: Sum of Tr and Tf

- (6) Definition of Luminance of White: Luminance of white at center point (5)
- (7) Definition of Color Chromaticity (CIE 1931, CIE1976) Color coordinate of Red, Green, Blue & White at center point (5)
- (8) Definition of Viewing Angle : Viewing angle range (CR ≥ 10)

LTM200KT12 **P0.0**

12. Nov. 2013

4. Block Diagram

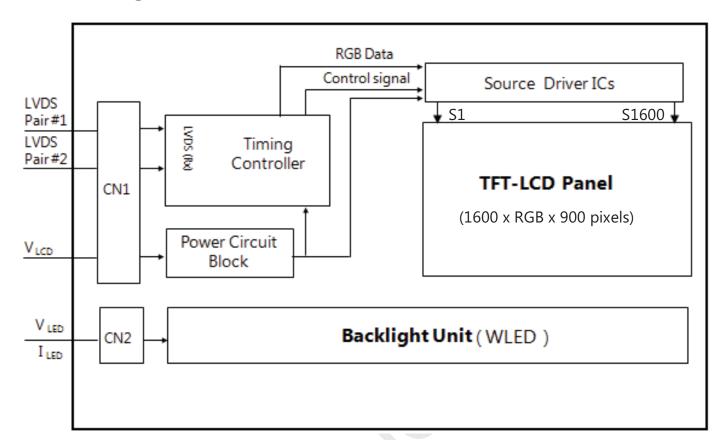


Fig. Function block diagram

Note (1) The connector of display data & timing signal must be connected

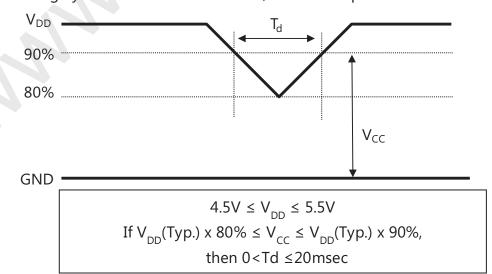
P0.0 LTM200KT12

12. Nov. 2013

SAMSUNG DISPLAY

5. Electrical Characteristics

5.1 TFT LCD Module


The connector of display data & timing signal must be connected.

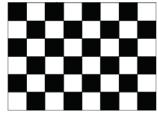
 $Ta=25 \pm 2$ °C

	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
Voltage of	V _{DD}	4.5	5.0	5.5	V	(1)		
		V _{cc}	4.0	-	V _{DD}	V	(2)	
Power D	T _d	0	-	20	msec	(2)		
	(a) White		-	300	-	mA		
Current of Power	(b) Black	$I_{_{ m DD}}$	-	300		mA	(3),(4)	
Supply	(c) Mosaic	DD D	-	300	_	mA	- (3),(4)	
	(d) Dot		-	700	770	mA		
Power C	P _{LCD}		1.5	-	Watt	(4),(5)		
Rusł	I _{RUSH}) -	-	5.0	А	(6)		

Note (1) The ripple voltage should be controlled under 10% of $V_{\rm DD}$

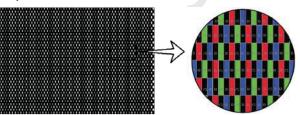
- (2) Definition of V_{DD} Power Dip
 - The chart of conditions shown above conditions are for the glitch of the input voltage.
 - It is highly crucial to follow the chart, for stable operation of an LCD module power.

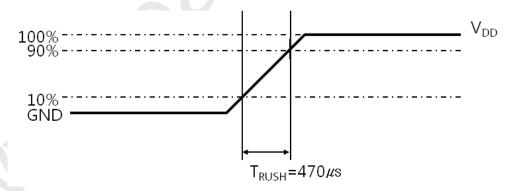
P0.0 LTM200KT12


12. Nov. 2013

SAMSUNG DISPLAY

- (3) $f_V = 60$ Hz, $f_{DCLK} = 59.2$ MHz, $V_{DD} = 5.0$ V, DC Current.
- (4) Power dissipation check pattern (LCD Module only)
 - a) White Pattern


c)Mosaic Pattern


b) Black Pattern

d) Dot Pattern

- (5) The power consumption is specified whereas Mosaic pattern is displayed at $f_V = 60$ Hz, $f_{DCLK} = 59.2$ MHz, $V_{DD} = 5.0$ V
- (6) Measurement Condition

Rush Current I_{RUSH} can be measured when T_{RUSH} . is 470 μ s

P0.0 LTM200KT12

12. Nov. 2013

5.2 Backlight Unit

The characteristics of LED bar

 $Ta=25 \pm 2^{\circ}C$.

Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED Forward Current	I _F	-	360	375	mA	(1),(2)
LED Array Voltage	V _P	-	27.45	29.70	V	(1)
Power Consumption	P _{BLU}	-	9.882	-	Watt	(3)
Operating Life Time	Hr	40,000	-		Hour	(4)

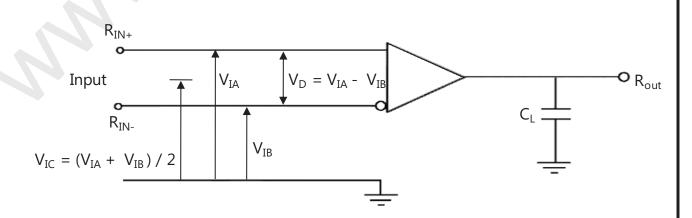
Note (1) The specifications shown above are not for the converter output, but for the LED bar.

- The LED bar consists of 27 LED packages; 3 parallel X 9 serial
- LED current is defined at 100% duty ratio of LED driver
- (2) The LED Forward current for single LED channel is Typ.120mA
 - The output current of converter in the system must be transmitted to the LED bar constantly.
 - It is recommended to control the returned signal respectively for even distribution of current to each channel of LED bar
- (3) The power consumption is specified at typical current 360mA with 100% duty ratio
 - It does not include power loss of external LED driver circuit block
 - Typical power consumption $P_{BLU} = I_F$ (Typ.) x V_P (Typ.)
- (4) Life time(Hr) is defined as the time when brightness of a LED package itself becomes 50% or less than its original value at the condition of Ta=25 \pm 2°C and I_F = 360mA.

P0.0

LTM200KT12

12. Nov. 2013

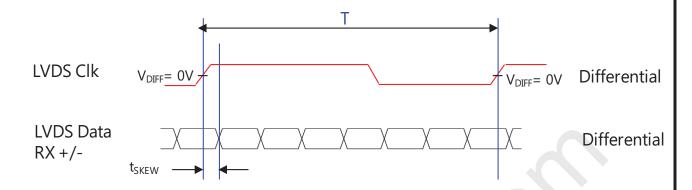

5.3 LVDS Characteristics

5.3.1. LVDS Input Characteristics

 $Ta=25 \pm 2$ °C

Item	Symbol	Min.	Тур.	Max.	Unit	Note	
Differential Input Voltage for LVDS	High	-	-	+100	mV	(1)	
receiver threshold	Low	-100	-	-	mV	(1)	
LVDS skew	t _{SKEW}	-300	-	300	ps	(2)	
Differential input voltage	IV _{id} I	100	-	600	mV	(3)	
Input voltage range(single ended)	V _{in}	0.0		1.7	V	(3)	
Common mode voltage	V _{cm}	1.0	1.2	1.4	V	(3)	

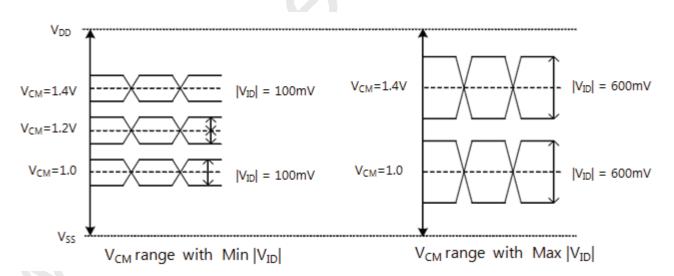
- Note (1) Differential receiver voltage definitions and propagation delay and transition time test circuit
 - a. All input pulses have frequency of 10MHz, t_R or t_F =1ns
 - b. C, includes all probe and fixture capacitance



P0.0 LTM200KT12

12. Nov. 2013

(2) LVDS Receiver DC parameters are measured under static and steady conditions which may not be reflective of its performance in the end application.

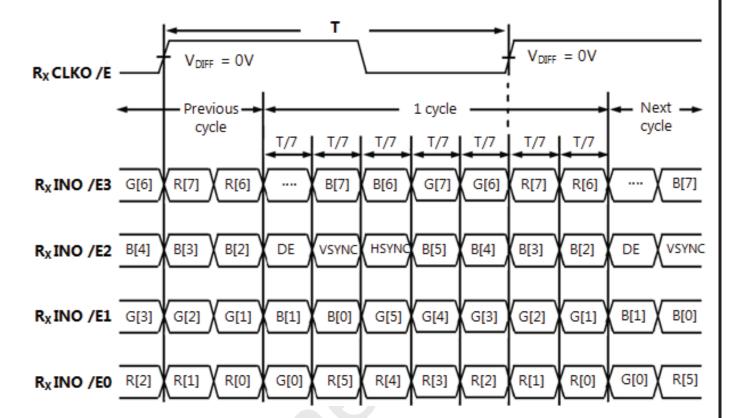


where $t_{\text{SKEW}}\;\;$: skew between LVDS clock & LVDS data,

T : 1 period time of LVDS clock

cf. (-/+) of 300psec means LVDS data goes before or after LVDS clock

(3) Definition of V_{ID} and $V_{\text{CM}}\,$ using single-end signals


P0.0 LTM200KT12

12. Nov. 2013

5.3.2. LVDS Data Format

Timing Diagrams of LVDS For Transmitting
- LVDS Receiver : Integrated T-CON

P0.0 LTM200KT12

12. Nov. 2013

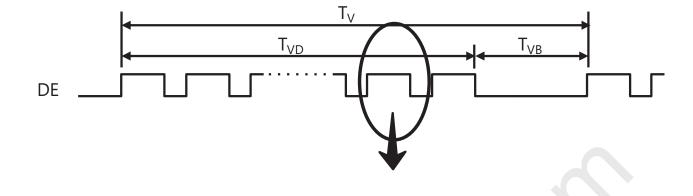
5.4 Interface Timing Specification

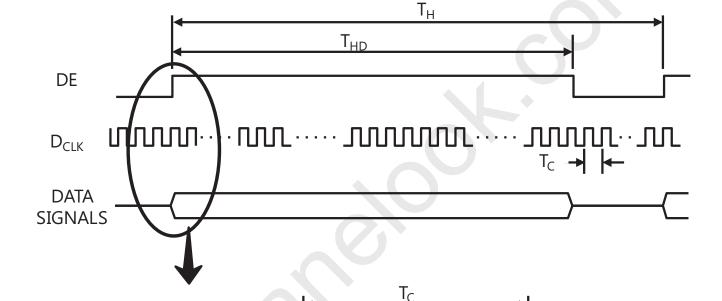
5.4.1. Timing Parameters

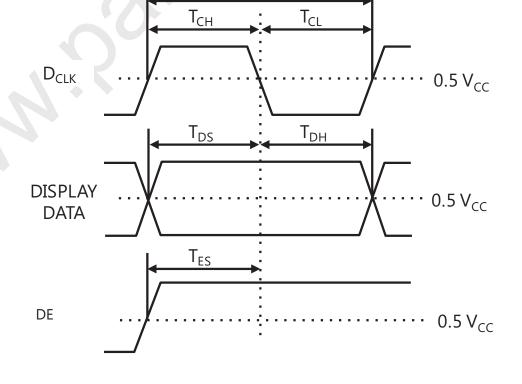
SIGNAL	ITEM	SYMBOL	Min.	Тур.	Max.	Unit	Note
Clock		1/T _C	48.5	59.2	76.1	MHz	-
Hsync	Frequency	F _H	46.3	56.0	70.4	kHz	-
Vsync		F _V	50	60	75	Hz	-
Vertical Display Term	Active Display Period	T _{VD}	900	900	900	Lines	-
	Vertical Total	T _V	906	934	955	Lines	-
Horizontal Display Term	Active Display Period	T _{HD}	800	800	800	Clocks	2pixel/clock
	Horizontal Total	T _H	950	1056	1150	clocks	2pixel/clock

Note (1) DE only mode

- While operation, DE signal must have the same cycle.
- (2) Best operation clock frequency is 59.2MHz(60Hz)
- (3) Max, Min variation range is at main clock typical value (59.2MHz)
- (4) Main frequency Max is 76.1MHz without spread spectrum




LTM200KT12 12. Nov. 2013



SAMSUNG DISPLAY

5.4.2. Timing diagrams of interface signal (DE only mode)

SAMSUNG

P0.0 LTM200KT12

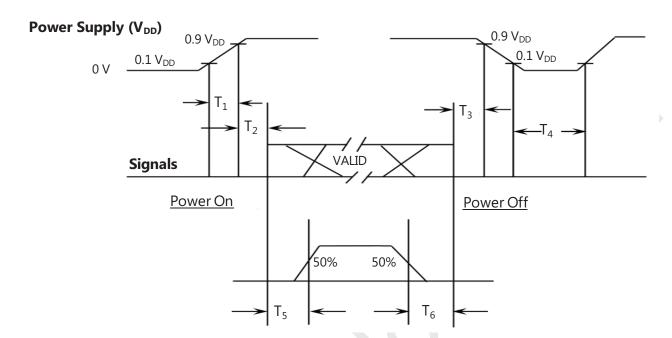
12. Nov. 2013

5.5 Input Signals, Basic Display Colors and Gray Scale of Each Color

												DA	TA S	IGNA	AL.											GRAY
COLOR	DISPLAY (8bit)				RE	D							GRE	EEN							BL	UE				SCALE
	(52.9)	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	В1	B2	В3	B4	B5	В6	В7	LEVEL
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
BASIC	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
COLOR	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
l	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
1	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
	DARK	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
GRAY SCALE	1																									
OF	,	:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			
RED	↓ LIGHT	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R253
		0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R254
	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1
	DARK	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G2
GRAY SCALE	1																									
OF GREEN		:	:	:	:					:	:	:	:	:	:			:	:	:	:	:	:			
	↓ LIGHT	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G253
		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G254
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ВО
	32.0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	B1
	DARK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	B2
GRAY	1			_			_							_	_											
SCALĒ OF BLUE		:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			
OF BLUE	↓ LIGHT	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	B253
	поп	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	B253 B254
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B254 B255
	DLUE	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	1	1		1	Т	Τ.		ענשט

Note (1) Definition of Gray

Rn: Red Gray, Gn: Green Gray, Bn: Blue Gray (n = Gray level)
 Input Signal: 0 = Low level voltage, 1 = High level voltage



P0.0 LTM200KT12 12. Nov. 2013 21/35

5.6 Power ON/OFF Sequence

To prevent a latch-up or DC operation of the LCD Module, the power on/off sequence must be as the diagram below.

SYMBOL	Min.	Тур.	Max.	Unit	Description
T ₁	0.5	-	10	ms	V _{DD} rising time from 10% to 90%
T ₂	0.01	-	50	ms	The time from V_{DD} to valid data at power ON
T ₃	0.01	-	50	ms	The time from valid data off to $V_{\rm DD}$ off at power Off
T ₄	1	-	-	S	V _{DD} off time for Windows restart
T ₅	500	-	-	ms	The time from valid data to B/L enable at power ON
T ₆	100		-	ms	The time from valid data off to B/L disable at power Off

- Note (1) The supply voltage of the external system of the Module input must be the same as the definition of VDD.
 - (2) Apply the BLU power within the LCD operation range. When the back light is turned on before the LCD operation or the LCD turns off before the back light is turned off, the display may momentarily show abnormal screen.
 - (3) In case of V_{DD} = off level, please keep the level of input signals low or keep a high impedance.
 - (4) T4 has to be measured after the Module has been fully discharged between the period of power off and on.
 - (5) Interface signal must not be kept at high impedance when the power is on.

5.7 Input Terminal Pin Assignment

P0.0 LTM200KT12

12. Nov. 2013

5.7.1. Input signal & Power Pin Assignment

Connector: UJU IS100-L30B-C23 or equivalent

Pin No.	Symbol	Function				
1	RXO0N	Negative LVDS differential data output				
2	RXO0P	Positive LVDS differential data output				
3	RXO1N	Negative LVDS differential data output				
4	RXO1P	Positive LVDS differential data output				
5	RXO2N	Negative LVDS differential data output				
6	RXO2P	Positive LVDS differential data output				
7	GND	High speed ground				
8	RXOC-	Negative Sampling Clock (ODD data)				
9	RXOC+	Positive Sampling Clock (ODD data)				
10	RXO3N	Negative LVDS differential data output				
11	RXO3P	Positive LVDS differential data output				
12	RXE0N	Negative LVDS differential data output				
13	RXE0P	Positive LVDS differential data output				
14	GND	High speed ground				
15	RXE1N	Negative LVDS differential data output				
16	RXE1P	Positive LVDS differential data output				
17	GND	High speed ground				
18	RXE2N	Negative LVDS differential data output				
19	RXE2P	Positive LVDS differential data output				
20	RXEC-	Negative Sampling Clock (EVEN data)				
21	RXEC+	Positive Sampling Clock (EVEN data)				
22	RXE3N	Negative LVDS differential data output				
23	RXE3P	Positive LVDS differential data output				
24	GND	LCD logic and driver ground				
25	NC	* Reserved for LCD manufacturer's use (CE_DVR)				
26	NC	* Reserved for LCD manufacturer's use (CTL_DVR)				
27	NC	No Connection				
28	VDD					
29	VDD	Power Supply : +5V				
30	VDD					

P0.0 LTM200KT12

12. Nov. 2013

SAMSUNG DISPLAY

- Note (1) If the system already uses the 25, 26pins, it must be keet under GND level The voltage applied to those pins must not exceed -200mV.
 - (2) Pin number starts from the Left

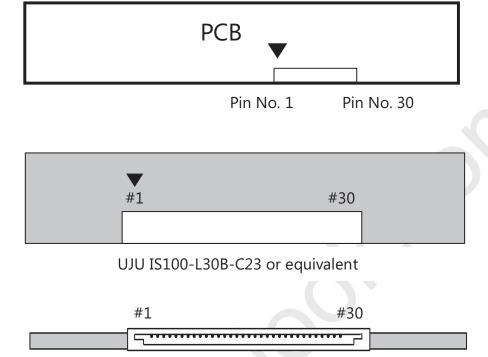


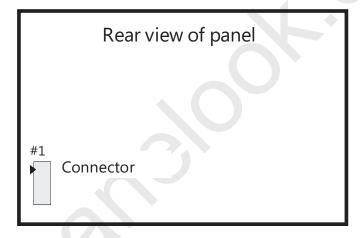
Fig. Connector diagram

- (3) All GND pins must be connected to each other and also be connected to the LCD's metal chassis.
- (4) All power input pins must be connected to each other.
- (5) All NC pins must be separated from other signal or power

5.7.2. LED Connector Pin assignment

LTM200KT12 **P0.0**

12. Nov. 2013



Connector: Molex 104086-0410 or equivalent

- The mating type connector : Molex 104085-0400 or equivalent

Pin No.	Symbol	Function
1	Vin	LED power input
2	RTN 1	Channel 1 LED return
3	RTN 2	Channel 2 LED return
4	RTN 3	Channel 3 LED return

Note (1) Pin number starts from the left

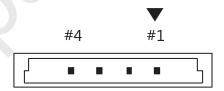
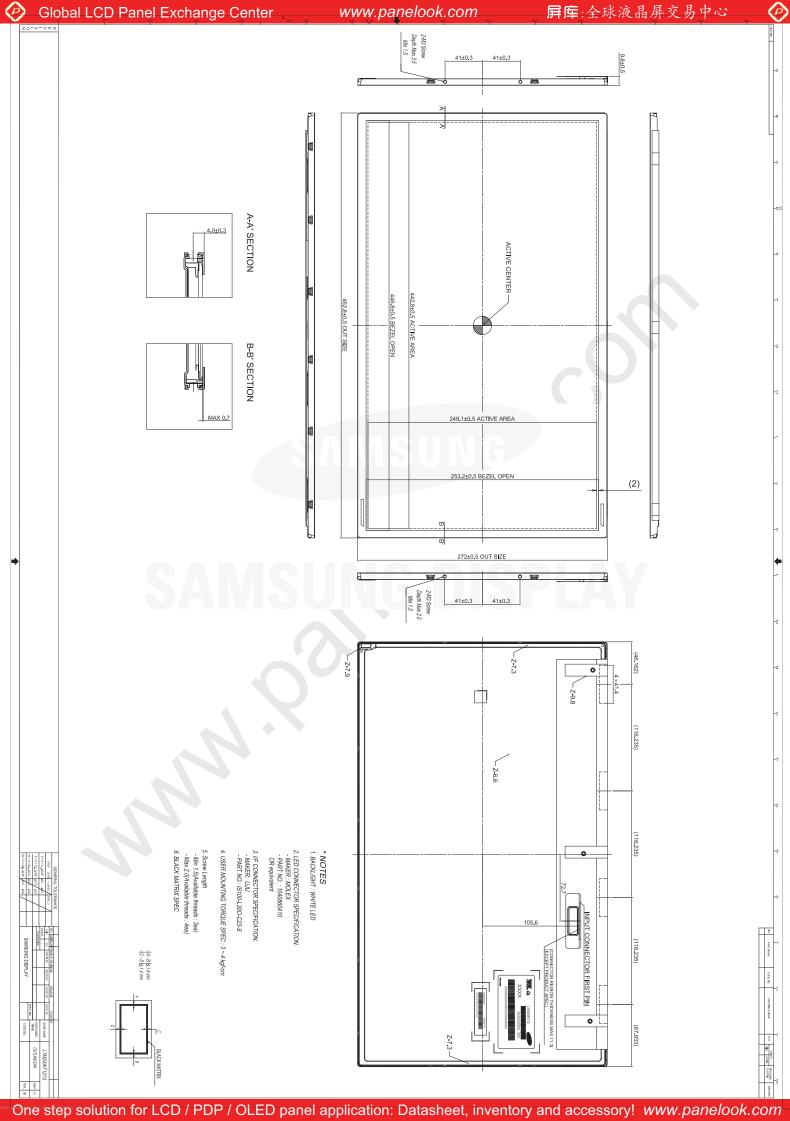


Fig. Connector diagram

P0.0 LTM

LTM200KT12

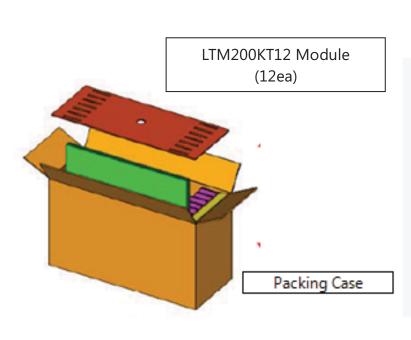
12. Nov. 2013

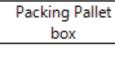

SAMSUNG DISPLAY

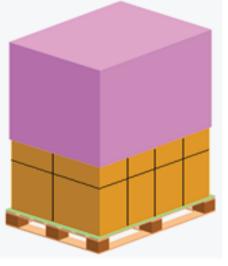
6. Outline Dimension

[Refer to the next page]

P0.0 LTM200KT12 12. Nov. 2013






7. Packing

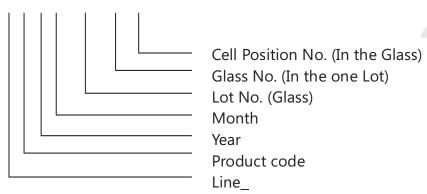
7.1 Carton

Item	Packing form	Specification
Weight	-	- Total Weight (Including Pallet) : Approx. 255Kg
Packing case	12 panels in a case	- Packing Case Size : W263 x L565 x H331 - Material : Paper (SW, DW)
Pallet box	12 cases in a box 144 panels in a box	- Packing Pallet Box Size : W809 x L1150 x H652 - Material : Paper (SW)
Pallet	-	- Pallet Size : W850 x L1150 x H122 - Material : Wood

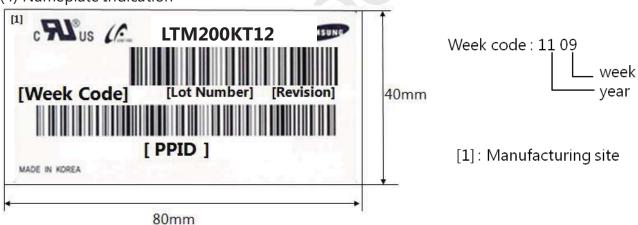
P0.0 LTM200KT12

12. Nov. 2013

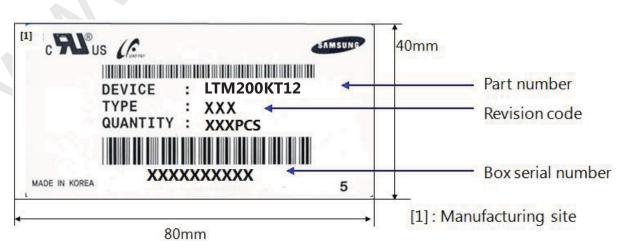
SAMSUNG DISPLAY


7.2 Marking

A nameplate bearing shown below is attached to a shipped product at the specified location


(1) Parts number : LTM200KT12

(2) Revision: Three letters


(3) Lot number: X X X X X XXX XX XX

(4) Nameplate Indication

(5) Packing box attach

P0.0 LTM200KT12

12. Nov. 2013

8. General Precautions

8.1 Handling Precautions

- A. When assembling LCD module into its system, using all the mounting holes is strongly suggested.
- B. Keep LCD module from any external shock or force which can cause physical damage to LCD module. It may cause improper operation or damage to LCD module.
- C. Polarizer films are very fragile. It could be damaged easily. Do not press or scratch the surface harder than a HB pencil lead.
- D. Wipe off water droplets or oil immediately. Water drops or oils can cause permanent stain or discoloration.
- E. To clean LCD module, please use IPA (Isopropyl Alcohol) or Hexane.
- F. Do not use ketone type material (ex. Acetone), ethyl alcohol, toluene, ethyl acid or methyl chloride. Using these could cause permanent polarizer damage to the LCD module.
- G. If the liquid crystal leaks from LCD module, keep it away from human eyes or mouth.

 In case of contact with human body or clothes, it should be washed with soap thoroughly.
- H. Protect LCD module from static discharge.
- I. To keep the LCD module clean, make sure to wear fabric gloves and finger coats when you are inspecting and/or assembling the unit.
- J. Do not disassemble LCD module.

P0.0

- K. Protection film on LCD module display area should be slowly peeled off just before assembly to prevent static discharge.
- L. Pins of the Interface connector should not be touched directly with bare hands.

LTM200KT12

12. Nov. 2013

8.2 Storage Precautions

It is highly recommended to comply with the criteria in the table below

Item	Unit	Min.	Max.							
Storage Temperature	(℃)	5	40							
Storage Humidity	(%rH)	35	75							
Storage life	12 months									
Storage Condition	 The storage room should provide good ventilation and temperature Control Products should not be placed on the floor, but on the Pallet away from a wall Prevent products from direct sunlight, moisture nor water; Be cautious of a build up of condensation. Avoid other hazardous environment while storing goods. If products delivered or kept in conditions of over the storage period of 3 months, the recommended temperature or humidity range, it is recommended to leave them at a temperature of 20 °C and a 									

P0.0

LTM200KT12

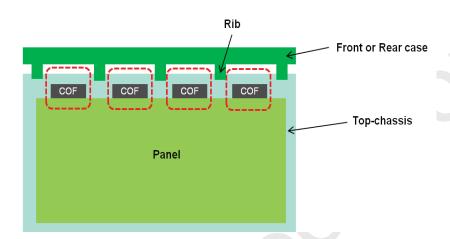
12. Nov. 2013

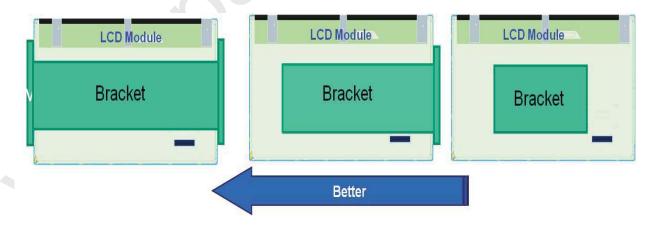
8.3 Operating Precautions

- A. If the module is used to other applications besides the recommendation on General Description, please contact SAMSUNG for application engineering device in advance
- B. Do not connect or disconnect the LCD module when it is set to the "Power On" condition.
- C. Input power should always follow '5.6 Power on/off sequence'
- D. Polarizer films are very fragile. It could be damaged easily. Do not press or scratch the Polarizer films
- E. LCD module contains electrical circuits that operate in high frequencies. To minimize electromagnetic interference, be sure to sufficiently ground and shield the LCD module and system.
- F. If LCD module containing system is out of SAMSUNG 's operating condition, SAMSUNG can not guarantee LCD module operating properly.
- G. If the product will be used in extreme conditions such as high temperature, humidity, display patterns, operation time, etc., it is strongly recommended to contact SAMSUNG for application engineering device. Otherwise, the reliability and function of the module may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stocks, markets, and controlling systems.
- H. Ultra-violet ray filter is necessary for outdoor operation.
- I. If the module keeps displaying the same pattern for a long period of time, the image maybe burned in to the screen. To avoid image retention, it is recommended to use a screen saver.
- J. This module has its PCB's circuitry on the rear side and should be handled carefully in order to avoid stress.
- K. Please contact SAMSUNG beforehand, if you plan to display the same pattern for a long period of time.
- L. Any foreign materials brought into an LCD module by external forced-airflow are not guaranteed by SAMSUNG .

P0.0

LTM200KT12


12. Nov. 2013

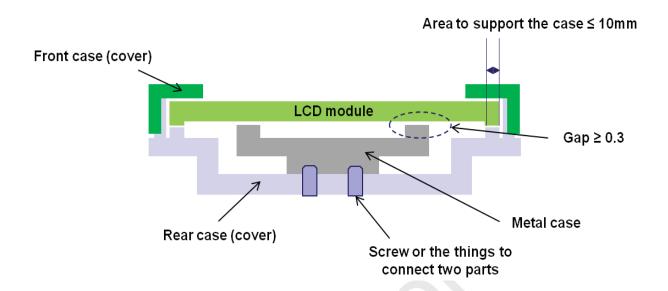

8.4 Design Guide for System

- A. The LED driver should be designed in compliance with the specifications of LED bar strictly to make the LED in LCD module perform as expected.
- B. It is recommended that you locate the rib on the front or rear cover not to be placed on the spot where D-IC is located on the upper or left of LCD module

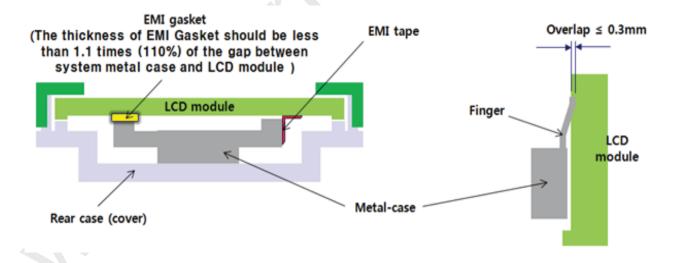
 (See '6. Outline Dimension' for the exact location of driver ICs)

- C. It is recommended that assemble the bracket which has two sides with holes for assembly.
- D. It is recommended that you design the bracket with the structure which covers the sides of module when designing the bracket for customer.
- E. It is recommended that you design the bracket not to be interfered with the SET at the area where the PBA of module is located.

- F. D. It is recommended that more than 0.3 mm is allowable as a gap between the metal case and the rear of module
- G. It is recommended that structure to support the module shall be far away 10mm from the edge of border.



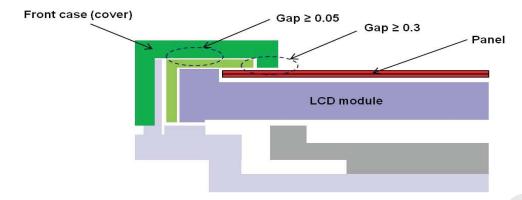
P0.0 LTM200KT12


12. Nov. 2013

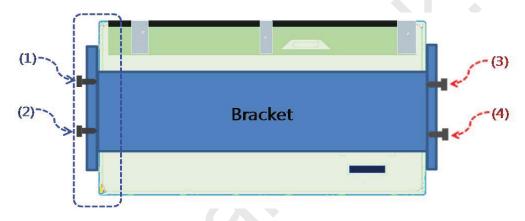
H. It is recommended that metal case (or board) shall be affixed to the rear case at the spot where is far away 10mm from the edge of border.

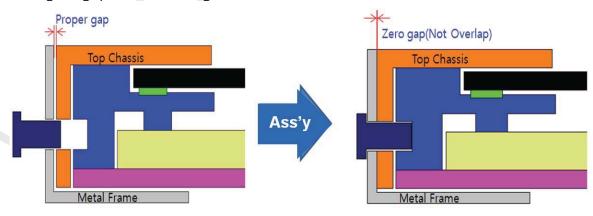
- I. When applying the measures described below to reduce the level of EMI which occurs between the metal cover and the rear of module.
- J. If you use Finger, less than 0.3mm is allowable for overlap.

K. It is recommended that more than 0.3mm gap between the front case (or cover) and the panel glass is allowable.



P0.0 LTM200KT12


12. Nov. 2013


L. It is recommended that more than 0.05mm gap between the front case and the top chassis is allowable.

M. It is recommended that insert the screws into user holes from the ones on the parts, which the light comes out to ones in the corresponding parts.

N. It is recommended that design the metal frame and the top chassis to be in parallel with having no gap after inserting the side screw.

P0.0 LTM200KT12

12. Nov. 2013