

LSU425 HIGH INPUT IMPEDANCE MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix U425

The LSU425 is a high input impedance Monolithic Dual N-Channel JFET

The LSU425 monolithic dual n-channel JFET is designed to provide very high input impedance for differential amplification and impedance matching. Among its many unique features, this series offers operating gate current specified at -500 fA. The LSU425 is a direct replacement for discontinued Siliconix U425.

The hermetically sealed TO-71 & TO-78 packages are well suited for military applications. The 8 Pin P-DIP and 8 Pin SOIC provide ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

LSU425 Applications:

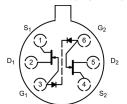
- Ultra Low Input Current Differential Amps
- High-Speed Comparators
- Impedance Converters

FEATURES							
HIGH INPUT	I _G = 0.25pA MAX						
HIGH GAIN			gfs = 120μmho MIN				
LOW POWER	LOW POWER OPERATION V _{GS(OFF)} = 2V MAX						
ABSOLUTE N	ЛАХІМ	IM RATINGS					
@ 25°C (unle	ess othe	rwise noted)					
Maximum T	empera	tures					
	Storage Temperature -65°C to +150°C					C to +150°C	
Operating Junction Temperature +150°C)°C <		
Maximum V	oltage a	nd Current for Each	Transistor	- No	ote 1	3	
-V _{GSS}	Gate Voltage to Drain or Source 40V						
-V _{DSO}	Drain to Source Voltage				40V		
-I _{G(f)} Gate Forward Current					10mA		
Maximum Power Dissipation							
Device Dissipation @ Free Air – Total 400mW @ +125°C							
MATCHING CHARACTERISTICS @ 25°C UNLESS OTHERWISE NOTED							
SYMBOL		CHARACTERISTICS	VALUE	UN	ITS	CONDITIONS	
$ \Delta V_{GS1-2}/\Delta T $ max.		DRIFT VS.	25	μV	/°C	V_{DG} =10V, I_{D} =30 μ A	
		TEMPERATURE				T _A =-55°C to +125°C	
V _{GS1-2} max.		OFFSET VOLTAGE	15	n	ı۷	$V_{DG} = 10V, I_{D} = 30 \mu A$	

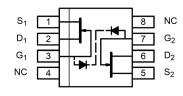
			<u> </u>
FLECTRICAL	CHARACTERISTICS (0.25°C funless	otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{GSS}	Breakdown Voltage	40	60		V	$V_{DS} = 0$ $I_G = 1nA$
BV _{GGO}	Gate-To-Gate Breakdown	40			V	$I_{G} = 1\mu A$ $I_{D} = 0$ $I_{S} = 0$
Y _{fSS}	TRANSCONDUCTANCE Full Conduction	300		1500	μmho	$V_{DS} = 10V$ $V_{GS} = 0V$ $f = 1kHz$
Y _{fS}	Typica <mark>l O</mark> per <mark>at</mark> ion	120	200	350	μmho	$V_{DG} = 10V$ $I_D = 30\mu A$ $f = 1kHz$
I _{DSS}	DRAIN CURRENT Full-Conduction	60		1000	μΑ	V _{DS} = 10V V _{GS} = 0V
	GATE VOLTAGE					
$V_{GS(off)}$	Pinchoff voltage			2.0	V	$V_{DS} = 10V$ $I_D = 1nA$
V_{GS}	Operating Range			1.8	V	$V_{DG} = 10V$ $I_D = 30\mu A$
	GATE CURRENT					
I _G max.	Operating			.25	pA	$V_{DG} = 10V$ $I_{D} = 30\mu A$
-I _G max.	High Temperature			250	pА	T _A = +125°C
I _{GSS} max.	At Full Conduction			1.0	рА	$V_{DS} = 0V$ $V_{GS} = 20V$
-I _{GSS} max.	High Temperature			1.0	nA	T _A = +125°C
	OUTPUT CONDUCTANCE					
Y _{OSS}	Full Conduction			10	μmho	$V_{DS} = 10V$ $V_{GS} = 0V$
Y _{OS}	Operating		0.1	3.0	μmho	$V_{DG} = 10V$ $I_{D} = 30\mu A$
	COMMON MODE REJECTION					
CMR	-20 log ΔV _{GS1-2} / ΔV _{DS}		90		dB	$\Delta V_{DS} = 10 \text{ to } 20V \qquad I_{D} = 30 \mu A$
	-20 log ΔV _{GS1-2} / ΔV _{DS}		90		dB	$\Delta V_{DS} = 5 \text{ to } 10V$ $I_D = 30 \mu A$
	<u>NOISE</u>					$V_{DG} = 10V$ $I_{D} = 30\mu A$ $R_{G} = 10M\Omega$
NF	Figure			1	dB	f = 10Hz
e _n	Voltage		20	70	nV/√Hz	$V_{DG} = 10V$ $I_{D} = 30\mu A$ $f = 10Hz$
			10			$V_{DG} = 10V I_{D} = 30\mu A f = 1KHz$
	<u>CAPACITANCE</u>					
C _{ISS}	Input			3.0	pF	V_{DS} = 10V V_{GS} = 0 f = 1MHz
C _{RSS}	Reverse Transfer			1.5	pF	

Note 1 – These ratings are limiting values above which the serviceability of any semiconductor may be impaired


Available Packages:

LSU425 in TO-71 & TO-78 LSU425 in PDIP & SOIC LSU425 available as bare die


Please contact Micross for full package and die dimensions

Email: chipcomponents@micross.com

TO-71 / TO-78 (Top View)

P-DIP / SOIC (Top View)

