

LSU423 HIGH INPUT IMPEDANCE MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix U423

The LSU423 is a high input impedance Monolithic Dual N-Channel JFET

The LSU423 monolithic dual n-channel JFET is designed

to provide very high input impedance for differential amplification and impedance matching. Among its many unique features, this series offers operating gate current specified at -250 fA. The LSU423 is a direct replacement for discontinued Siliconix U423.

The hermetically sealed TO-71 & TO-78 packages are well suited for military applications. The 8 Pin P-DIP and 8 Pin SOIC provide ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

LSU423 Applications:

- Ultra Low Input Current Differential Amps
- High-Speed Comparators
- Impedance Converters

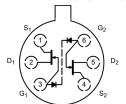
FEATURES				
HIGH INPUT	IMPEDANCE	$I_G = 0.25 pA I$	MAX	
HIGH GAIN		gfs = 120μm	ho MIN	
LOW POWE	R OPERATION	$V_{GS(OFF)} = 2V$	MAX	
ABSOLUTE	MAXIMUM RATINGS			
@ 25°C (unl	less otherwise noted)			
iviaximum	Temperatures			
Storage Ten	nperature		-65°C to +150°C	
Operating Junction Temperature			+150°C	5
Maximum \	oltage and Current for Each	Transistor – N	ote 1	3
-V _{GSS}	Gate Voltage to Drain or So	40V	<	
-V _{DSO}	Drain to Source Voltage		40V	
-I _{G(f)}	Gate Forward Current	10mA		
Maximum I	Power Dissipation	•		
Device Dissi	nation @ Free Air – Total	400mW (@ +125°C	2

Maximum Power Dissipation										
Device Dissipation @	Free Air – Total	400mW @ +125°C								
MATCHING CHARACTERISTICS @ 25°C UNLESS OTHERWISE NOTED										
SYMBOL	CHARACTERISTICS	VALUE	UNITS	CONDITIONS						
$ \Delta V_{GS1-2}/\Delta T $ max.	DRIFT VS.	40	μV/°C	V _{DG} =10V, I _D =30μA						
	TEMPERATURE			T _A =-55°C to +125°C						
V _{GS1-2} max.	OFFSET VOLTAGE	25	mV	V_{DG} =10V, I_{D} =30 μ A						

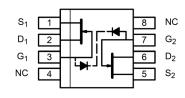
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS	
BV _{GSS}	Breakdown Voltage	40	60		V	$V_{DS} = 0$ $I_G = 1nA$	
BV _{GGO}	Gate-To-Gate Breakdown	40			V	$I_{G} = 1\mu A$ $I_{D} = 0$ $I_{S} = 0$	
Y _{fSS}	TRANSCONDUCTANCE Full Conduction	300		1500	μmho	$V_{DS} = 10V$ $V_{GS} = 0V$ $f = 1kHz$	
Y _{fS}	Typica <mark>l Operat</mark> ion	120	200	350	μmho	$V_{DG} = 10V$ $I_D = 30\mu A$ $f = 1kHz$	
I _{DSS}	DRAIN CURRENT Full-Conduction	60		1000	μΑ	V _{DS} = 10V V _{GS} = 0V	
	GATE VOLTAGE						
$V_{GS(off)}$	Pinchoff voltage			2.0	V	$V_{DS} = 10V$ $I_D = 1nA$	
V_{GS}	Operating Range			1.8	V	$V_{DG} = 10V$ $I_D = 30\mu A$	
	GATE CURRENT						
I _G max.	Operating			.25	pA	$V_{DG} = 10V$ $I_{D} = 30\mu A$	
-I _G max.	High Temperature			250	pA	T _A = +125°C	
I _{GSS} max.	At Full Conduction			1.0	рА	$V_{DS} = 0V$ $V_{GS} = 20V$	
-I _{GSS} max.	High Temperature			1.0	nA	T _A = +125°C	
	OUTPUT CONDUCTANCE						
Y _{OSS}	Full Conduction			10	μmho	$V_{DS} = 10V$ $V_{GS} = 0V$	
Y _{OS}	Operating		0.1	3.0	μmho	$V_{DG} = 10V$ $I_{D} = 30\mu A$	
	COMMON MODE REJECTION						
CMR	-20 log ΔV _{GS1-2} / ΔV _{DS}		90		dB	$\Delta V_{DS} = 10 \text{ to } 20V \qquad I_{D} = 30 \mu A$	
	-20 log ΔV _{GS1-2} / ΔV _{DS}		90		dB	$\Delta V_{DS} = 5 \text{ to } 10V$ $I_D = 30 \mu A$	
	<u>NOISE</u>					$V_{DG} = 10V$ $I_{D} = 30\mu A$ $R_{G} = 10M\Omega$	
NF	Figure			1	dB	f = 10Hz	
e _n	Voltage		20	70	nV/√Hz	$V_{DG} = 10V$ $I_{D} = 30\mu A$ $f = 10Hz$	
			10			$V_{DG} = 10V I_{D} = 30\mu A f = 1KHz$	
	<u>CAPACITANCE</u>						
C _{ISS}	Input			3.0	pF	V_{DS} = 10V V_{GS} = 0 f = 1MHz	
C _{RSS}	Reverse Transfer			1.5	pF		

Note 1 – These ratings are limiting values above which the serviceability of any semiconductor may be impaired


Available Packages:

LSU423 in TO-71 & TO-78 LSU423 in PDIP & SOIC LSU423 available as bare die


Please contact Micross for full package and die dimensions

Email: chipcomponents@micross.com

TO-71 / TO-78 (Top View)

P-DIP / SOIC (Top View)

