

LSU401 LOW NOISE, LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix U401 with LSU401

The U401/ LSU401 is a Low Noise, Low Drift, Monolithic Dual N-Channel JFET

The LSU401 is a high-performance monolithic dual JFET featuring extremely low noise, tight offset voltage and low drift over temperature specifications, and is targeted for use in a wide range of precision instrumentation applications. The LSU401 features a 5-mV offset and $10-\mu V/^{\circ}C$ drift. The LSU401 is a direct replacement for discontinued Siliconix U401.

The hermetically sealed TO-71 & TO-78 packages are well suited for military applications.

(See Packaging Information).

U401 / LSU401 Applications:

- Wideband Differential Amps
- High-Speed, Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors

FEATURES								
LOW DRIFT		$ V_{GS1-2}/T = 10\mu V/^{\circ}C$ TYP.						
LOW NOIS		$e_n = 6nV/Hz @ 10Hz TYP.$						
LOW PINCE	HOFF	V _p = 2.5V TYP.						
ABSOLUTE MAXIMUM RATINGS								
@ 25°C (unless otherwise noted)								
Maximum Temperatures								
Storage Te	mperature	-65°C to +150°C						
Operating	lunction Temperature		+150°C					
Maximum Voltage and Current for Each Transistor – Note 1								
-V _{GSS}	Gate Voltage to Drain or So	50V						
-V _{DSO}	Drain to Source Voltage	50V						
-I _{G(f)}	Gate Forward Current	10mA						
Maximum Power Dissipation								
Device Dissipation @ Free Air – Total 300mW								

MATCHING CHARACTERISTICS @ 25°C UNLESS OTHERWISE NOTED								
SYMBOL	CHARACTERISTICS	VALUE	UNITS	CONDITIONS				
V _{GS1-2} / T max.	DRIFT VS.	10	μV/°C	V_{DG} =10V, I_{D} =200 μ A				
	TEMPERATURE			T _A =-55°C to +125°C				
V _{GS1-2} max.	OFFSET VOLTAGE	5	mV	V_{DG} =10V, I_{D} =200 μ A				

detectors.					TEMPERATU	KE			I _A =-55°	C to +125°C	
			V _{GS1-2} max.		OFFSET VOLTAGE		5	mV	V _{DG} =10	V_{DG} =10V, I_{D} =200 μ A	
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)											
SYMBOL	CHARACTERISTICS	RISTICS MIN. TYP. MAX. UNITS			CONDITIONS						
BV_{GSS}	Breakdown Voltage	50	60		٧		$V_{DS} = 0$ $I_D = 1nA$		1nA		
BV _{GGO}	Gate-To-G <mark>at</mark> e Breakdown	±50		-	V		I _G = 1	nA	$I_D = 0$	$I_S = 0$	
	TRANSCONDUCTANCE							7	T 7	•	
Y _{fSS}	Full C <mark>o</mark> nduc <mark>ti</mark> on	2000		7000	μmho		V _{DG} =	10V	V _{GS} = 0V	f = 1kHz	
Y_{fs}	Typica <mark>l Operat</mark> ion	1000		2000	μmho		V _{DG} = :	15V I	$_{D} = 200 \mu A$	f = 1kHz	

D V GSS	breakuowii voitage	30	5		V	VDS - O ID-IIIA
BV _{GGO}	Gate- <mark>T</mark> o-G <mark>at</mark> e Breakdown	±50	-1-	-	V	$I_G = 1$ nA $I_D = 0$ $I_S = 0$
Y _{fSS}	TRANSCONDUCTANCE Full Conduction	2000		7000	μmho	V _{DG} = 10V
Y _{fS}	Typica <mark>l O</mark> per <mark>at</mark> ion	1000		2000	μmho	$V_{DG} = 15V$ $I_{D} = 200 \mu A$ $f = 1kHz$
$ Y_{FS1-2}/Y_{FS} $	Mismatch		0.6	3	%	
	DRAIN CURRENT					
I _{DSS}	Full Conduction	0.5		10	mA	$V_{DG} = 10V$ $V_{GS} = 0V$
$\left I_{DSS1-2} / I_{DSS} \right $	Mismatch at Full Conduction		1	5	%	
	GATE VOLTAGE					
$V_{GS}(off)$ or V_p	Pinchoff voltage	-0.5		-2.5	V	V_{DS} = 15V I_D = 1nA
V _{GS} (on)	Operating Range			-2.3	V	V _{DS} =15V I _D =200μA
	GATE CURRENT					
-I _G max.	Operating		-4	-15	pA	V _{DG} = 15V I _D = 200μA
-I _G max.	High Temperature			-10	nA	T _A = +125°C
-I _{GSS} max.	At Full Conduction			100	pА	V _{DS} =0
-I _{GSS} max.	High Temperature	5	5	5	pA	$V_{DG} = 15V$ $T_A = +125$ °C
	OUTPUT CONDUCTANCE					
Y _{OSS}	Full Conduction			20	μmho	V_{DG} = 10V V_{GS} = 0V
Yos	Operating		0.2	2	μmho	V _{DG} = 15V I _D = 500μA
	COMMON MODE REJECTION					
CMR	-20 log V _{GS1-2} / V _{DS}	95			dB	$V_{DS} = 10 \text{ to } 20V \qquad I_{D} = 30 \mu A$
	<u>NOISE</u>					V_{DS} = 15V V_{GS} = 0V R_{G} = 10M
NF	Figure			0.5	dB	f= 100Hz NBW= 6Hz
e _n	Voltage		20		nV/√Hz	V _{DS} =15V I _D =200μA f=10Hz NBW=1Hz
	CAPACITANCE					
C _{ISS}	Input			8	pF	V_{DS} = 15V I_D = 200 μ A f = 1MHz
C _{RSS}	Reverse Transfer			1.5	pF	

Note 1 – These ratings are limiting values above which the serviceability of any semiconductor may be impaired

Available Packages:

U401 / LSU401 in TO-71 & TO-78 U401 / LSU401 available as bare die

Please contact Micross for full package and die dimensions

Micross Components Europe

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution