LINEAR INTEGRATED CIRCUIT

HIGH RELIABILITY TRANSISTOR ARRAY

The LS159 is an array of 5 NPN transistors on a common monolithic substrate in an SO-14 (14-lead plastic micropackage). This package is easily mounted on thick and thin film hybrid circuits. Two transistors are internally connected to form a differential amplifier. The transistors of the LS159 are well suited to low noise general purposes and to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete components in conventional circuits; in addition they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The device is also available with a ermetic goldchip (LS8159M) that is particularly suitable for professional and telecom applications, wherever very high MTBF are required. This performance is guaranteed by silicon nitride sealing of chip surface and Ti-Pt-Au metallization, protected with a double passivated layer, providing resistance against contamination, electrolytic corrosion and electromigration.

ABSOLUTE MAXIMUM RATINGS			Total package	
$V_{CBO} \\ V_{CEO} \\ V_{CSS}^{*} \\ V_{EBO} \\ I_{C} \\ P_{tot} \\ T_{stg}, T_{j}$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Collectorsubstrate voltage Emitter-base voltage ($I_C = 0$) Collector current Total power dissipation at $T_{amb} = 25^{\circ}C$ Storage, and junction temperature Soldering dip or wave at 5 s	20 V 15 V 20 V 5 V 50 mA <u>250 mW</u> -55 to 260	- - - 500 mW 150 °C 0 °C	
	11 s	23	5 °C	

*) The collector of each transistor of the LS159 is isolated from the substrate by an integrated diode.

The substrate (pin 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

ORDERING NUMBERS: LS 159M - LS 8159M

MECHANICAL DATA

Dimensions in mm

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th j-amb}	Thermal resistance junction-ambient	max	250	°C/W
-----------------------	-------------------------------------	-----	-----	------

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions	Min.	Тур.	Max.	Unit	Fig.
Ісво	Collector cutoff current (I _E = 0)	V _{CB} = 10V		0.002	40	nA	1
ICEO	Collector cutoff current (I _B = 0)	V _{CE} = 10V		see curve	0.5	μA	2
I _{B1} -I _{B2}	Input offset current	I _C = 1 mA V _{CE} = 3V		0.3	2	μΑ	7
V _{сво}	Collector-base voltage (I _E = 0)	I _C = 10 μA	20	60		V	-
V _{CEO}	Collector-emitter voltage (I _B = 0)	I _C = 1 mA	15	24		V	-
V _{CSS}	Collector-substrate voltage (I _{CSS} = 0)	Ι _C = 10 μΑ	20	60		V	_
V _{CE(sat)}	Collector-emitter saturation voltage	I _C = 10 mA I _B = 1 mA		0.23		V	-

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit	Fig.	
V _{EBO}	Emitter-base voltage (I _C = 0)	Ι _Ε = 10 μΑ		5	7		v		
V _{BE}	Base-emitter voltage	I _E = 1 mA I _E = 10 mA	V _{CE} = 3V V _{CE} = 3V		0.71 0.8		V V	4	
V _{BE1} -V _{BE2}	Input offset voltage								
V _{BE3} -V _{BE4}	Input offset voltage	1 - 1 - 0	V - 2V		0.45	-		4.0	
V _{BE4} -V _{BE5}	Input offset voltage	C-IMA	VCE- 3V		0.45	5	mv	4-0	
V _{BE5} -V _{BE4}	Input offset voltage]							
∆V _{BE} ∆T	Base-emitter voltage temperature coefficient	1 _C = 1 mA	V _{CE} = 3V		-1.9		mV/°C	5	
V _{BE1} -V _{BE2} ∆T	_ Input offset voltage temperature coefficient	I _C = 1 mA	V _{CE} = 3V		1.1		μV/° C	6	
h _{FE}	DC current gain	$I_{C} = 10 \text{ mA}$ $I_{C} = 1 \text{ mA}$ $I_{C} = 10 \mu \text{ A}$	V _{CE} = 3V V _{CE} = 3V V _{CE} = 3V	40	100 100 54		-	3	
f _T	Transition frequency	I _C = 3 mA	V _{CE} = 3V	300	550		MHz	14	
NF	Noise figure	l _C = 100 μA R _g = 1 kΩ	V _{CE} = 3V f = 1 kHz		3.25		dB	8	
h _{ie}	Input impedance				3.5		kΩ		
h _{fe}	Forward current transfer ratio	I _C = 1 mA V _{CE} = 3V f = 1 KHz	I _C = 1 mA	V _{CE} = 3V		110		_	9
h _{re}	Reverse voltage transfer ratio		KHz		1.8x10⁻ ⁴		_	Ū	
h _{oe}	Output admittance				15.6		μS		
Y _{ie}	Input admittance				0.3+j0.04		mS	11	
V _{fe}	Forward transadmittance	I _C = 1 mA V _{CE} = 3V f = 1 MHz	V _{CE} = 3V		31-j1.5		mS	10	
У _{ге}	Reverse transadmittance			see curve		mS	13		
У _{ое}	Output admittance			0.001+j0.03			mS	12	
C _{EBO}	Emitter-base capacitance	I _C = 0	V _{EB} = 3V		0.6		pF	-	
С _{СВО}	Collector-base capacitance	I _E = 0	V _{CB} = 3V		0.58		рF		
C _{CSS}	Collector-substrate capacitance	I _C = 0	V _{CSS} = 3V		2.8		рF	-	

Fig. 1 - Collector cutoff current vs. ambient temperature

Fig. 4 - Input voltage and input offset voltage vs. emitter current

Fig. 7 - Input offset current for matched transistor pair

Fig. 2 - Collector cutoff current vs. ambient temperature

Fig. 5 – Input characteristics for each transistor

Fig. 8 – Noise figure vs. collector current

Fig. 3 - DC current gain

Fig. 6 - Input offset voltage vs. ambient temperature

Fig. 9 - Normalized h parameters vs. collector current

Fig. 13 - Reverse admittance vs. frequency

Fig. 14 - Transition frequency vs. collector current

