

Product Specification

SPECIFICATION FOR APPROVAL

() Final Specification

Title		17.3" HD+ TFT LCD					
BUYER		HP		SUPPLIER	LG Display Co., Ltd.		
MODEL				*MODEL	LP173WD1		
				Suffix	TLD3		

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE
	<u> </u>
1	
Please return 1 copy for yo your signature and comme	ur confirmation with nts.

APPROVED BY	SIGNATURE
K. J. KWON / S.Manager	
REVIEWED BY	
G. J. Han / Manager	
PREPARED BY	
H. M. Yoon / Engineer H. J. Kim / Engineer	
Product Engineering LG Display Co.,	

Ver. 0.0 18. Sep, 2009 1/31

Product Specification

Contents

No	ITEM	Page
	COVER	
	CONTENTS	1
	RECORD OF REVISIONS	2
1	GENERAL DESCRIPTION	3
2	ABSOLUTE MAXIMUM RATINGS	4
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	5
3-2	INTERFACE CONNECTIONS	6
3-3	LVDS SIGNAL TIMING SPECIFICATIONS	8
3-4	SIGNAL TIMING SPECIFICATIONS	10
3-5	SIGNAL TIMING WAVEFORMS	10
3-6	COLOR INPUT DATA REFERNECE	11
3-7	POWER SEQUENCE	12
4	OPTICAL SFECIFICATIONS	12
5	MECHANICAL CHARACTERISTICS	16
6	RELIABLITY	23
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	24
7-2	EMC	24
8	PACKING	
8-1	DESIGNATION OF LOT MARK	25
8-2	PACKING FORM	25
9	PRECAUTIONS	26
А	APPENDIX A. Enhanced Extended Display Identification Data	28

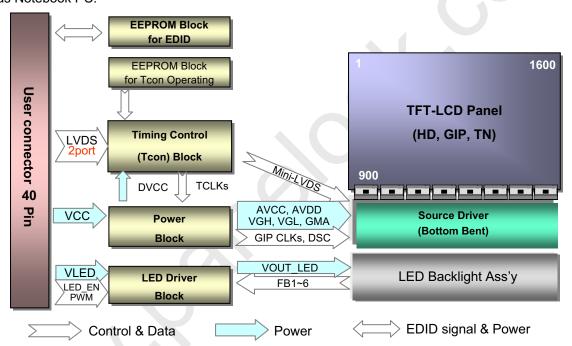
Ver. 0.0 18. Sep, 2009 2/ 31

Product Specification

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	Sep. 18. 2009		First Draft	0.0
[

Ver. 0.0 18. Sep, 2009 3/ 31



Product Specification

1. General Description

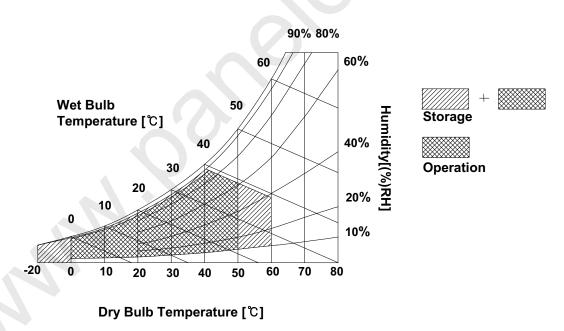
The LP173WD1 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 17.3 inches diagonally measured active display area with WHD+ resolution(1600 horizontal by 900 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors. The LP173WD1 has been designed to apply the interface method that enables low power, high speed, low EMI. The LP173WD1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP173WD1 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	17.3 inches diagonal
Outline Dimension	398.1(H, Typ.) × 232.8(V, Typ.) × 6.0(D, Max.) mm
Pixel Pitch	0.23868 X 0.23868 mm
Pixel Format	1600 horiz. by 900 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	200 cd/m²(Typ., @I _{LED} =21mA)
Power Consumption	Logic : 1.5 W (Typ.@Mosaic), Back Light : 5.0W (Typ.)
Weight	570g (Max.)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Anti-Glare treatment of the front Polarizer
RoHS Comply	Yes
BFR / PVC / As Free	Yes all.

Ver. 0.0 18. Sep, 2009 4/ 31

Product Specification


2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Parameter	Syllibol	Min	Max	Offics		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39°C Max, and no condensation of water.

Ver. 0.0 18. Sep, 2009 5/ 31

Product Specification

3. Electrical Specifications

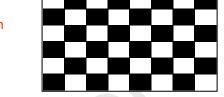
3-1. Electrical Characteristics

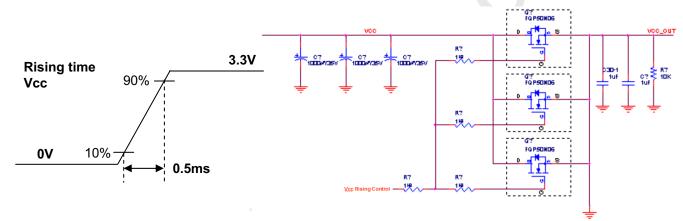
The LP173WD1 requires two power inputs. The first logic is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second backlight is the input about LED BL with LED Driver.

Table 2. ELECTRICAL CHARACTERISTICS

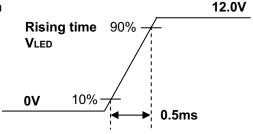
Devemeter		Comple of		Values			Notes
Parameter	Symbol	Min	Тур	Max	Unit		
LOGIC:							
Power Supply Input Voltage		Vcc	3.0	3.3	3.6	V	1
Dower Cumply Input Current	Mosaic	Icc	-	455	515	mA	2
Power Supply Input Current	Black	ICC_max	-	575	660	mA	3
Power Consumption		Pcc	- (1.5	1.7	W	2
Power Supply Inrush Current		Icc_p	-	1200	1800	mA	4
LVDS Impedance		ZLVDS	90	100	110	Ω	5
BACKLIGHT : (with LED Drive	er)						
LED Power Input Voltage		VLED	7.0	12.0	20.0	V	6
LED Power Input Current	ILED	-	21	25	mA	7	
LED Power Consumption		PLED	-	5.0	5.3	W	7
LED Power Inrush Current		ILED_P	-	800	1000	mA	8
PWM Duty Ratio			6	-	100	%	9
PWM Jitter		-	0	-	0.2	%	10
PWM Impedance		Zpwm	20	40	60	kΩ	
PWM Frequency		FPWM	200	-	1000	Hz	11
PWM High Level Voltage		V _{PWM_H}	3.0	-	5.3	V	
PWM Low Level Voltage	V _{PWM_L}	0	-	0.5	V		
LED_EN Impedance		ZPWM	20	40	60	kΩ	
LED_EN High Voltage		VLED_EN _H	3.0	-	5.3	V	
LED_EN Low Voltage		VLED_EN _L	0	-	0.5	V	
Life Time			12,000	-	-	Hrs	12

Ver. 0.0 18. Sep, 2009 6/31




Product Specification

Note)


- 1. The measuring position is the connector of LCM and the test conditions are under 25 ℃, fv = 60Hz, Black pattern.
- 2. The specified Icc current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

- 3. This Spec. is the max load condition for the cable impedance designing.
- 4. The below figures are the measuring Vcc condition and the Vcc control block LGD used. The Vcc condition is same the minimum of T1 at Power on sequence.

- 5. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 6. The measuring position is the connector of LCM and the test conditions are under 25 $^{\circ}$ C.
- 7. The current and power consumption with LED Driver are under the Vled = 12.0V, $25^{\circ}C$, Dimming of Max luminance whereas White pattern is displayed and fv is the frame frequency.
- The below figures are the measuring Vled condition and the Vled control block LGD used.
 VLED control block is same with Vcc control block.

- 9. The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue.
- 10. If Jitter of PWM is bigger than maximum. It may cause flickering.
- 11. This Spec. is not effective at 100% dimming ratio as an exception because it has DC level equivalent to 0Hz. In spite of acceptable range as defined, the PWM Frequency should be fixed and stable for more consistent brightness control at any specific level desired.
- 12 The life time is determined as the time at which the typical brightness of LCD is 50% compare to that of initial value at the typical LED current. These LED backlight has 6 strings on it and the typical current of LED's string is base on 21mA.

Ver. 0.0 18. Sep, 2009 7/ 31

Product Specification

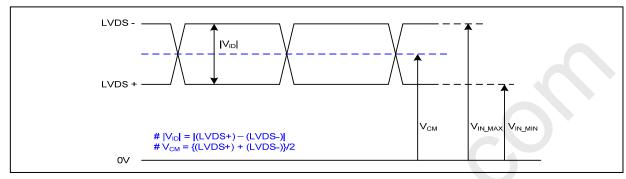
3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

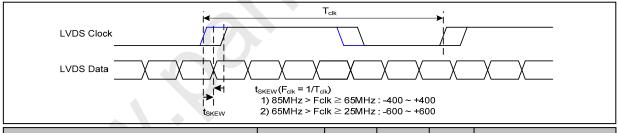
The electronics interface connector is a model CABLINE-VS RECE ASS'Y manufactured by I-PEX.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	NC	No Connection	
2	VCC	Power Supply, 3.3V Typ.	
3	VCC	Power Supply, 3.3V Typ.	
4	V EEDID	DDC 3.3V power	1, Interface chips
5	NC	No Connection	1.1 LCD: SW, SW0617 (LCD Controller) including LVDS Receiver
6	CIK EEDID	DDC Clock	1.2 System : THC63LVDF823A
7	DATA EEDID	DDC Data	or equivalent
8	Odd_R _{IN} 0-	Negative LVDS differential data input	* Pin to Pin compatible with LVDS
9	Odd_R _{IN} 0+	Positive LVDS differential data input	2. Connector
10	GND	Ground	2.1 LCD : CABLINE-VS RECE ASS'Y, I-PEX
11	Odd_R _{IN} 1-	Negative LVDS differential data input	or its compatibles 2.2 Mating: CABLINE-VS PLUG CABLE
12	Odd_R _{IN} 1+	Positive LVDS differential data input	ASS'Y or equivalent.
13	GND	Ground	2.3 Connector pin arrangement
14	Odd_R _{IN} 2-	Negative LVDS differential data input	40
15	Odd_R _{IN} 2+	Positive LVDS differential data input	40 П ПП П
16	GND	Ground	
17	Odd_CLKIN-	Negative LVDS differential clock input	
18	Odd_CLKIN+	Positive LVDS differential clock input	[LCD Module Rear View]
19	GND	Ground	[202
20	Even_R _{IN} 0-	Negative LVDS differential data input (RO-R5,GO)	
21	Even_R _{IN} 0+	Positive LVDS differential data input (RO-R5,GO)	
19	GND	Ground	
23	Even_R _{IN} 1-	Negative LVDS differential data input (G1-G5,B0-B1)	
24	Even_R _{IN} 1+	Positive LVDS differential data input (G1-G5,B0-B1)	
19	GND	Ground	
26	Even_R _{IN} 2-	Negative LVDS differential data input (B2-	
27	Even_R _{IN} 2+	P8s4€iV8,P♥bs differential data input (B2- B5.HS.VS.DE)	
19	GND	Ground	
29	Even_CLKIN-	Negative LVDS differential clock input	
30	Even_CLKIN+	Positive LVDS differential clock input	
31	GND	LED Ground	
32	GND	LED Ground	
33	GND	LED Ground	
34	NC	No Connection	
35	PWM	PWM for luminance control(200Hz ~ 1000Hz)	
36	LED_EN	Backlight On/Off Control	
37	NC	No Connection (Reserved)	
38	VLED	LED Power Supply (7V-21V)	
39	VLED	LED Power Supply (7V-21V)	
40	VLED	LED Power Supply (7V-21V)	



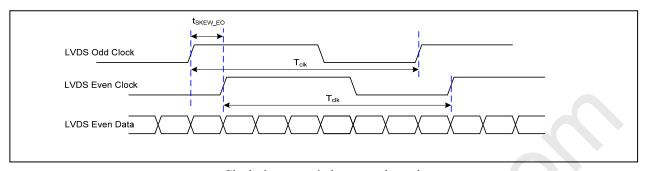
Product Specification


3-3. LVDS Signal Timing Specifications

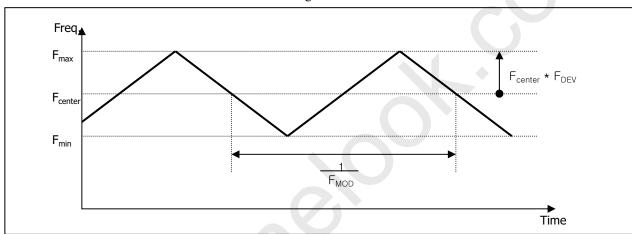
3-3-1. DC Specification

Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	>	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

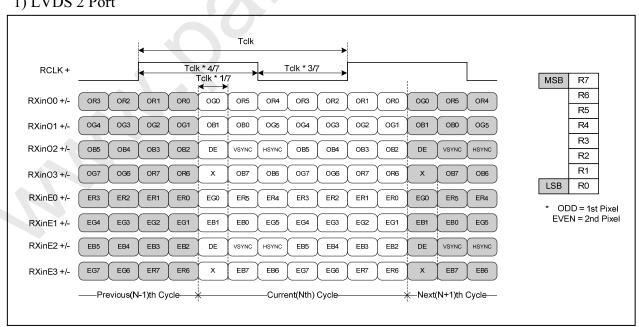
3-3-2. AC Specification


Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{skew}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{skew}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{skew_eo}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

Ver. 0.0 18. Sep, 2009 9/ 31



Product Specification


< Clock skew margin between channel >

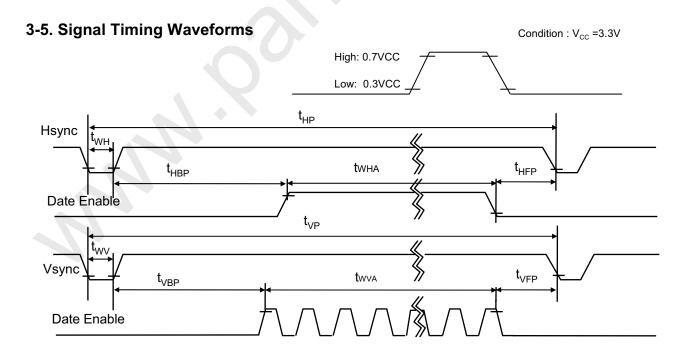
< Spread Spectrum >

3-3-3. Data Format

1) LVDS 2 Port

< LVDS Data Format >

10/31 Ver. 0.0 18. Sep, 2009


Product Specification

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 5. TIMING TABLE

ITEM	Symbol		Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	f _{CLK}	47.375	48.875	50.375	MHz	2 Port
	Period	t _{HP}	868	892	908		
Hsync	Width	t _{wH}	20	24	32	tCLK	2 Port
	Width-Active	t w _{HA}	800	800	800		
	Period	t _{VP}	907	912	926		
Vsync	Width	t _{wv}	2	3	5	tHP	
	Width-Active	tw _{VA}	900	900	900		
	Horizontal back porch	t _{HBP}	32	44	48	+01.14	0. D t
Data	Horizontal front porch	t _{HFP}	16	24	28	tCLK	2 Port
Enable	Vertical back porch	t _{VBP}	4	7	15	+UD	
	Vertical front porch	t _{VFP}	1	2	6	tHP	

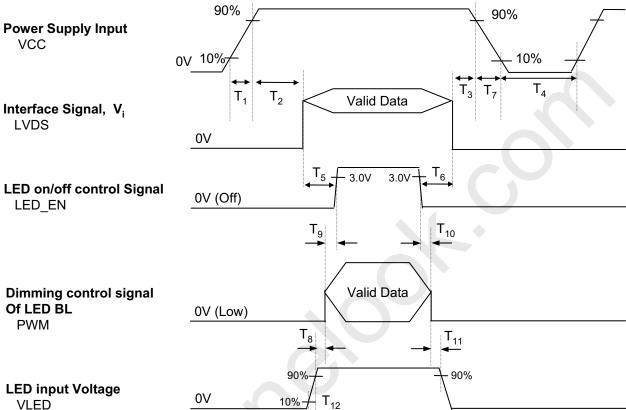
Product Specification

3-6. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

									Inp	out Co	olor D	ata							
	Color			RE	ΕD					GRE	EN					BL	UE		
`	30101	MSE	3				LSB	MSI	3				LSB		3				LSB
		R 5	R 4	R 3	R 2	R 1	R 0	G 5	G 4	G 3	G 2	G 1	G 0	B 5	B 4	В3	B 2	B 1	B 0
	Black	0	0				0	0	0		0	0		0	0	0		0	0
	Red	1	1	1		1	1	0	0	0	0	0	0	0	0	0		0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	. 1		1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN									••••										
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE		ļ			 														
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1


Ver. 0.0 18. Sep, 2009 12/ 31

Product Specification

3-7. Power Sequence

Table 6. POWER SEQUENCE TABLE

Logic		Value		Units	LED		Value		Units
Parameter	Min.	Тур.	Max.	Utilis	Parameter	Min.	Тур.	Max.	Units
T ₁	0.5	-	10	ms	T ₈	10	ı	-	ms
T ₂	0	-	50	ms	T ₉	0	ı	-	ms
T ₃	0	-	50	ms	T ₁₀	0	ı	-	ms
T ₄	400	-	-	ms	T ₁₁	10	ı	-	ms
T ₅	200	1	1	ms	T ₁₂	0.5	ı	-	ms
T ₆	200	1	1	ms					
T ₇	3	-	10	ms					

Note)

- 1. Do not insert the mating cable when system turn on.
- 2. Valid Data have to meet "3-3. LVDS Signal Timing Specifications"
- 3. LVDS, LED_EN and PWM need to pull-down condition on invalid status.
- 4. LGD recommend the rising sequence of VLED after the Vcc and valid status of LVDS turn on.

Ver. 0.0 18. Sep, 2009 13/ 31

Product Specification

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 20 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to Θ .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

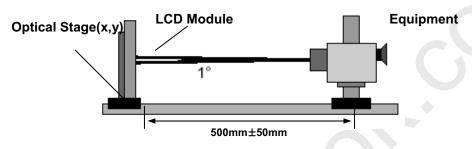


Table 8. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, f_V =60Hz, f_{CLK} = 97.75MHz, ILED =21 mA

_			Values			
Parameter	Symbol	Min	Тур	MAx	Units	Notes
Contrast Ratio	CR	300	400	-		1
Surface Luminance, white	L _{WH}	170	200	-	cd/m ²	2
Luminance Variation	$\delta_{ ext{WHITE}}$		1.4	1.6]	3
Response Time	Tr_R + Tr_D	-	8	16	ms	4
Color Coordinates						
RED	RX	0.586	0.616	0.646	1	
	RY	0.316	0.346	0.376		
GREEN	GX	0.285	0.315	0.345		
	GY	0.572	0.602	0.632		
BLUE	BX	0.122	0.152	0.182		
	BY	0.080	0.110	0.140		
WHITE	WX	0.283	0.313	0.343		
	WY	0.299	0.329	0.359	<u></u>	
Viewing Angle]	5
x axis, right(Φ=0°)	Θr	40			degree	
x axis, left (Φ=180°)	Θl	40			degree	
y axis, up (Φ=90°)	Θu	10			degree	
y axis, down (⊕=270°)	Θd	30			degree	
Gray Scale	-		-			6

Ver. 0.0 18. Sep, 2009 14/ 31

Product Specification

Note)

1. Contrast Ratio(CR) is defined mathematically as

Contrast Ratio =

Surface Luminance with all black pixels

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

$$L_{WH} = Average(L_1, L_2, \dots L_5)$$

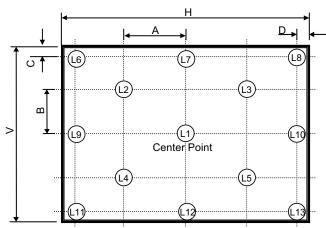
3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

$$\delta_{\text{WHITE}} = \frac{\text{Maximum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \, \dots \, \mathsf{L}_{13})}{\text{Minimum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \, \dots \, \mathsf{L}_{13})}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

*
$$f_V = 60Hz$$

Gray Level	Luminance [%] (Typ)
L0	0.0
L7	0.8
L15	4.25
L23	10.9
L31	21.0
L39	34.8
L47	52.5
L55	74.2
L63	100

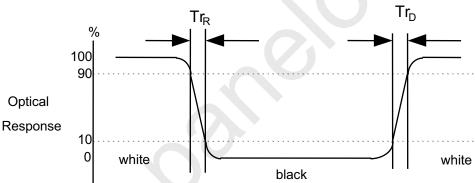

Global LCD Panel Exchange Center

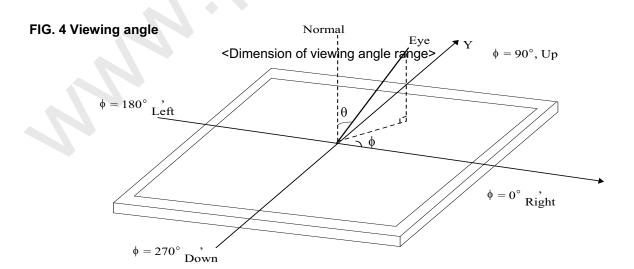
LP173WD1 Liquid Crystal Display

Product Specification

FIG. 2 Luminance

<Measuring point for Average Luminance & measuring point for Luminance variation>


H,V: ACTIVE AREA A : H/4 mm B: V/4 mm


C : 10 mm D : 10 mm

POINTS: 13 POINTS

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

16/31 Ver. 0.0 18. Sep, 2009

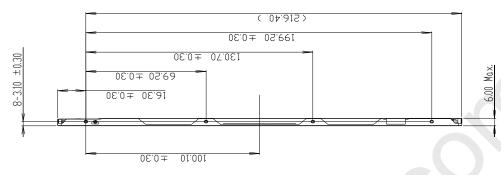
Product Specification

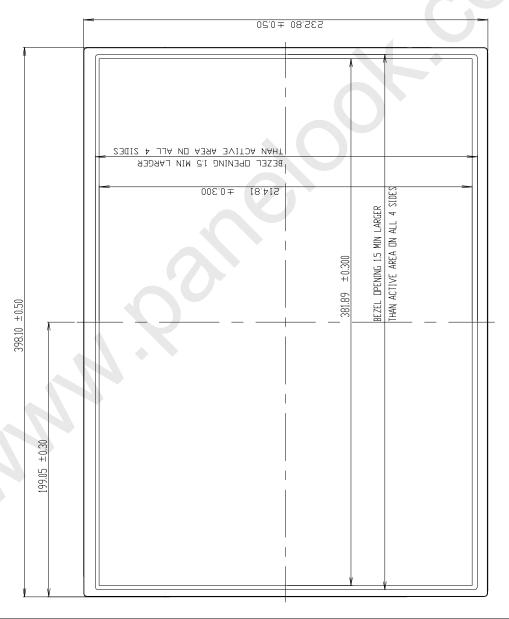
5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP173WD1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	398.1 ± 0.50mm
Outline Dimension	Vertical	232.8 ± 0.50mm
	Depth	6.0mm(Max.)
Bezel Area	Horizontal	1.5mm Min.(Lager than Active Display Area)
Dezei Alea	Vertical	1.5mm Min.(Lager than Active Display Area)
Active Diapley Area	Horizontal	381.89mm
Active Display Area	Vertical	214.81 mm
Weight	570g (Max.)	
Surface Treatment	Anti-Glare treatment of the	front Polarizer (Haze 0%)

Ver. 0.0 18. Sep, 2009 17/ 31





Product Specification

<FRONT VIEW>

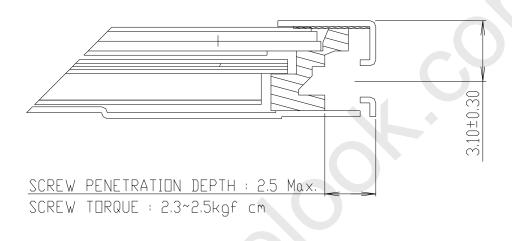
Note) Unit:[mm], General tolerance: ± 0.5mm

Ver. 0.0 18. Sep, 2009 18/31

Product Specification

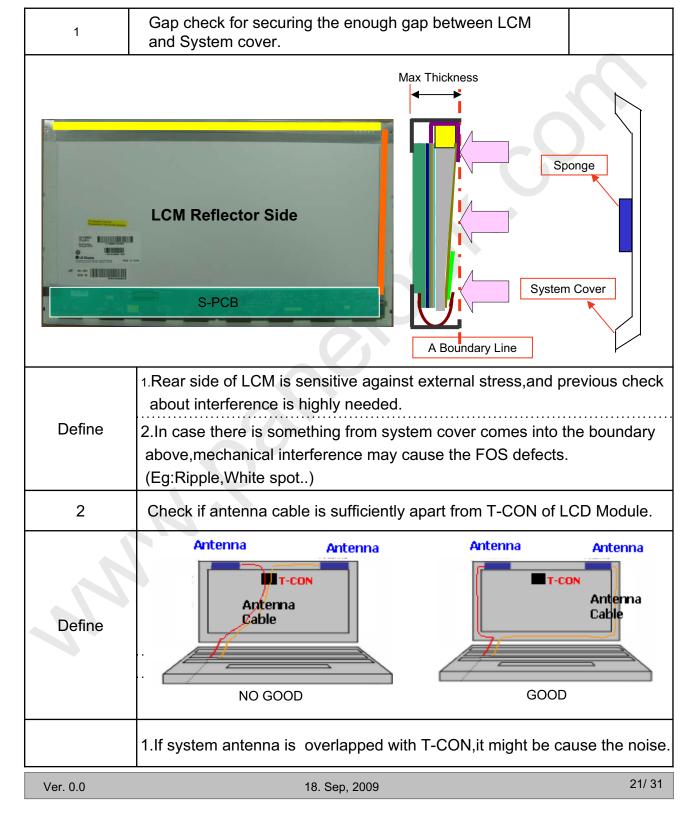
<REAR VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm


Ver. 0.0 18. Sep, 2009 19/ 31

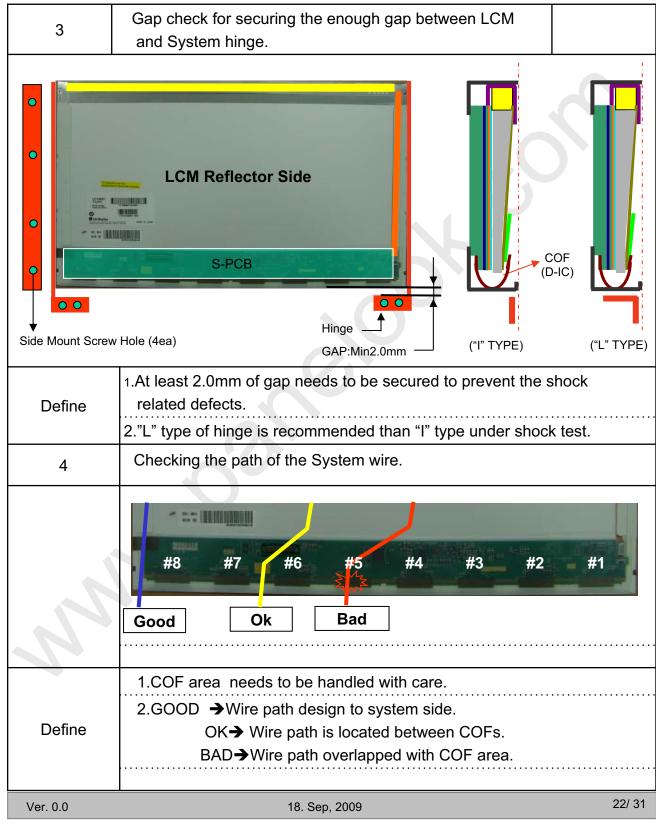
Product Specification

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]


20/31 Ver. 0.0 18. Sep, 2009

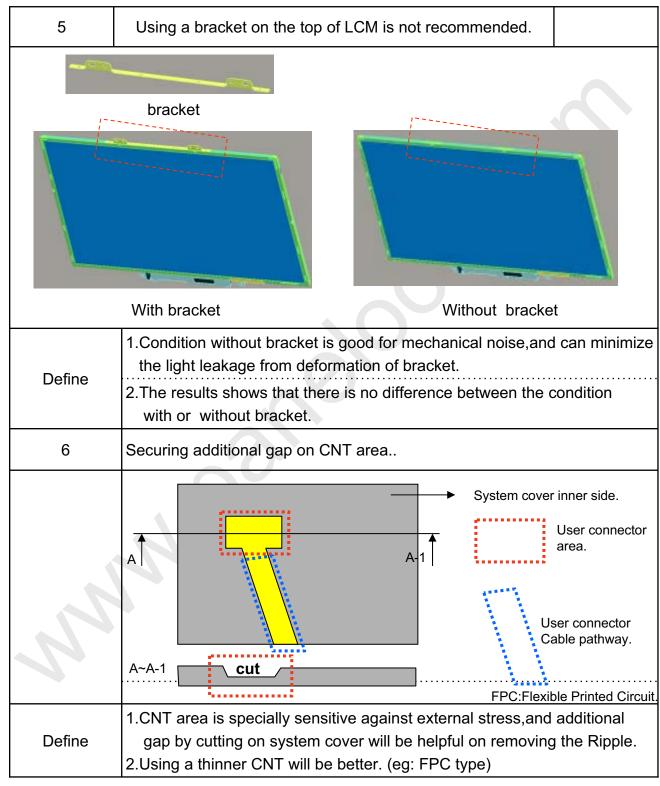
Product Specification

LGD Proposal for system cover design.(Appendix)



Product Specification

LGD Proposal for system cover design.



Product Specification

LGD Proposal for system cover design.

Product Specification

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min 3 axis, 30min/axis
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 2ms for all six faces)
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr
8	Image Sticking 1)	Ta= 25°C, Pattern : Mosaic(8 by 6), Operating Time : 30 min Lamp Operating Current : 6.0mA

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

<Judgment Condition>

: Operating during 30 minutes with Mosaic Pattern(8 by 6), there is no Image Sticking after 10 second with half gray pattern.

Product Specification

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association, Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) CISPR22 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

А	В	С	D	Е	F	G	Н	I	J	К	L	М	
---	---	---	---	---	---	---	---	---	---	---	---	---	--

 $A,B,C: SIZE(INCH) \\ D: YEAR$

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box : 20pcs

b) Box Size :490X390X298

Product Specification

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm\ 200mV(Over\ and\ under\ shoot\ voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Product Specification

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

LP173W D1-TLD3 E-ED ID DATA (ver0.0)

2009-09.18

Byte#	Byte#	Field New York Community	V a	lue	Value	
(decimal)	(HEX)	Field Nam e and Com m ents	(H	EX)	(b in a ry)	
0	0.0	Header	0	0	0000 0000	
1	0 1		F	F	1111 1111	
2	02		F	F	1111 1111	
3	03		F	F	1111 1111	Header
4	04		F	F	1111 1111	
<u>5</u>	05 06		F	F	1111 1111	
7	0.7		0	0	0000 0000	
8	0.8	E IS A m anufacturer code = LG D	3	0	0011 0000	
9	0.9	E 10 / III a II a I a Ca To To Ca Co To Ca Co	E	4	1110 0100	
10	0 A	Product code = 027B	7	В	0111 1011	
11	0 B	(Hex. LSB first)	0	2	0000 0010	
12	0 C	32-bit serial num ber	0	0	0000 0000	Vender/
13	0 D	oz bit seria i ii diii bei	0	0	0000 0000	Product ID
14	0 E		0	0	0000 0000	1 loudet lo
15	0 F		0	0	0000 0000	
16	10	W ook of manufacture	0	0	0000 0000	
17	11	W eek of m anufacture Year of m anufacture = 2009	1	3	0000 0000	
			0	3	0000 0001	CD ID Varaian/
18 19	12 13	ED ID Structure version # = 1 ED ID Revision # = 3	0	3	0000 0001	EDID Version/ Revision
20	14	Video input definition = D ig ital I/p ,non TM DS CRGB	8	0		U E A IS IO II
21	15	Max H im age size (cm) = 38.208 cm (38)	2	6		D isplav
22	16	Max V image size(cm) = 21.492cm (21)	1	5		Param eter
23	17	D isp lay gam m a = 2.20	7	8		
24	18	Feature support(DPMS) = Active off, RGB Cobr	0	Α	0000 1010	
25	19	Red/Green low Bits	Α	8	1010 1000	
26	1 A	Blue/White Low Bits	O	0	1100 0000	
27	1 B	Red X Rx = 0.616	9	D	1001 1101	
28	1 C	Red Y Ry = 0.346	5	8		
29	1 D	G reen X $G x = 0.315$	5	0	0101 0000	
30	1 E	G reen Y $G y = 0.602$	9	Α		Characteristic
3 1	1F	B lue X B x = 0.152	2	6		
32	20	B lue Y B y = 0.110	1	С	0001 1100	
33	21	W hite X W x = 0.313	5	0	0101 0000	
34	22	W hite Y W y = 0.329	5	4	0101 0100	
35	23	Established Timing I	0	0	0000 0000	Estab lished
36	24	Established Timing II	0	0	0000 0000	Tim ings
37	25	Manufacturer's Timings	0	0	0000 0000	
38	26	Standard Tim ing Identification 1 was not used	0	1	0000 0001	
39	27	Standard Tim ing Identification 1 was not used	0	<u> </u>	0000 0001	
40	28	Standard Tim ing Identification 2 was not used	0	1	0000 0001	
41	29	Standard Tim ing Identification 2 was not used	0	1	0000 0001	
42	2 A	Standard T im ing Identification 3 was not used	0	1	0000 0001	
43	2B	Standard Tim ing Identification 3 was not used	0	1	0000 0001	
44	20	Standard Tim ing Identification 4 was not used	0	1	0000 0001	S tandard
45	2 D	Standard Tim ing Identification 4 was not used	0	1	0000 0001	Tim ing ID
46	2E	Standard Tim ing Identification 5 was not used	0	1	0000 0001	
47	2F	Standard Tim ing Identification 5 was not used	0	1	0000 0001	
48	30	Standard Tim ing Identification 6 was not used	0	1	0000 0001	
49	3 1	Standard Tim ing Identification 6 was not used	0	1	0000 0001	
50	32	Standard Tim ing Identification 7 was not used	0	1	0000 0001	
5 1	33	Standard Tim ing Identification 7 was not used	0	1	0000 0001	
52	34	Standard Tim ing Identification 8 was not used	0	1	0000 0001	
53	35	Standard Tim ing Identification 8 was not used	0	1	0000 0001	

Ver. 0.0 18. Sep, 2009 29/ 31

Product Specification

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

Byte#	Byte#	Child Name and Orman and	Va	lue	Value	
(decim al)	(HEX)	Field Nam e and Com m ents		ΕΧ)	(, ,	
54	36	1600 X 900 @ 60Hz m ode : pixelc bck = 97.75M H z			0010 1111	
55	37	(Stored LSB first)	2		0010 0110	
56	38	Horizontal Active = 1600 pixels	4		0100 0000	
57	39	HorizontalBlanking = 184 pixels	В		1011 1000	
58	3 A	HorizontalActive:HorizontalBlanking = 1600:184	6	0	0110 0000	
59	3B	Vertical A vtive = 900 lines	8		1000 0100	
60	3 C	VerticalBlanking = 12 lines	0		0000 1100	
61	3 D	Vertical Active: Vertical Blanking = 900:12	3		0011 0000	Tim ing
62	3E	Horizontal Sync. Offset = 48 pixels	3		0011 0000	Descriptor
63	3F	Horizontal Sync Pulse Wildth = 48 pixels	3		0011 0000	# 1
64	40	Vertical Sync O ffset = 2 lines, Sync W idth = 3 lines	2		0010 0011	
65	41	Horizontal Vertical Sync Offset/W idth upper 2b its = 0	0		0000 0000	
66	42	Horizontal Image Size = 382.08mm (382)	7		0111 1110	
67	43	Vertical Image Size = 214.92mm (215)	D 1		1101 0111	
68	44	Horizontal & Vertical Image Size	1		0001 0000	
69	45	HorizontalBorder = 0 VerticalBorder = 0	0		0000 0000	
70	46		1		0000 0000 0001 1001	
71	47	Non-interlaced, Normal display, no stereo, Digital separate sync, H/V polnegatives	0		0000 1001	
72 73	48 49	Detailed Timing Descriptor#2	0		0000 0000	
74	4 A		0		0000 0000	
75	4B		0		0000 0000	
76	4 C		0		0000 0000	
77	4 D		0		0000 0000	
78	4E		0		0000 0000	Detailed
79 80	4F 50		0		0000 0000	Tim ing Description
81	51		0		0000 0000	#2
82	52		0		0000 0000	" -
83	53		0		0000 0000	
84	55		0		0000 0000	
85	55		0		0000 0000	
86 87	56 57		0		0000 0000	
88	58		0		0000 0000	
89	59		0		0000 0000	
90	5 A	Detailed Timing Descriptor#3	0	0	0000 0000	
91	5B		0		0000 0000	
92	5 C		0		0000 0000	
93 94	5D 5E		F 0		1111 1110 0000 0000	
94	5E 5F		0		0000 0000	
96	60	-	0	0	0000 0000	D e ta ile d
97	61		0	0	0000 0000	Tim ing
98	62	L	4		0100 1100	Description
99	63	G	4		0100 0111	#3
100	64	D :	4		0100 0100 0110 1001	
101 102	65 66	j e	6 7	-	0110 1001 0111 0011	
103	67	S p	7		0111 0011	
104	68	 	6		0110 1100	
105	69	a	6	-	0110 0001	
106	6 A	у	7		0111 1001	
107	6B	LF	0	Α	0000 1010	

Ver. 0.0 18. Sep, 2009 30/ 31

Product Specification

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3

Byte#	Byte#	Field Nam e and Com m ents	_	lue		
<u>(decim al</u>	(HEX)	T E D IVAIII E ATIO COIII III ETIS	(HE	ΞX)	(b inary)	
108	6C	Detailed Timing Descriptor#4	0	0	0000 0000	
109	6D		0	0	0000 0000	
110	6E		0	0	0000 0000	
111	6F		F	Ε	1111 1110	
112	70		0	0	0000 0000	
113	71	L	4	С	0100 1100	
114	72	Р	5	0	0101 0000	D e ta iled
115	73	1	3	1	0011 0001	Tim ing
116	74	7	3	7	0011 0111	Description
117	75	3	3		0011 0011	#4
118	76	W	5		0101 0111	
119	77	D	4	4	0100 0100	
120	78	1	3	1	0011 0001	
121	79	-	2	D	0010 1101	
122	7A	T	5	4	0101 0100	
123	7B	L	4	С	0100 1100	
124	7C	D	4	4	0100 0100	
125	7D	3	3	3	0011 0011	
126	7E	Extension flag = 00	0	0	0000 0000	Extension Flag
127	7F	Checksum	C	0	1100 0000	Checksum

Ver. 0.0 18. Sep, 2009 31/31