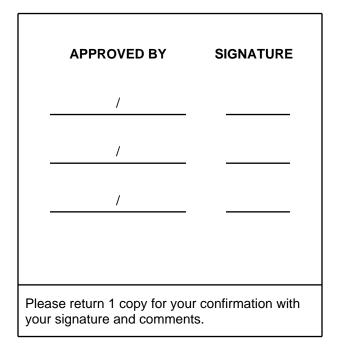


SPECIFICATION FOR APPROVAL

(**♦**) Preliminary Specification


) Final Specification

Title 15.6" HD TFT LCD

Customer	Lenovo
MODEL	

SUPPLIER	LG Display Co., Ltd.
*MODEL	LP156WH2
Suffix	TLAA

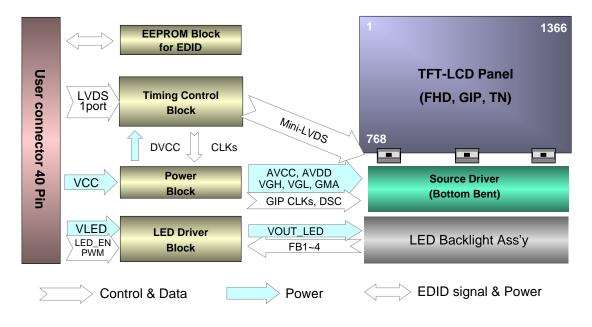
*When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE
C. Park / S.Manager	
 REVIEWED BY	
J. H. Park / Manager	
 PREPARED BY	
J. P. Lee / Engineer	
 B. I. Park / Engineer	
 Products Enginee	ring Dent

٦

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6-7
3-2	INTERFACE CONNECTIONS	8
3-3	LVDS SIGNAL TIMING SPECIFICATION	9-10
3-3	SIGNAL TIMING SPECIFICATIONS	11
3-4	SIGNAL TIMING WAVEFORMS	11
3-5	COLOR INPUT DATA REFERNECE	12
3-6	POWER SEQUENCE	13
4	OPTICAL SFECIFICATIONS	14-16
5	MECHANICAL CHARACTERISTICS	17-20
А	APPENDIX. LPL PROPOSAL FOR SYSTEM COVER DESIGN	21-23
6	RELIABLITY	24
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	25
7-2	EMC	25
7-3	ENVIRONMENT	25
8	PACKING	
8-1	DESIGNATION OF LOT MARK	26
8-2	PACKING FORM	26
9	PRECAUTIONS	27-28
А	APPENDIX. Enhanced Extended Display Identification Data	29-31


RECORD OF REVISIONS

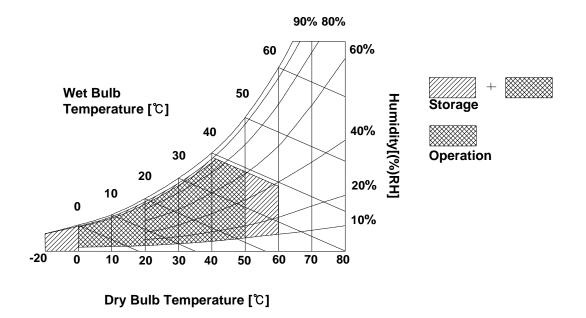
Revision No	Revision Date	Page	Description	EDID ver
0.0	May. 20, 2009	-	First Draft (Preliminary Specification)	-
0.1	Jun. 17, 2009	29-31	Add EEDID Data Table (Checksum : 38)	0.0
0.2	Jul. 08. 2009	14	Add Color Coordinate Specification	0.0
		25	Add International Standards Item (7-3. Environment)	
0.3	Jul. 21. 2009	19	Update Rear View Drawing (Al Plate)	0.0

1. General Description

The LP156WH2 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 15.6 inches diagonally measured active display area with HD resolution (1366 horizontal by 768 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors. The LP156WH2 has been designed to apply the interface method that enables low power, high speed, low EMI. The LP156WH2 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP156WH2 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	15.6 inches diagonal
Outline Dimension	359.3(H, typ) × 209.5(V, typ) × 5.5(D,max) [mm]
Pixel Pitch	0.252mm × 0.252 mm
Pixel Format	1366 horiz. By 768 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	220 cd/m ² (Typ.5 point @ PWM Duty = 100%)
Power Consumption	Total 4.6 W(Typ.) Logic : 1.3W (Typ.@ Mosaic), B/L : 3.3W (Typ.@ VLED 12V)
Weight	450g (Max.)
Display. Operating Mode	Transmissive mode, florinally white 4/31
Surface Treatment	Glare treatment (3H) of the front Polarizer


2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

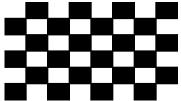
Parameter	Symbol	Val	ues	Units	Notes	
Falameter	Symbol	Min	Max	Units		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 5 C	
Operating Temperature	Тор	0	50	С	1	
Storage Temperature	Нѕт	-20	60	С	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Table 1. ABSOLUTE MAXIMUM RATINGS

Note : 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 C Max, and no condensation of water.

3. Electrical Specifications

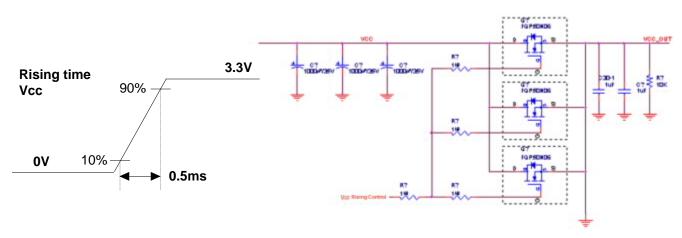
3-1. Electrical Characteristics

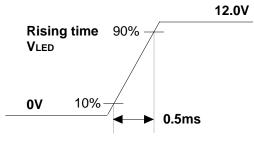

The LP156WH2 requires two power inputs. The first logic is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second backlight is the input about LED BL.with LED Driver.

Denemeter	Cumple of		Values		Unit	Natas
Parameter	Symbol	Min	Тур	Мах	Unit	Notes
LOGIC :						
Power Supply Input Voltage	Vcc	3.0	3.3	3.6	V	1
Power Supply Input Current	lcc	-	385	445	mA	2
Power Consumption	Pcc	-	1.3	1.5	W	2
Power Supply Inrush Current	ICC_P	-	TBD	TBD	mA	3
LVDS Impedance	ZLVDS	90	100	110		4
BACKLIGHT : (without LED Driver)						
LED Power Input Voltage	Vled	7.0	12.0	20.0	V	5
LED Power Input Current	LED	-	275	310	mA	6
LED Power Consumption	Pled	-	3.3	3.7	W	6
LED Power Inrush Current	ILED_P	-	TBD	TBD	mA	7
PWM Duty Ratio	-	12.5	-	100	%	8
PWM Jitter	-	0	-	0.3	%	9
PWM Impedance	Zрwм	20	40	60	k	
PWM Frequency	Fрwм	200	-	1000	Hz	10
PWM High Level Voltage	V _{PWM_H}	3.0	-	5.3	V	
PWM Low Level Voltage	V_{PWM_L}	0	-	0.5	V	
LED_EN Impedance	ZLED_EN	20	40	60	k	
LED_EN High Voltage	V _{LED_EN_H}	3.0	-	5.3	V	
LED_EN Low Voltage	$V_{LED_EN_L}$	0	-	0.5	V	
Life Time		12,000	-	-	Hrs	11

Table 2. ELECTRICAL CHARACTERISTICS

Note)


- 1. The measuring position is the connector of LCM and the test conditions are under 25[°]C, fv = 60Hz, Black pattern.
- 2. The specified lcc current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.


3. Electrical Specifications

3. The below figures are the measuring Vcc condition and the Vcc control block LGD used. The Vcc condition is same the minimum of T1 at Power on sequence.

- 4. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 5. The measuring position is the connector of LCM and the test conditions are under 25°C.
- The current and power consumption with LED Driver are under the V_{ED} = 12.0V , 25℃, Dimming of Max luminance whereas White pattern is displayed and fv is the frame frequency.
- 7. The below figures are the measuring VLED condition and the VLED control block LGD used.

VLED control block is same with Vcc control block.

- 8. The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue.
- 9. If Jitter of PWM is bigger than maximum. It may cause flickering.
- 10. This Spec. is not effective at 100% dimming ratio as an exception because it has DC level equivalent to 0Hz. In spite of acceptable range as defined, the PWM Frequency should be fixed and stable for more consistent brightness control at any specific level desired.
- 11. The life time is determined as the time at which the typical brightness of LCD is 50% compare to that of initial value at the typical LED current. These LED backlight has 4 strings on it and the typical current of LED's string is base on 22mA.

3-2. Interface Connections

This LCD employs one interface connections, a 40 pin connector is used for the module electronics interface and LED Driver.

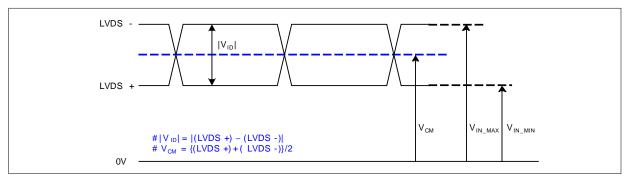
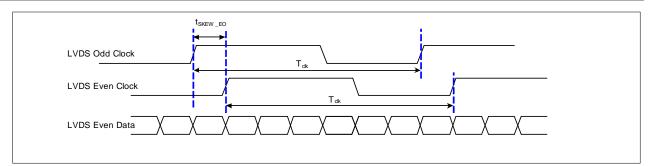

The electronics interface connector is a model 20455-040E-0x manufactured by I-PEX.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

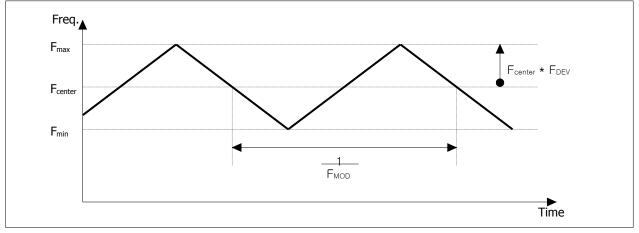
Pin	Symbol	Description	Notes
1	NC	No Connection.	
2	VCC	Power Supply, 3.3V Typ.	
3	VCC	Power Supply, 3.3V Typ.	
4	V EEDID	DDC 3.3V power	1. Interface chips
5	NC	No Connection	1.1 LCD : SW, SW0633 (LCD Controller)
6	Clk EEDID	DDC Clock	including LVDS Receiver
7	DATA EEDID	DDC Data	1.2 System : THC63LVDF823A or equivalent
8	Odd_R _{IN} 0-	Negative LVDS differential data input	* Pin to Pin compatible with LVDS
9	Odd_R _{IN} 0+	Positive LVDS differential data input	
10	GND	Ground	2. Connector 2.1 LCD :20455-040E-0x, I-PEX
11	Odd_R _{IN} 1-	Negative LVDS differential data input	or its compatibles
12	Odd_R _{IN} 1+	Positive LVDS differential data input	2.2 Mating : 20453-040T-0x, I-PEX
13	GND	Ground	or equivalent. 2.3 Connector pin arrangement
14	Odd_R _{IN} 2-	Negative LVDS differential data input	
15	Odd_R _{IN} 2+	Positive LVDS differential data input	40 1
16	GND	Ground	
17	Odd_CLKIN-	Negative LVDS differential clock input	
18	Odd_CLKIN+	Positive LVDS differential clock input	
19	GND	Ground	[LCD Module Rear View]
20	NC	No Connection	
21	NC	No Connection	
22	GND	Ground	
23	NC	No Connection	
24	NC	No Connection	
25	GND	Ground	
26	NC	No Connection	
27	NC	No Connection	
28	GND	Ground	———————————————————————————————————————
29 30	NC NC	No Connection No Connection	
	-		
31 32	VLED_GND VLED GND	LED Ground LED Ground	
	_		———
33 34	VLED_GND NC	LED Ground No Connection.	
34 35	BLIM	PWM for Luminance control	———————————————————————————————————————
36	BL_On	Backlight On/Off Control	
37	NC		
38	VLED	LED Power Supply (7V-20V)	
39	VLED	LED Power Supply (7V-20V)	
40	VLED	LED Power Supply (7V-20V)	

3-3. LVDS Signal Timing Specifications

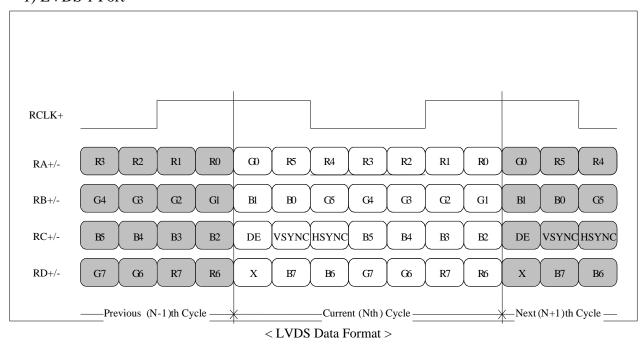
3-3-1. DC Specification



Description	Symbo I	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-


3-3-2. AC Specification

$LVDS Clock$ $LVDS Data$ $UVDS Data$ $UVDS Data$ $UVDS Data$ $UVDS Data$ $USKEW (F_{clk} = 1/T_{ck})$ $1) 85 MHz > Fclk \ge 65 MHz : -400 - +400$ $2) 65 MHz > Fclk \ge 25 MHz : -600 - +600$									
Description	Symbol	Min	Max	Unit	Notes				
LVDS Clock to Data Skow Margin	t _{skew}	- 400	+ 400	ps	85MHz > Fclk 65MHz				
LVDS Clock to Data Skew Margin	t _{skew}	- 600	+ 600	ps	65MHz > Fclk 25MHz				
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{skew_eo}	- 1/7	+ 1/7	T _{clk}	-				
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-				
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-				



< Clock skew margin between channel >

< Spread Spectrum >

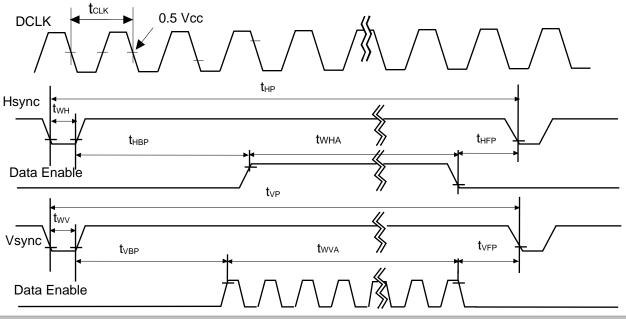
3-3-3. Data Format 1) LVDS 1 Port

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{ськ}	-	72.3	-	MHz	
	Period	t _{HP}	1470	1526	1586		
Hsync	Width	t _{wн}	23	32	40	tCLK	
	Width-Active	t _{wha}	1366	1366	1366		
	Period	t _{vP}	779	790	801		
Vsync	Width	t _{wv}	2	5	8	tHP	
	Width-Active	t _{wva}	768	768	768		
	Horizontal back porch	t _{HBP}	72	80	124	tCLK	
Data	Horizontal front porch	t _{HFP}	8	48	48	ICLK	
Enable	Vertical back porch	t_{VBP}	8	14	20	tHP	
	Vertical front porch	t_{VFP}	1	3	5	u IP	

Table 6. TIMING TABLE


3-5. Signal Timing Waveforms

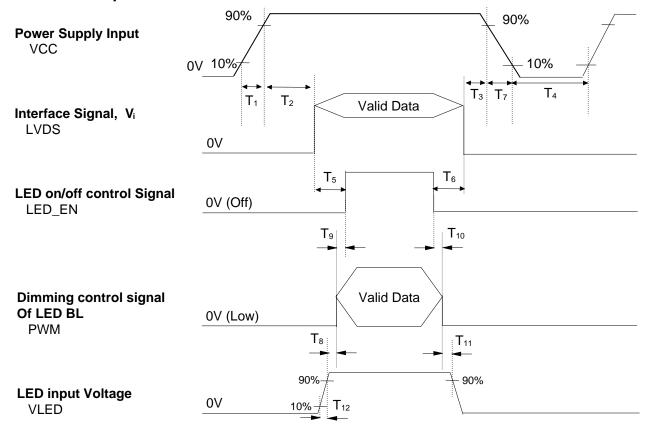
Data Enable, Hsync, Vsync

Low: 0.3VCC

High: 0.7VCC

Condition : VCC =3.3V

3-6. Color Input Data Reference


The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

				Input Co	lor Data			
	Color	RE	D	GRE	EN	BLU	JE	
	00101	MSB	LSB	MSB			LSB	
		R5 R4 R3 R2 R1 R0		G5 G4 G3	G2 G1 G0	B5 B4 B3 B2 B1 B0		
	Black	0 0 0 0 0		000	0 0 0	000	000	
	Red	11111		000	000	000	000	
	Green	000	000	111	1 1 1	000	0 0 0	
Basic	Blue	000	000	000	000	1 1 1	111	
Color	Cyan	000	000	111	1 1 1	1 1 1	111	
	Magenta	111	1 1 1	000	000	1 1 1	111	
	Yellow	111	1 1 1	111	1 1 1	0 0 0	000	
	White	1 1 1	1 1 1	111	1 1 1	1 1 1	111	
	RED (00)	000	000	000	000	000	000	
	RED (01)	000	001	000	000	0 0 0	000	
RED								
	RED (62)	111	1 1 0	000	000	0 0 0	000	
	RED (63)	1 1 1 1 1 1		0 0 0 0 0 0		000000		
	GREEN (00)	000	000	000	000	000	000	
	GREEN (01)	000	000	000	001	000	000	
GREEN								
	GREEN (62)	000	000	111	1 1 0	000	000	
	GREEN (63)	000	000	111	1 1 1	000	000	
	BLUE (00)	000	000	000	000	000	000	
	BLUE (01)	000	000	000	0 0 0	000	0 0 1	
BLUE								
	BLUE (62)	000	000	000	0 0 0	111	1 1 0	
	BLUE (63)	000	0 0 0	000	0 0 0	111	1 1 1	

Table 7. COLOR DATA REFERENCE

3-7. Power Sequence

Table 6. POWER SEQUENCE TABLE

Logic		Value		Linita	LED		Units		
Parameter	Min.	Тур.	Max.	Units	Parameter	Min.	Тур.	Max.	Units
T ₁	0.5	-	10	ms	T ₈	10	-	-	ms
T ₂	0	-	50	ms	T ₉	0	-	-	ms
T ₃	0	-	50	ms	T ₁₀	0	-	-	ms
T ₄	400	-	-	ms	T ₁₁	10	-	-	ms
T ₅	200	-	-	ms	T ₁₂	0.5	-	-	ms
T ₆	200	-	-	ms					
T ₇	3	-	10	ms					

Note)

- 1. Do not insert the mating cable when system turn on.
- 2. Valid Data have to meet "3-3. LVDS Signal Timing Specifications"
- 3. LVDS, LED_EN and PWM need to pull-down condition on invalid status.
- 4. LGD recommend the rising sequence of VLED after the Vcc and valid status of LVDS turn on.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON and stable for approximately 30 minutes in a dark environment at 25 C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of and equal to 0.

FIG. 1 presents additional information concerning the measurement equipment and method.

Optical Stage(x,y)

Table 9. OPTICAL CHARACTERISTICS

		Ta=25	C, Vcc=3.3∖	′, f∨=60Hz, f _{CL}	к = 72.3MHz ,	VLED = 12	V, PWM Duty = 100%
	Parameter	Symbol		Values		Units	Notes
r			Min	Тур	Мах	Units	notes
Contrast Ratio	Contrast Ratio		400	-	-		1
Surface Lumir	nance, white	L _{WH}	185	220	-	cd/m ²	2
Luminance Va	ariation	WHITE	-	1.4	1.6		3
Response Tim	ne	Tr_{R} + Tr_{D}	-	16	-	ms	4
Color Coordin	ates						
	RED	RX	0.592	0.622	0.652		
		RY	0.335	0.365	0.395		
	GREEN	GX	0.310	0.340	0.370		
		GY	0.577	0.607	0.637		
	BLUE	BX	0.115	0.145	0.175		
		BY	0.070	0.100	0.130		
	WHITE	WX	0.283	0.313	0.343		
		WY	0.299	0.329	0.359		
Viewing Angle)						5
	x axis, right(=0)	r	40	-	-	degree	
	x axis, left (=180)		40	-	-	degree	
	y axis, up(=90)	u	10	-	-	degree	
	y axis, down (=270)	d	30	-	-	degree	
Gray Scale							6

FIG. 1 Optical Characteristic Measurement Equipment and Method

Note)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

 $L_{WH} = Average(L_1, L_2, \dots, L_5)$

3. The variation in surface luminance , The panel total variation ($_{\text{WHITE}}$) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

Maximum(L₁,L₂, ... L₁₃)

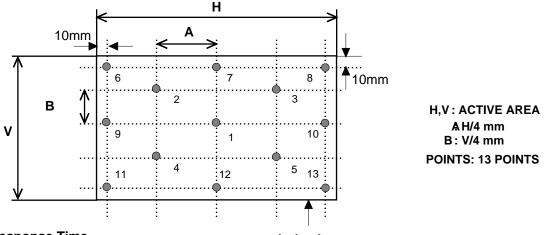
WHITE = _

 $Minimum(L_1, L_2, ..., L_{13})$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr) and from black to white(Decay Time, Tr). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined

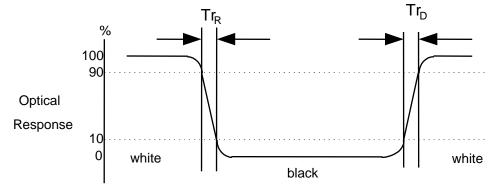
for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

6. Gray scale specification


*f∨= 60Hz

Speelindulion	10 - 0011
Gray Level	Luminance [%] (Typ)
LO	0
L7	1.45
L15	5.36
L23	12.21
L31	21.01
L39	34.82
L47	52.49
L55	74.17
L63	100
· · · · · · · · · · · · · · · · · · ·	

FIG. 2 Luminance


<Measuring point for Average Luminance & measuring point for Luminance variation>

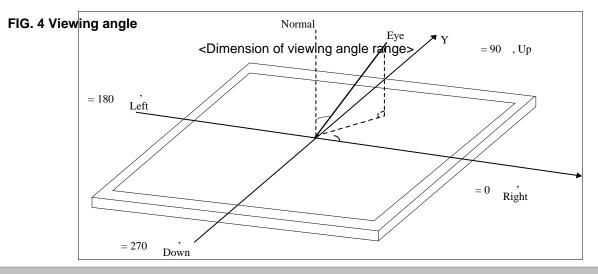
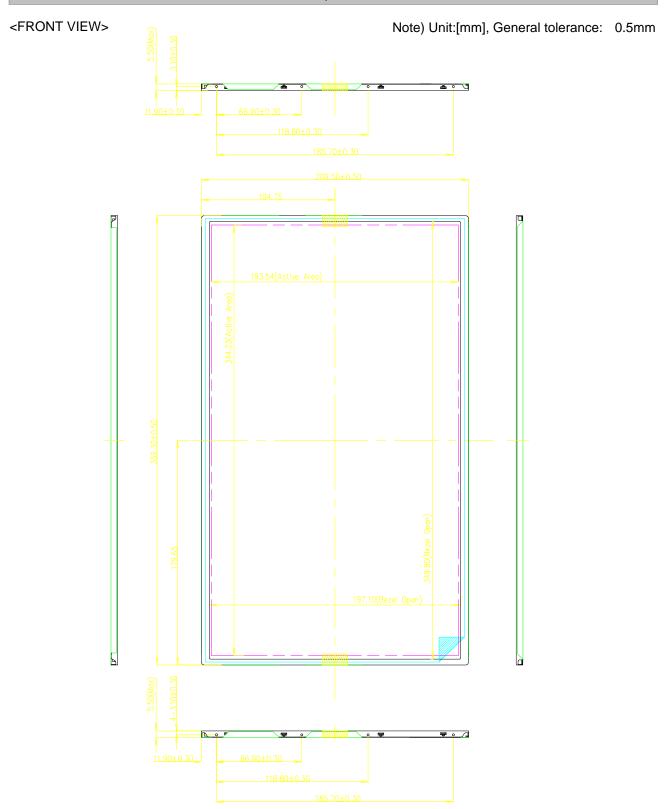


FIG. 3 Response Time

Active Area

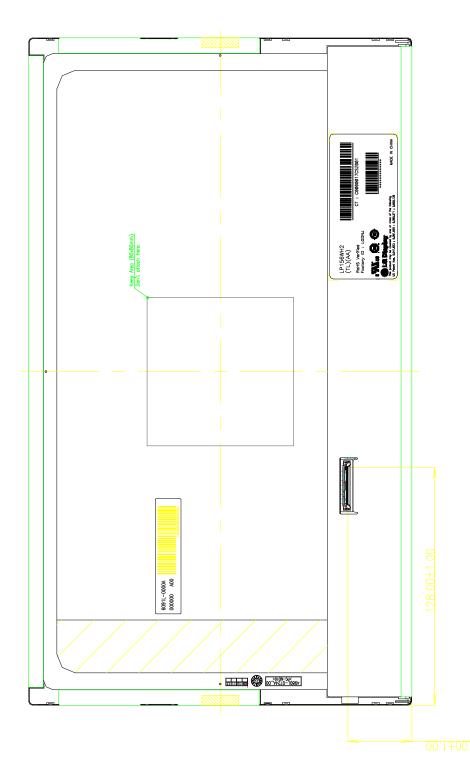
The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

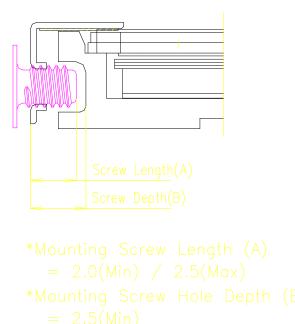


5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP156WH2. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	359.3 0.5mm				
Outline Dimension	Vertical	209.5 0.5mm				
	Thickness	5.5mm (max)				
Bezel Area	Horizontal	349.8 0.5mm				
Dezel Alea	Vertical	197.1 0.5mm				
Active Display Area	Horizontal	344.232 mm				
Active Display Area	Vertical	193.536 mm				
Weight	450g (Max.)					
Surface Treatment	Glare treatment(3H) of the front polarizer					

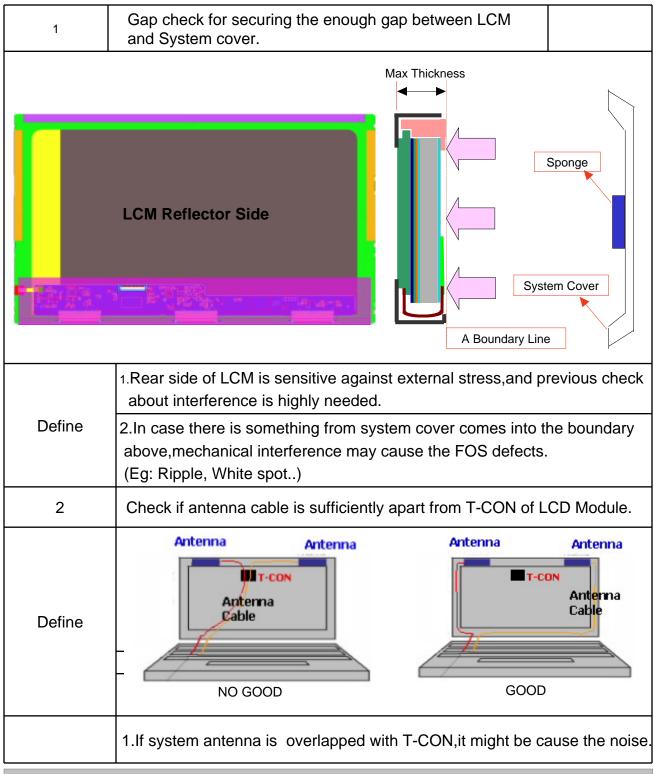




<REAR VIEW>

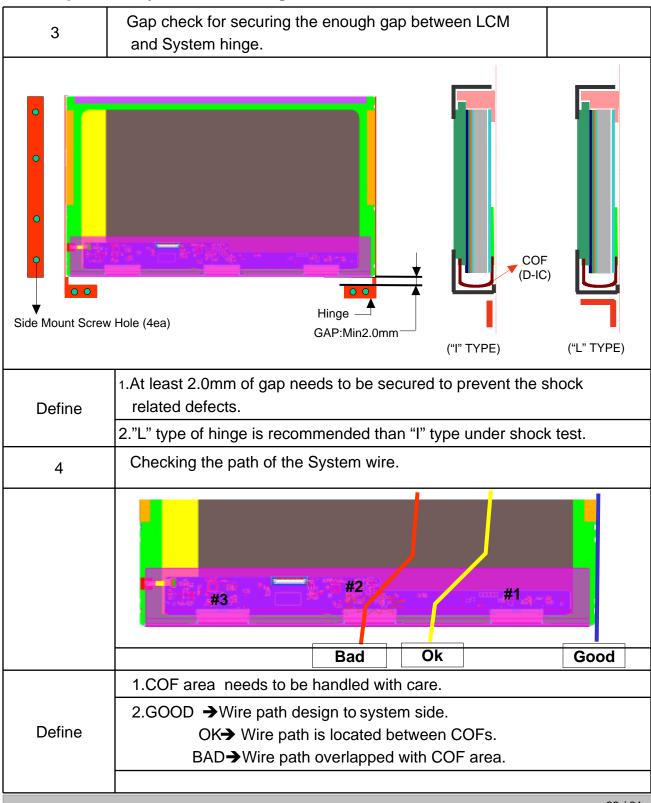
Note) Unit:[mm], General tolerance: 0.5mm

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

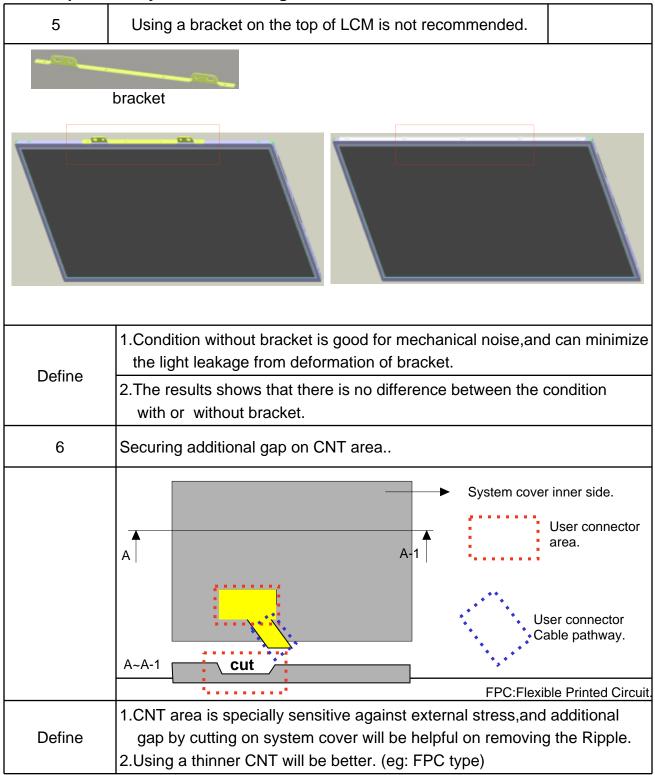


*Torque : 2.0 kgf.cm(Max)

Notes : 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.



LGD Proposal for system cover design.(Appendix)



LGD Proposal for system cover design.

LGD Proposal for system cover design.

6. Reliability

Environment test condition

No.	Test Item	Conditions			
1	High temperature storage test	Ta= 60 C, 240h			
2	Low temperature storage test	Ta= -20 C, 240h			
3	High temperature operation test	Ta= 50 C, 50%RH, 240h			
4	Low temperature operation test	Ta= 0 C, 240h			
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis			
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 2ms for all six faces)			
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr			

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment - Safety - Part 1 : General Requirements.
- d) IEC 60950-1:2005, Second Edition, The International Electrotechnical Commission (IEC). Information Technology Equipment - Safety - Part 1 : General Requirements.

7-2. EMC

a) ANSI C63.4 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." American National Standards Institute (ANSI), 2003.

b) CISPR 22 "Information technology equipment – Radio disturbance characteristics – Limit

and

methods of measurement." International Special Committee on Radio Interference (CISPR), 2005.

c) CISPR 13 "Sound and television broadcast receivers and associated equipment – Radio disturbance

characteristics – Limits and method of measurement." International Special Committee on Radio Interference (CISPR), 2006.

7-3. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH) E : MONTH D : YEAR F ~ M : SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

[Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box : 22 pcs

b) Box Size : 440x360x260mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that

external

force is not transmitted directly to the module.

- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer.
- Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
 - (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break

by electro-chemical reaction.

(6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.

Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)

(7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the

adhesives

used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause

chemical damage to the polarizer.

(8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.

9(2) OPERAJING CARECAUSIONS circuits do not have sufficient strength.

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=± 200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

(1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5 C and 35 C at normal humidity.

- (2) The polarizer surface should not come in contact with any other object.
- It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.

Please carefully peel off the protection film without rubbing it against the polarizer.

- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 1/3

Byte#	Byte#		Va	alue	Value	
(decimal)	(HEX)	Field Name and Comments		EX		
0	00	Header			0000 0000	
1	01	Header	Ē		1111 1111	
2	02	Header	F	F	1111 1111	
3	03	Header	F	F	1111 1111	Header
4	04	Header		F	1111 1111	
5	- 05	Header	F	F	1111 1111	
6	- 06	Header			1111 1111	
7	07	Header	0		0000 0000	
	- 08	EISA manufacturer code(3 Character ID) = LGD	3 F		0011 0000	
<u> </u>	09	Compressed ASCII			1110 0100	
10	<u>0</u> A	Product code – (0230)	3	-	0011 0000	
11	0B	(Hex, LSB first)	٥		0000 0010	
12	00	LCD module Serial No - Preferred but Optionalif (not used)			0000 0000	Vender/
13	0D	LCD module Serial No - Preferred but Optionalif (not used)			0000 0000	Product ID
14	0F	I CD module Serial No - Preferred but Optionalif (not used)			0000 0000	
15	0F	I CD module Serial No - Preferred but Optio Mälif (not used)	٥		0000 0000	
16	10	Week of Manufacture	0	0	0000 0000	
17	11	Year of Manufacture – 2009	1		0001 0011	
	12	EDID Structure version # = 1	0	1	0000 0001 0000 0011	EDID Version/
19	13	EDID Revision # - 3	٥	3	0000 0011	Revision
20	14	Video Input Definition – Digital I/P,non TMDS CRGB	8	0	1000 0000	
21		Max H image sizet)=34.4232cm(34)	2		0010 0010	Display
<u>22</u>		Max V image sizet)-19.3536cm(19)	1	3	0001 0011	Parameter
<u>23</u>	17	Display gamma -2.2	7	8	0111 1000	
- 24	-	Feature support(DPMS) - Active off, RCB Color	0	A	0000 1010	
<u> </u>	19	Red/Green low Bits	6 2	12	0110 0010 0010 0101	
<u>26</u> 27	1A 1B	Blue/White Low Bits Red X – 0.622		1°	0010 0101 1001 1111	
<u></u> 28	16	Red X - 0.622 Red Y - 0.365	5	L.	0101 1101	
<u>2</u> 9	1D	Green X = 0.300	5		0101 0111	Color
	1E	Green Y = 0.607	ø	R	1001 1011	Characteristic
	1E	$\frac{Blue X}{Blue X} = 0.145$	2	5	0010 0101	Characteristic
32	<u>20</u>	Blue Y = 0.100	1	à	0001 1001	
33	21	White X – 0.313	5	Δ	0101 0000	
34	22	White Y - 0.329	5	4	0101 0100	
35	23	Established Timing I – 00h(If not used)	0		0000 0000	Established
36	<u>2</u> 4	Established Timing II = 00h(If not used)			0000 0000	Timings
37	25	Manufacturer's Timings – 00h(If not used)	0		0000 0000	
	26	Standard Timing Identification 1 was not used	0	1	0000 0001	
39	27	Standard Timing Identification 1 was not used	0			
40	28	Standard Timing Identification 2 was not used	0	1	0000 0001	
41	29	Standard Timing Identification 2 was not used	0		0000 0001	
42	2A	Standard Timing Identification 3 was not used	0	1	0000 0001	
43	2B	Standard Timing Identification 3 was not used	0		0000 0001	
44	2C	Standard Timing Identification 4 was not used	0	1	0000 0001	Standard
45	2D	Standard Timing Identification 4 was not used			0000 0001	Timing ID
	20 2F	Standard Timing Identification 5 was not used			0000 0001	i i i i i i g i b
<u> </u>	2E	Standard Timing Identification 5 was not used	0		0000 0001	
<u>47</u> <u>48</u>	30	Standard Timing Identification 6 was not used	0		0000 0001	
	30 31	Standard Timing Identification 6 was not used	0 0		0000 0001	
<u>49</u>	÷.	0	0		0000 0001	
<u> </u>	<u>32</u>	Standard Timing Identification 7 was not used	0		0000 0001	
<u>51</u>	33	Standard Timing Identification 7 was not used				
52	34	Standard Timing Identification 8 was not used	0		0000 0001	
53	35	Standard Timing Identification 8 was not used	Ο	11	0000 0001	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 2/3

Byte#	Byte#	Field Name and Comments	V	عيبلة	Value	
(docimal	(HEX)		(н	FΧ	(hinary)	
54	- 36	1366X768 @60 mode pixel clock (LSB) => 72.3MHz	3		00111110	
55	- 37	(Stored LSB first)	1	C	00011100	
- 56 -	- 38 -	Horizontal Active = 1366 pixels (lower 8bits)	5	6	01010110	
57	- 39	Horizontal Blanking = 160 pixels (lower 8bits)	A	0	1010 <i>0</i> 000	
- 58 -	<u>3</u> A	Horizontal Active : Horizontal Blanking (upper 4:4bits)	5	0	0101 0000	
	<u>3B</u>	Vertical Avtive = 768 lines (lower 8bits)	0		0000 0000	
<u> </u>	<u> 3C</u>	Vertical Blanking = 22 lines (lower 8bits)	1		0001 0110	
61	- 3D	Vertical Active : Vertical Blanking (upper 4:4bits)	3		00110000	Timing
<u> 62 </u>	3E	Horizontal Sync. Offset = 48 pixels	3		<u>00110000</u>	Descriptor
- 63 -	3F	Horizontal Sync Pulse Width = 32 pixels	2		0010 0000	#1
<u> </u>	40	Vertical Sync Offset = 3 lines : Sync Width = 5 lines	3		<u>00110101</u>	
65	41	Horizontal Vertical Sync Offset/Width upper 2bits = 0	0		0000 0000	
- 66 -	42	Horizontal Image Size = 344.232mm(344)	5	8	0101 1000	
<u> </u>	43	Vertical Image Size = 193.536mm(194)	le		1100 0010	
- 68 -		Horizontal & Vertical Image Size	1		0001 0000	
- 69	45	Horizontal Border = 0	0	-	0000 0000	
70	46	Vertical Border = 0	0	0	0000 0000	
71	47	Non-interlaced Normal display no stereo Digital separate sync H/V pol negatives	1	9	0001 1001	
<u> </u>	-48	Flag	0	0	0000 0000	
73		Flag	0	0	0000 0000	
74	-4A	Flag	0		0000 0000	
	-4B	Data Type Tag (Descriptor Defined by manufacturer)	0	0	0000 0000	
<u> 76 </u>	4C	Flag			0000 0000	
	4D	Descriptor Defined by manufacturer	0	0	0000 0000	
78	-4E	Descriptor Defined by manufacturer	0	0	0000 0000	
79	4F	Descriptor Defined by manufacturer	0		0000 0000	Timing
	50	Descriptor Defined by manufacturer	0		0000 0000	Description
	51	Descriptor Defined by manufacturer			0000 0000	#2
82	<u>52</u>	Descriptor Defined by manufacturer	0	0	0000 0000	
	53	Descriptor Defined by manufacturer	0		0000 0000 0000 0000	
	54	Descriptor Defined by manufacturer	0			
<u></u>	55	Descriptor Defined by manufacturer			0000 0000	
<u></u>	56	Descriptor Defined by manufacturer			0000 0000 0000 0000	
	57	Descriptor Defined by manufacturer	0		0000 0000 0000 0000	
<u>- 88</u> _ <u>80</u>	58 50	Descriptor Defined by manufacturer		-		
					000000000	
	<u>5A</u>				0000 0000 0000 0000	
		Flag	ľ	-		
- 92	<u>5C</u>	Flag	15		0000 0000	
-93-	5D	Data Type Tag (ASCII String)		Ē	111111110 00000000	
	5E 5E	Flag	0		000000000	
95	Ŭ		14		01001100 01000111	
96 97	60 61	G	4		001000111	Timing
-	-	D	1	U V	01000100000	Timing
98	<u>62</u>		4		01000100 01101001	Description
<u> 99 </u>	63		17	۲,		#3
<u> 100 </u> 101	64 65		1,		01110011 01110000	
<u> 101 </u>			1	Ľ		
<u></u>	<u>66</u>			17	01101100	
	67	a	Ļ		01100001	
	<u>68</u>	y Manufacturar D/N/If-12 abor > 0.4 than tarminata. With the DOM hast remaining abor-	Ĺ	1	01111001	
	69 60	Manufacturar $D/N/1/z=12$ obar ~ 0.0 then terminate With db 300 h cot remaining obar -			00001010	
	6A 6B		$\frac{2}{2}$		00100000	
107		Manufacturar D/N/(f-12 char > 0.0.h. than tarminata with the Man has a ramaining char -	- 2	ιΛ	00100000	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 3/3

Byte#	Byte# (HEX)	Field Name and Comments	Value (HEX		
108	`€C ́	Flag		0000 0000	
109	6D	Flag		0000 0000	
	6E	Flag		0000 0000	
111	6F	Data Type Tag (Monitor Name, stored as ASCII)	FC	1111 1100	
112	-	Flag		0000 0000	
113	71		4 0	0100 1100	
114	72	Р	5 0	0101 0000	
115	73	1	3 1	0011 0001	Timing
116	74	5	3 5	0011 0101	
117	75	6	3 6	0011 0110	
118	76	W	5 7	0101 0111	
119	77	Н	4 8	0100 1000	
120	78	2	3 2	0011 0010	
121	70		2 0	0010 1101	
122	7A	Т	5 4	0101 0100	
123	7B		4 6	0100 1100	
124	7C	A	4 1	0100 0001	
125	7D	Δ	4 1	0100 0001	
126	7F	Extension flag - 00		0000 0000	Extension Flag
127	7E	Checksum	3 8	0011 1000	Checksum