SPECIFICATION FOR APPROVAL

()	Preliminar	y Specification
---	---	------------	-----------------

(♦) Final Specification

Title 15.4" WUXGA TFT LCD	
---------------------------	--

Customer	General			
MODEL				

SUPPLIER	LG Display Co., Ltd.		
*MODEL	LP154WU1		
Suffix	TLA2		

^{*}When you obtain standard approval, please use the above model name without suffix

	APPROVED BY	SIGNATURE
_	/	
_	1	. <u> </u>
_	/	
	se return 1 copy for yo signature and comme	

APPROVED BY	SIGNATURE				
K.J. Kwon / G.Manager					
REVIEWED BY					
G.J. Han / Manager / Manager					
PREPARED BY					
K.Y. Kwon / Engineer / Engineer					
Products Engineering Dept. LG Display Co., Ltd					

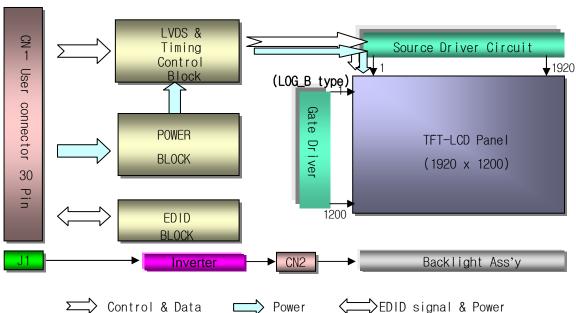
Ver. 1.0 June. 4, 2008 1 / 32

Contents

No	ITEM			
	COVER	1		
	CONTENTS	2		
	RECORD OF REVISIONS	3		
1	GENERAL DESCRIPTION	4		
2	ABSOLUTE MAXIMUM RATINGS	5		
3	ELECTRICAL SPECIFICATIONS			
3-1	ELECTRICAL CHARACTREISTICS	6		
3-2	INTERFACE CONNECTIONS	7		
3-3	SIGNAL TIMING SPECIFICATIONS	9		
3-4	SIGNAL TIMING WAVEFORMS	9		
3-5	COLOR INPUT DATA REFERNECE	10		
3-6	POWER SEQUENCE	11		
4	OPTICAL SFECIFICATIONS	12		
5	MECHANICAL CHARACTERISTICS	16		
6	RELIABLITY	20		
7	INTERNATIONAL STANDARDS			
7-1	SAFETY	21		
7-2	EMC	21		
8	PACKING			
8-1	DESIGNATION OF LOT MARK	22		
8-2	PACKING FORM	22		
9	PRECAUTIONS	23		
A	APPENDIX. Enhanced Extended Display Identification Data	25		

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
1.0	June. 4. 2008	-	Final Specification	
			· · · · · · · · · · · · · · · · · · ·	



1. General Description

The LP154WU1 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp (CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 15.4 inches diagonally measured active display area with WUXGA resolution(1200 vertical by 1920 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP154WU1 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP154WU1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP154WU1 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	15.4 inches diagonal
Outline Dimension	344.0 (H) × 222.0 (V) × 6.5(D, max) mm
Pixel Pitch	0.1725 mm × 0. 1725 mm
Pixel Format	1920 horiz. by 1200 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	220 cd/m ² (Typ.), 5 point
Power Consumption	Total 5.91 Watt(Typ.) @ LCM circuit 1.49 Watt(Typ.), B/L input 4.42 Watt(Typ.)
Weight	560 g (Max.) without inverter & bracket
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Glare treatment of the front polarizer
RoHS Comply	Yes

Ver. 1.0 June. 4, 2008 4 / 32

2. Absolute Maximum Ratings

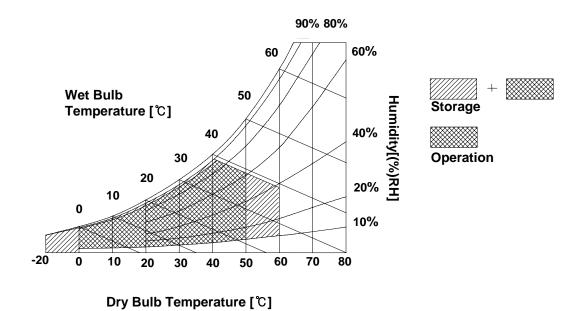

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Parameter	Symbol	Min	Max	Offics		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

Ver. 1.0 June. 4, 2008 5 / 32

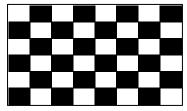
1400

 V_{RMS}

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

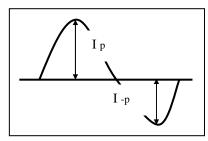

The LP154WU1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

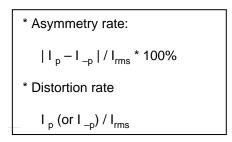
Values Parameter Symbol Unit Notes Min Тур Max MODULE: VCC Power Supply Input Voltage 3.0 3.3 3.6 V_{DC} 450 Mosaic 518 mΑ Power Supply Input Current I_{CC} Рс **Power Consumption** 1.49 1.71 Watt Differential Impedance Zm 90 100 110 Ohm 2 LAMP : $\mathrm{V}_{\mathrm{RMS}}$ Operating Voltage V_{BL} 665(7.0mA) 680(6.5mA) 835(3.0mA) $\mathsf{mA}_{\mathsf{RMS}}$ **Operating Current** 3.0 6.5 7.0 I_{BL} **Power Consumption** 4.42 4.7 P_{BL} **Operating Frequency** 45 60 80 kHz f_{BL} Discharge Stabilization Time Ts 3 Min 4 Life Time 15,000 Hrs 5 Established Starting Voltage at 25℃ Vs 1170 V_{RMS} at 0 ℃

Table 2. ELECTRICAL CHARACTERISTICS

Note)

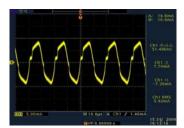
1. The specified current and power consumption are under the Vcc = 3.3V, 25 °C, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.


- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics.
- 4. Define the brightness of the lamp after being lighted for 5 minutes as 100%, Ts is the time required for the brightness of the center of the lamp to be not less than 95%.
- 5. The life time is determined as the time at which brightness of lamp is 50% compare to that of initial value at the typical lamp current.


6/32 Ver. 1.0 June. 4, 2008

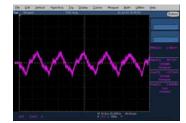
Note)

- 6. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform.(Asymmetrical ratio is less than 10%) Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave.
 Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
 - 7. It is defined the brightness of the lamp after being lighted for 5 minutes as 100%. T_s is the time required for the brightness of the center of the lamp to be not less than 95%.
 - 8. The lamp power consumption shown above does not include loss of external inverter. The applied lamp current is a typical one.
 - Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.
 It shall help increase the lamp lifetime and reduce leakage current.
 - a. The asymmetry rate of the inverter waveform should be less than 10%.
 - b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$.
 - * Inverter output waveform had better be more similar to ideal sine wave.



- 10. Inverter open voltage must be more than lamp voltage for more than 1 second for start-up. Otherwise, the lamps may not be turned on.
 - Do not attach a conducting tape to lamp connecting wire.
 If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.

Ex of current wave)


Normal current wave - Standard

Abnormal current wave - Bad

Abnormal current wave - Bad

Abnormal current wave - Bad

3-2. Interface Connections

This LCD employs two interface connections, a 30 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model GT101-30S-HR11 manufactured by LSC.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

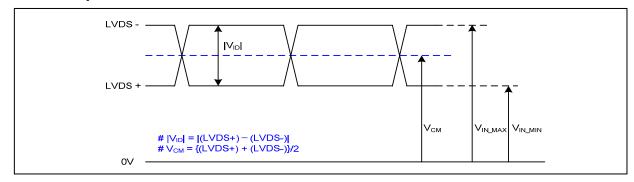
Pin	Symbol	Description	Notes
1	GND	Ground	
2	VCC	Power Supply, 3.3V Typ.	
3	VCC	Power Supply, 3.3V Typ.	
4	V EEDID	DDC 3.3V power	1, Interface chips
5	NC	Reserved for supplier test point	Siw, 2port LVDS Receiver
6	CIK EEDID	DDC Clock	
7	DATA EEDID	DDC Data	
8	R _{IN} 0-	Odd channel differential data input	2. Connector 2.1 LCD : FI-XB30SRL-HF11 (JAE)
9	R _{IN} 0+	Odd channel differential data input	or
10	GND	Ground	its compatibles
11	R _{IN} 1-	Odd channel differential data input	2.2 Mating: FI-X30M or equivalent. 2.3 Connector pin arrangement
12	R _{IN} 1+	Odd channel differential data input	2.0 Connector pin arrangement
13	GND	Ground	
14	R _{IN} 2-	Odd channel differential data input	30 1
15	R _{IN} 2+	Odd channel differential data input	
16	GND	Ground	
17	CLKIN-	Odd channel differential clock input	[LCD Module Rear View]
18	CLKIN+	Odd channel differential clock input	[LOD Module Real View]
19	GND	Ground	
20	RA2-	Even channel differential data input	
21	RA2+	Even channel differential data input	
22	GND	Ground	
23	RB2-	Even channel differential data input	
24	RB2+	Even channel differential data input	
25	GND	Ground	
26	RC2-	Even channel differential data input	
27	RC2+	Even channel differential data input	
28	GND	Ground	
29	RCLK2-	Even channel differential clock input	
30	RCLK2+	Even channel differential clock input	

The backlight interface connector is a model BHSR-02VS-1, manufactured by JST or Compatible. The mating connector part number is SM02B-BHSS-1 or equivalent.

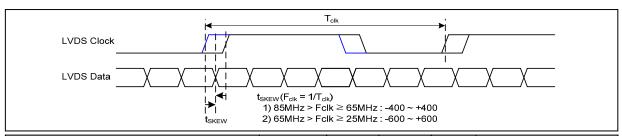
 Pin
 Symbol
 Description
 Notes

 1
 HV
 Power supply for lamp (High voltage side)
 1

 2
 LV
 Power supply for lamp (Low voltage side)
 1

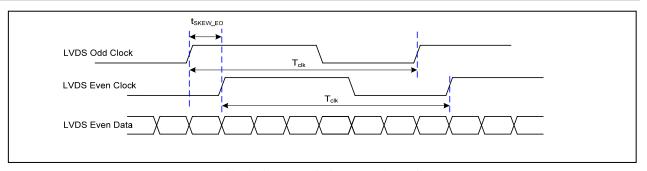

Notes: 1. The high voltage side terminal is colored white and the low voltage side terminal is black.

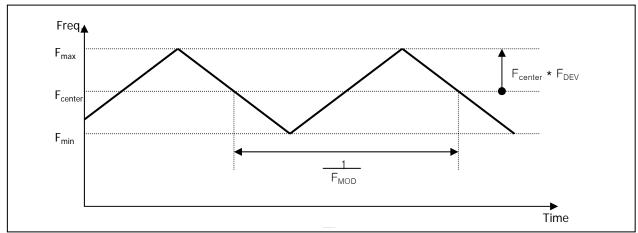
Ver. 1.0 June. 4, 2008 8 / 32


3-3. LVDS Signal Timing Specifications

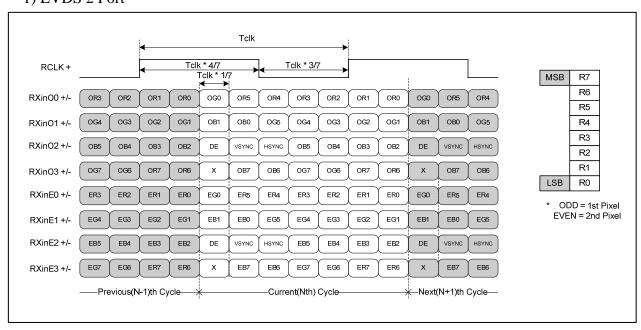
3-3-1. DC Specification

Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-


3-3-2. AC Specification

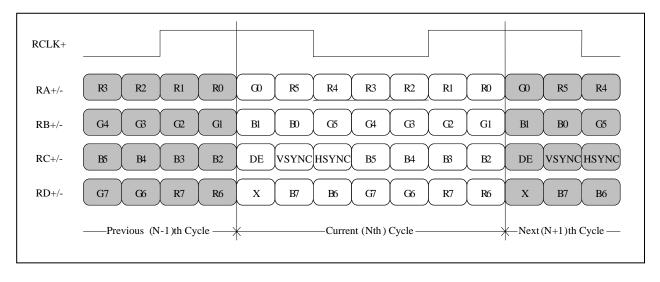

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}		± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

Ver. 1.0 June. 4, 2008 9 / 32


< Clock skew margin between channel >

< Spread Spectrum >

3-3-3. Data Format


1) LVDS 2 Port

< LVDS Data Format >

2) LVDS 1 Port

Ver. 1.0 June. 4, 2008 11 / 32

Condition: VCC =3.3V

Product Specification

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 6. TIMING TABLE

ITEM	Symbol	Min	Тур	Max	Unit	Note	
DCLK	Frequency	f _{CLK}	-	82.45	-	MHz	
	Period	Thp	990	1005	1040		
Hsync	Width	t _{WH}	10	15	50	tCLK	
	Width-Active	t _{WHA}	960	960	960		
	Period	t _{VP}	1207	1250	1400		
Vsync	Width	t _{wv}	1	3	25	tHP	
	Width-Active	t _{wva}	1200	1200	1200		
	Horizontal back porch	t _{HBP}	10	1	ı	+CL IV	
Data	Horizontal front porch	t _{HFP}	10	-	-	tCLK	
Enable	Vertical back porch	t_{VBP}	5	-	-	#IID	
	Vertical front porch	t _{VFP}	1	-	-	tHP	

High: 0.7VCC Data Enable, Hsync, Vsync Low: 0.3VCC 0.5 Vcc **DCLK** t_{HP} Hsync **t**WHA t_{HFP} t_{HBP} Data Enable Vsync t_{VFP} twva t_{VBP} Data Enable

Ver. 1.0 June. 4, 2008 12 / 32

3-6. Color Input Data Reference

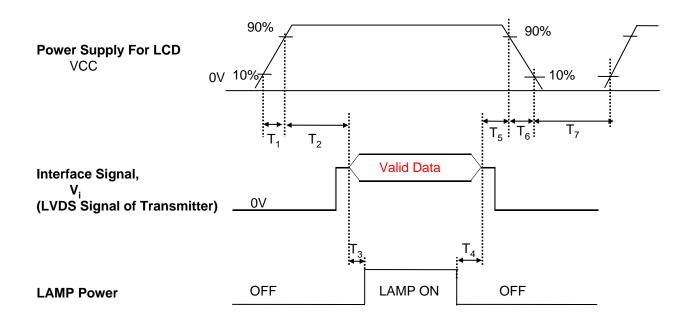

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

						Input Color Data													
	Color			RE	ΕD					GRE	EEN					BL	UE		
	MSE			_			MSE					LSB						LSB	
	I	R 5	R 4	R 3	R 2	R 1		G 5	G 4	G 3	G 2	G 1		B 5	B 4	В 3	B 2	B 1	B 0
	Black	0	0			0	0	0		0	0	0		0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0		0	0	0	0	0	0
	Green	0	0				0	1 	1	1		1	1	0	0	0		0	0
Basic	Blue	0	0				0	0	0		0	0		1	1	1		1	1
Color	Cyan	0	0	0			0	1	1	. 1 			1	1	1	1			1
	Magenta	1	1	.1	. 1	. 1	1	0	0	0	0	0	0	1	1	.1	. 1	1	1
	Yellow	1	1	1	. 1	. 1	1	1	1	1		1		0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN																			
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE		·····			 														
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	1	····· 1

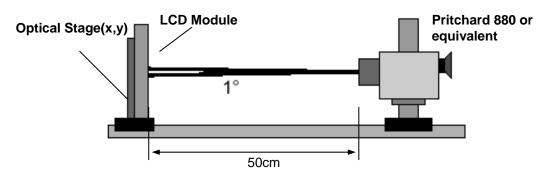
3-7. Power Sequence

Table 8. POWER SEQUENCE TABLE

Parameter		Value	Units	
	Min.	Тур.	Max.	
T ₁	0	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	400	-	-	(ms)

Note)

- 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 4. Lamp power must be turn on after power supply for LCD and interface signal are valid.



4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 9. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, fv=60Hz, f_{CLK} = 150.75MHz, F_{BL} = 60KHz , I_{BL} = 6.5mA

Parameter	Symbol		Values	Units	Notes		
Parameter	Symbol	Min	Тур	Max	Units	Notes	
Contrast Ratio	CR	500	-	-		1	
Surface Luminance, white	L_WH	200	220	-	cd/m ²	2	
Luminance Variation	δ_{WHITE}	-	-	2.0		3	
Response Time	Tr _R ₊Tr _D	-	16	30	ms	4	
Color Coordinates						±0.03	
RED	RX	0.566	0.596	0.626			
	RY	0.321	0.351	0.381	[
GREEN	GX	0.293	0.323	0.353	[
	GY	0.519	0.549	0.579			
BLUE	ВХ	0.128	0.158	0.188			
	BY	0.118	0.148	0.178			
WHITE	WX	0.283	0.313	0.343			
	WY	0.299	0.329	0.359			
Viewing Angle						5	
x axis, right(Φ=0°)	Θr	60			degree		
x axis, left (Φ=180°)	Θl	60	-		degree		
y axis, up (Φ=90°)	Θu	40	- -	-	degree		
y axis, down (⊕=270°)	Θd	50	-	-	degree		
Gray Scale							

Ver. 1.0 June. 4, 2008 15 / 32

Note)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

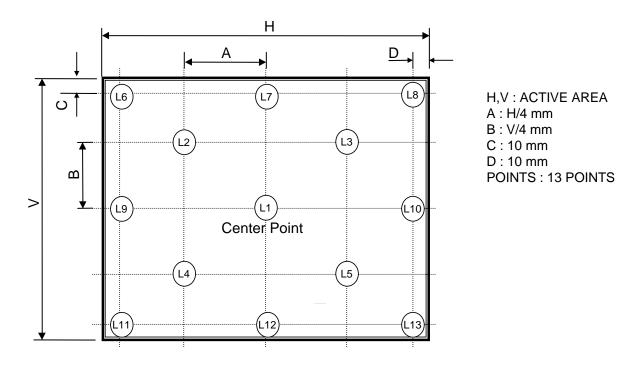
$$L_{WH} = Average(L_1, L_2, ... L_5)$$

3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

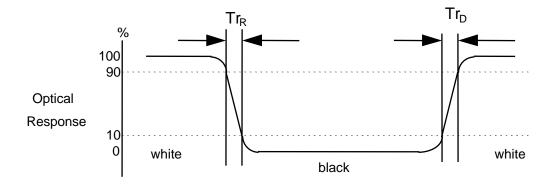
$$\delta_{\text{ WHITE}} = \frac{\text{Maximum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \ \dots \ \mathsf{L}_{13})}{\text{Minimum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \ \dots \ \mathsf{L}_{13})}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

*
$$f_{V} = 60Hz$$


Gray Level	Luminance [%] (Typ)
LO	0.1
L7	2.0
L15	7.6
L23	15.7
L31	25.6
	39.0
L47	55.6
L55	76.2
L63	100

Ver. 1.0 June. 4, 2008 16 / 32


FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

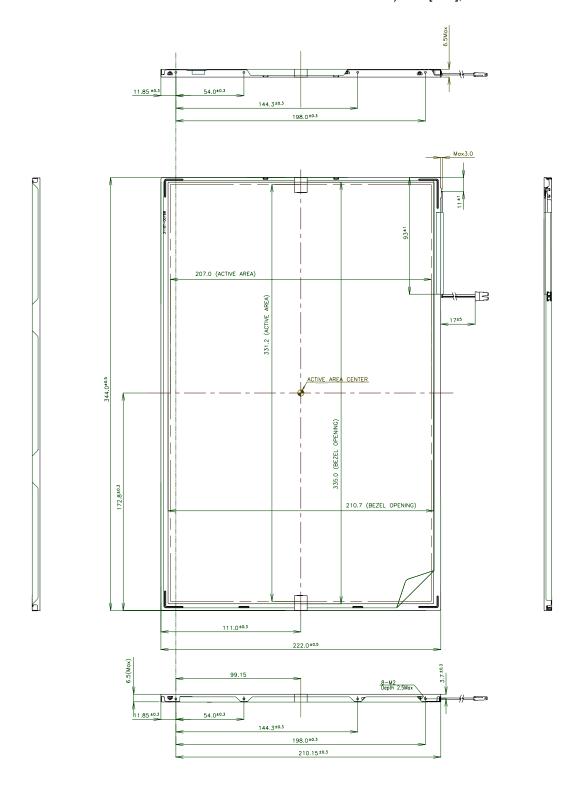
FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Ver. 1.0 June. 4, 2008 17 / 32

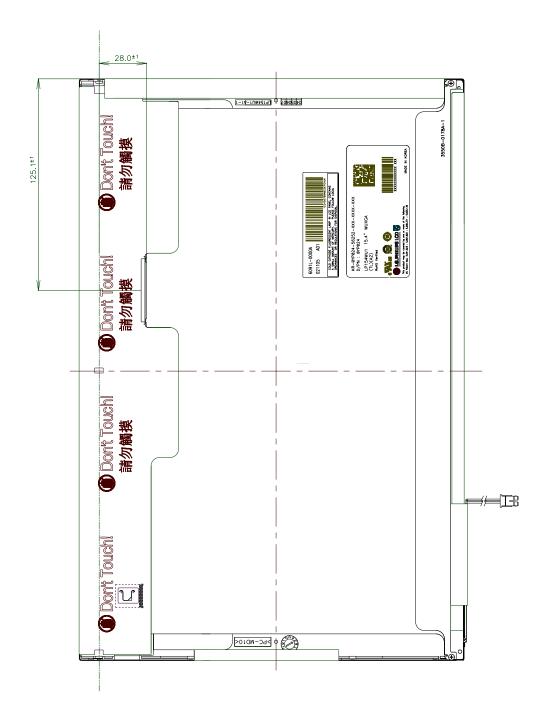
5. Mechanical Characteristics

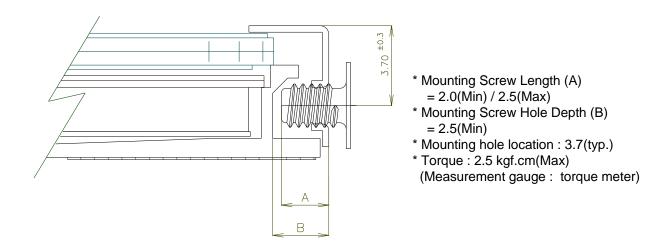
The contents provide general mechanical characteristics for the model LP154WU1. In addition the figures in the next page are detailed mechanical drawing of the LCD.


	Horizontal	344.0 ± 0.5mm			
Outline Dimension	Vertical	222.0 ± 0.5mm			
	Depth	6.2(typ) ± 0.3mm			
Bezel Area	Horizontal	335.0 ± 0.5mm			
bezei Alea	Vertical	$210.7 \pm 0.5 \text{mm}$			
Active Display Area	Horizontal	331.2 mm			
Active Display Area	Vertical	207.0 mm			
Weight	560 g (Max.) without inverter & bracket				
Surface Treatment	Glare treatment of the front polarizer				

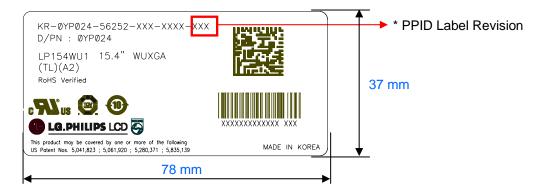
Ver. 1.0 June. 4, 2008 18 / 32

<FRONT VIEW>


Note) Unit:[mm], General tolerance: \pm 0.5mm


<REAR VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm



[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

Notes: 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.

[DETAIL INFORMATION OF PPID LABEL AND REVISION CODE]

* PPID Label Revision:

It is subject to change with Dell event. Please refer to the below table for detail.

Classification	No Change	1st Revision	2nd Revision	 9th Revision	
SST(WS)	X00	X01	X02	 A09	
PT(ES)	X10	X11	X12	 A19	
ST(CS)	X20	X21	X22	 A29	
XB(MP)	A00	A01	A02	 A09	