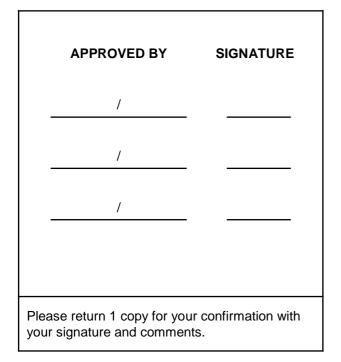
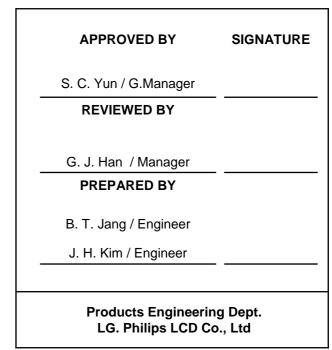


SPECIFICATION FOR APPROVAL

- () Preliminary Specification
- (**♦**) Final Specification


Title


Customer	DELL
MODEL	

15.4" WXG/	A TFT	LCD
------------	-------	-----

SUPPLIER	LG.Philips LCD Co., Ltd.
*MODEL	LP154WP1
Suffix	TLD1

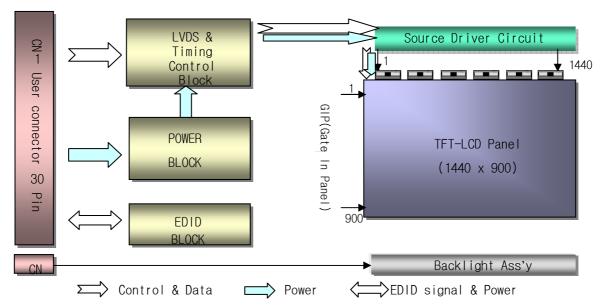
*When you obtain standard approval, please use the above model name without suffix

<u>Contents</u>

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	LVDS SIGNAL TIMING SPECIFICATIONS	9
3-4	SIGNAL TIMING SPECIFICATIONS	11
3-5	SIGNAL TIMING WAVEFORMS	11
3-6	COLOR INPUT DATA REFERNECE	12
3-7	POWER SEQUENCE	13
4	OPTICAL SFECIFICATIONS	14
5	MECHANICAL CHARACTERISTICS	17
6	RELIABLITY	24
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	25
7-2	EMC	25
8	PACKING	
8-1	DESIGNATION OF LOT MARK	26
8-2	PACKING FORM	26
9	PRECAUTIONS	27
A	APPENDIX. Enhanced Extended Display Identification Data	29

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	Sep. 10. 2007	-	First Draft (Preliminary Specification)	0.0
1.0	Oct. 31. 2007	-	Final CAS	0.0



1. General Description

The LP154WP1 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp (CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 15.4 inches diagonally measured active display area with WXGA resolution(900 vertical by 1440 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

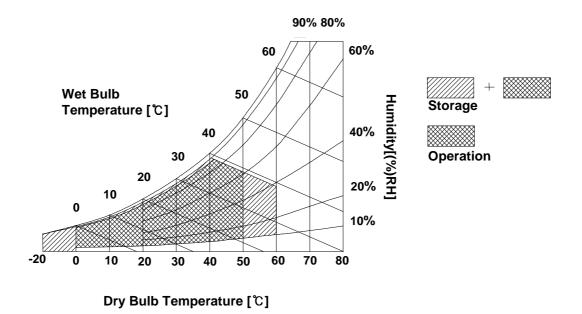
The LP154WP1 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP154WP1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP154WP1 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	15.4 inches diagonal
Outline Dimension	344.0 (H) × 222.0 (V) × 6.4(D, max) mm
Pixel Pitch	0.2301 mm × 0.2301 mm
Pixel Format	1440 horiz. by 900 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	250 cd/m²(Typ.) , 5 point
Power Consumption	Total 5.77 Watt(Typ.) @ LCM circuit 1.35 Watt(Typ.), B/L input 4.42 Watt(Typ.)
Weight	515g (Max.) w/o inverter & bracket
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Hard coating(3H) Glare treatment of the front polarizer
RoHS Comply	Yes

Ver. 1.0


2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

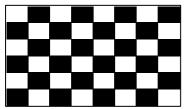
Parameter	Symbol	Val	ues	Units	Notes	
Falanletei	Symbol	Min	Max	Units	NOICES	
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 \pm 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Table 1. ABSOLUTE MAXIMUM RATINGS

Note : 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39°C Max, and no condensation of water.

3. Electrical Specifications

3-1. Electrical Characteristics

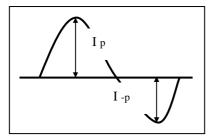

The LP154WP1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

Deservator	C: make al	Values			L los it	Natas
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE :						
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V _{DC}	
Power Supply Input Current	I _{cc}		405	465	mA	1
Power Consumption	Pc	-	1.35	1.67	Watt	1
Differential Impedance	Zm	90	100	110	Ohm	2
LAMP :						
Operating Voltage	V _{BL}	665 (7.0mA)	680 (6.5mA)	895 (2.0mA)	V _{RMS}	
Operating Current	I _{BL}	2.0	6.5	7.0	mA _{RMS}	3
Power Consumption	P _{BL}	-	4.42	4.73		
Operating Frequency	f _{BL}	45	60	80	kHz	
Discharge Stabilization Time	Ts	-	-	3	Min	4
Life Time		15,000	-		Hrs	5
Established Starting Voltage at 25℃ at 0 ℃	Vs			1170 1400	V _{RMS} V _{RMS}	

Table 2. ELECTRICAL CHARACTERISTICS

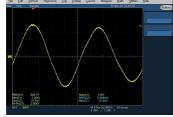
Note)

1. The specified current and power consumption are under the Vcc = 3.3V, 25 °C, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.



- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics.
- 4. Define the brightness of the lamp after being lighted for 5 minutes as 100%, Ts is the time required for the brightness of the center of the lamp to be not less than 95%.
- 5. The life time is determined as the time at which brightness of lamp is 50% compare to that of initial value at the typical lamp current.

Note)


- 6. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform.(Asymmetrical ratio is less than 10%) Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequence.
- 7. It is defined the brightness of the lamp after being lighted for 5 minutes as 100%. T_s is the time required for the brightness of the center of the lamp to be not less than 95%.
- 8. The lamp power consumption shown above does not include loss of external inverter. The applied lamp current is a typical one.
- 9. Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.
 - It shall help increase the lamp lifetime and reduce leakage current.
 - a. The asymmetry rate of the inverter waveform should be less than 10%.
 - b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$.
 - * Inverter output waveform had better be more similar to ideal sine wave.


* Asymmetry rate: | I _p – I _{–p} | / I_{rms} * 100% * Distortion rate _ I _p (or I _{–p}) / I_{rms}

- 10. Inverter open voltage must be more than lamp voltage for more than 1 second for start-up. Otherwise, the lamps may not be turned on.
 - * Do not attach a conducting tape to lamp connecting wire.
 - If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.

Ex of current wave)

Normal current wave - Standard

Abnormal current wave - Bad

Abnormal current wave - Bad

Abnormal current wave - Bad

3-2. Interface Connections

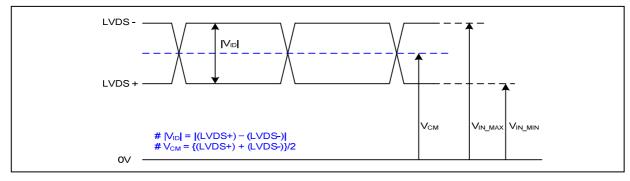
Γ

This LCD employs two interface connections, a 30 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

PinSymbolDescriptionNotes1GNDGround2VCCPower Supply, 3.3V Typ.3VCCPower Supply, 3.3V Typ.4V EEDIDDDC 3.3V power5BISTPanel BIST control6CIK EEDIDDDC Clock7DATA EEDIDDDC Dot Data8Odd R, uPositive LVDS differential data input9Odd R, uPositive LVDS differential data input10GNOGround11Odd R, uPositive LVDS differential data input12Odd R, uPositive LVDS differential data input13GNOGround14Odd, R, uPositive LVDS differential data input15Odd, R, uPositive LVDS differential data input14Odd, R, uPositive LVDS differential data input15Odd, R, uPositive LVDS differential data input16ONDGround17Odd, R, uPositive LVDS differential data input18Odd, CIKINNegative LVDS differential data input19GNOGround20Even, R, uPositive LVDS differential data input21Even, R, uPositive LVDS differential data input22GNOGround23Even, R, uPositive LVDS differential data input24Even, R, uPositive LVDS differential data input25GNOGround26Even, R, uPositive LVDS differential data input27Even		Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)						
2 VCC Power Supply, 3.3V Typ. 3 VCC Power Supply, 3.3V Typ. 4 V EEDID D0C 3.3V power 5 BIST Panel BIST control 6 CIK EEDID D0C Clock 7 DATA EEDID D0C DC Clock 8 Odd R ₁₀ O- Negative LVDS differential data input 9 Odd R ₁₀ O+ Positive LVDS differential data input 10 GND Ground 12 Odd R ₁₀ 2+ Positive LVDS differential data input 13 GND Ground 14 Odd R ₁₀ 2+ Negative LVDS differential data input 15 Odd R ₁₀ 2+ Negative LVDS differential data input 14 Odd R ₁₀ 2+ Negative LVDS differential data input 15 Odd R ₁₀ 2+ Negative LVDS differential data input 16 GND Ground 17 Odd R ₁₀ 2+ Negative LVDS differential data input 19 GND Ground 20 Even_R ₁₀ 0+ Negative LVDS differential data input 21 Even_R ₁₀ 0+ Ground 22	Pin	Symbol	Description	Notes				
3 VCC Power Supply, 3.3V Typ. 4 V EEDID DDC 3.3V power 5 BIST Panel BIST control 6 CIK EEDID DDC Clock 7 DATA EEDID DDC Data 8 Odd_R ₁₀ O- Negative LVDS differential data input 9 Odd_R ₁₀ O- Negative LVDS differential data input 10 GND Ground 11 Odd_R ₁₀ 1- Negative LVDS differential data input 12 Odd_R ₁₀ 1- Negative LVDS differential data input 13 GND Ground 14 Odd_R ₁₀ 2- Negative LVDS differential data input 15 Odd_R ₁₀ 2- Negative LVDS differential clock input 14 Odd_CKIN+ Negative LVDS differential clock input 15 Odd_CKIN+ Negative LVDS differential data input 16 GND Ground 22 GND Ground 23 Even_R ₁₀ - Negative LVDS differential data input 24 Even_R ₁₀ + Negative LVDS differential data input 23 GND Ground 24 <td>1</td> <td>GND</td> <td>Ground</td> <td></td>	1	GND	Ground					
4 V EEDID DDC 3.3V power 1, Interface chips 5 BIST Panel BIST control 1, Interface chips 6 CIK EEDID DDC Clock 1.1 LCD : DTML012(LCD Controller) including LVDS Receiver 7 DATA EEDID DDC Data 1.1 LCD : DTML012(LCD Controller) including LVDS Receiver 8 Odd_R _M 0- Negative LVDS differential data input 1.1 LCD : DTML012(LCD Controller) including LVDS Receiver 9 Odd_R _M 0- Negative LVDS differential data input 1.2 System : THC63LVD823A or equivalent * Pin to Pin compatible with THINE LVDS 9 Odd_R _M 0- Foositive LVDS differential data input 2.1 CD : THSB30SRL-HF11, JAE or MDF76LARW-30S-1H, Hirose equivalent. Locking design 12 Odd_R _M 1- Positive LVDS differential data input 2.3 Connector 14 Odd_R _M 2- Negative LVDS differential data input 2.3 Connector pin arrangement 15 Odd_CLK _M Positive LVDS differential clock input 30 1 17 Odd_CLK MH Negative LVDS differential data input 20 18 Odd_CLK MH Negative LVDS differential data input 20 22 GND Ground Ground 30 23	2	VCC	Power Supply, 3.3V Typ.					
5 BIST Panel BIST control 1, Interface chips 6 CIk EEDID DDC Clock 1.1 LCD : DTML012(LCD Controller) 7 DATA EEDID DDC Clock 1.1 LCD : DTML012(LCD Controller) 8 Odd_R _W 0- Negative LVDS differential data input 1.1 LCD : DTML012(LCD Controller) 9 Odd_R _W 0+ Negative LVDS differential data input * Pin to Pin compatible with THINE LVDS 10 GND Ground 2. Connector 2.1 LCD : THXB30SRL-HF11, JAE or 11 Odd_R _W 1+ Positive LVDS differential data input 2. Connector 2.1 LCD : THXB30SRL-HF11, JAE or 13 GND Ground Ground 2.2 Mating: FHX30M or equivalent. 2.3 Connector pin arrangement 14 Odd_R _W 2+ Positive LVDS differential data input 2.3 Connector pin arrangement 30 1 15 Odd_CLKIN- Negative LVDS differential clock input 10 Ground 1 16 GND Ground Ground 1 [LCD Module Rear View] 20 Even_R _W 0- Negative LVDS differential data input 2 MD Ground 21 Even_R _W 1+	3	VCC	Power Supply, 3.3V Typ.					
5 BIST Panel BIST control 6 CIK EEDID DDC Clock 7 DATA EEDID DDC Data 8 Odd_R _{iw} 0- Negative LVDS differential data input 9 Odd_R _{iw} 0- Negative LVDS differential data input 10 GND Ground 11 Odd_R _{iw} 1- Negative LVDS differential data input 13 GND Ground 14 Odd_R _{iw} 2- Negative LVDS differential data input 15 Odd_R _{iw} 2+ Positive LVDS differential clock input 16 GND Ground 17 Odd_CLKIN+ Negative LVDS differential clock input 19 GND Ground 20 Even_R _{iw} 0- Negative LVDS differential clock input 19 GND Ground 21 Even_R _{iw} 0- Negative LVDS differential data input 22 GND Ground 23 Even_R _{iw} 1- Negative LVDS differential data input 24 Even_R _{iw} 2- Negative LVDS differential data input 25 GND Ground 26 Even_	4	V EEDID		1 Interface ching				
 G. K. EEDID DOC DOCK T. DATA EEDID DOC TOCK T. DATA EEDID DOC Data T. OATA EEDID DOC Data DOC Data ODC Data Odd, R_{in} 0 - Negative LVDS differential data input Pin to Pin compatible with THINE LVDS Odd, R_{in} 1 - Negative LVDS differential data input Odd, R_{in} 1 + Positive LVDS differential data input Odd, R_{in} 2 - Negative LVDS differential data input Odd, CLKIN+ Negative LVDS differential data input Odd, CLKIN+ Negative LVDS differential data input Odd, CLKIN+ Negative LVDS differential clock input Odd, CLKIN+ Negative LVDS differential data input Odd, CLKIN+ Negative LVDS differential data input Odd, CLKIN+ Negative LVDS differential data input GND Ground Even, R_{in} 0 - Negative LVDS differential data input GND Ground Even, R_{in} 1 - Negative LVDS differential data input Even, R_{in} 1 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground Even, R_{in} 2 - Negative LVDS differential data input GND Ground GND Ground GND Ground<td>5</td><td>BIST</td><td>Panel BIST control</td><td></td>	5	BIST	Panel BIST control					
8 0dd_R ₁₁₁ 0- Negative LVDS differential data input 9 0dd_R ₁₁₁ 0+ Positive LVDS differential data input 10 GND Ground 11 0dd_R ₁₁₁ 0+ Negative LVDS differential data input 12 0dd_R ₁₁₁ 1+ Negative LVDS differential data input 13 GND Ground 14 0dd_R ₁₁₁ 2- Negative LVDS differential data input 15 0dd_R ₁₁₁ 2+ Positive LVDS differential data input 16 GND Ground 17 0dd_LKINH Negative LVDS differential clock input 18 0dd_CLKINH Negative LVDS differential data input 19 GND Ground 20 Even_R ₁₀₁ 0- Negative LVDS differential data input 12 GND Ground Ground 23 Even_R ₁₀₁ 0- Negative LVDS differential data input 24 Even_R ₁₀₁ 1+ Negative LVDS differential data input 25 GND Ground 26 Even_R ₁₀₁ 2- Negative LVDS differential data input 27 Even_R ₁₀₁ 2+ Negative LVDS differential data input	6	CIk EEDID	DDC Clock	· · · · · · · · · · · · · · · · · · ·				
8 Odd_R _{IN} 0- Negative LVDS differential data input * Pin to Pin compatible with THINE LVDS 9 Odd_R _{IN} 0+ Positive LVDS differential data input * Oin compatible with THINE LVDS 10 GND Ground 2. Connector 11 Odd_R _{IN} 1- Negative LVDS differential data input 2. Connector 12 Odd_R _{IN} 1- Positive LVDS differential data input 2. Connector 13 GND Ground 2.2 Mating : FI-X30M or equivalent. 14 Odd_R _{IN} 2- Negative LVDS differential data input 3.3 Connector pin arrangement 15 Odd_R _{IN} 2+ Positive LVDS differential clock input 3.3 Connector pin arrangement 16 GND Ground 3.0 [Incomediate input 3.0 [Incomediate input 18 Odd_CLKIN+ Negative LVDS differential data input 3.0 [Incomediate input 22 GND Ground Ground [LCD Module Rear View] 23 Even_R _{IN} 0+ Negative LVDS differential data input 2.5 GND Ground 24 Even_R _{IN} 2+ Negative LVDS differential data input 2.2 KINP And 28 GND Ground	7	DATA EEDID	DDC Data	1.2 System : TUC621 \/D9224 or equivalent				
9 0dd_R ₁₀ 0+ Positive LVDS differential data input 10 GND Ground 2. Connector 11 0dd_R ₁₀ 1- Negative LVDS differential data input 2.1 LCD :FI-XB30SRL-HF11, JAE or MDF76LARW-30S-1H, Hirose equivalent. Locking design 12 0dd_R ₁₀ 1+ Positive LVDS differential data input 2.2 Mating : FI-X30M or equivalent. 13 GND Ground 2.2 Mating : FI-X30M or equivalent. 14 0dd_R ₁₀ 2+ Negative LVDS differential data input 30 15 0dd_CLKIN+ Negative LVDS differential clock input 30 16 GND Ground 30 17 0dd_CLKIN+ Negative LVDS differential clock input 18 0dd_CLKIN+ Negative LVDS differential data input 19 GND Ground 20 Even_R ₁₀ 0+ Negative LVDS differential data input 21 Even_R ₁₀ 0+ Negative LVDS differential data input 22 GND Ground 23 Even_R ₁₀ 2+ Negative LVDS differential data input 25 GND Ground 26 Even_R ₁₀ 2+ Negative LVDS differen	8	0dd_R _{IN} 0-	Negative LVDS differential data input					
 10. GND Ground 11. Odd_R_{IN} 1- Negative LVDS differential data input 12. Odd_R_{IN} 1+ Positive LVDS differential data input 13. GND Ground 14. Odd_R_{IN} 2- Negative LVDS differential data input 15. Odd_R_{IN} 2+ Positive LVDS differential clock input 16. GND Ground 17. Odd_CLKIN- Negative LVDS differential clock input 18. Odd_CLKIN+ Positive LVDS differential data input 20. Even_R_{IN} 0- Negative LVDS differential data input 21. Even_R_{IN} 0- Negative LVDS differential data input 22. GND Ground 23. Even_R_{IN} 1- Negative LVDS differential data input 24. Even_R_{IN} 1- Negative LVDS differential data input 25. GND Ground 26. Even_R_{IN} 2+ Positive LVDS differential data input 27. Even_R_{IN} 2+ Negative LVDS differential data input 28. GND Ground 29. Even_CLKIN- Negative LVDS differential clock input 	9		Positive LVDS differential data input					
11Odd_R _N 1-Negative LVDS differential data inputMDF76LARW-30S-1H, Hirose equivalent. Locking design12Odd_R _N 1+Positive LVDS differential data input013GNDGround2.2 Mating : FI-X30M or equivalent.14Odd_R _N 2-Negative LVDS differential data input3.3 Connector pin arrangement15Odd_R _N 2+Positive LVDS differential clock input3.016GNDGround117Odd_CLKIN-Negative LVDS differential clock input3.018Odd_CLKIN+Positive LVDS differential clock input119GNDGroundGround20Even_R _M 0-Negative LVDS differential data input21Even_R _M 0+Positive LVDS differential data input22GNDGround23Even_R _M 1-Negative LVDS differential data input24Even_R _M 2+Positive LVDS differential data input25GNDGround26Even_R _M 2+Positive LVDS differential data input27Even_R _M 2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	10							
12 0dd_R _{IN} 1+ Positive LVDS differential data input equivalent. Locking design 13 GND Ground and an input equivalent. Locking design 14 0dd_R _{IN} 2- Negative LVDS differential data input and an input and an input 15 0dd_R _{IN} 2+ Positive LVDS differential data input and an input and an input 16 GND Ground and an input and an input an input 17 0dd_CLKIN- Negative LVDS differential clock input an input an input 18 0dd_CLKIN+ Positive LVDS differential data input an input ifferential data input 20 Even_R _{IN} 0+ Positive LVDS differential data input ifferential data input 21 Even_R _{IN} 0+ Positive LVDS differential data input ifferential data input 23 Even_R _{IN} 1+ Positive LVDS differential data input an input 25 GND Ground an input 26 Even_R _{IN} 2+ Positive LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential clock input 28 GND Ground	11	Odd_R _{IN} 1-	Negative LVDS differential data input					
13 GND Ground 2.2 Matting: FI-X30W of equivalent. 14 Odd, R _{IN} 2- Negative LVDS differential data input 3.3 Connector pin arrangement 15 Odd, R _{IN} 2+ Positive LVDS differential data input 3.3 Connector pin arrangement 16 GND Ground 3.0 Image: FI-X30W of equivalent. 17 Odd_CLKIN- Negative LVDS differential clock input 3.0 Image: FI-X30W of equivalent. 18 Odd_CLKIN+ Negative LVDS differential clock input 3.0 Image: FI-X30W of equivalent. 19 GND Ground 3.0 Image: FI-X30W of equivalent. 20 Even_R _{IN} 0- Negative LVDS differential clock input 3.0 Image: FI-X30W of equivalent. 21 Even_R _{IN} 0- Negative LVDS differential data input Image: FI-X30W of equivalent. 22 GND Ground Ground Image: FI-X30W of equivalent. 23 Even_R _{IN} 1- Negative LVDS differential data input Image: FI-X30W of equivalent. 24 Even_R _{IN} 1- Negative LVDS differential data input Image: FI-X30W of equivalent. 25 GND Ground Image: FI-X30W of equivalent. 28 GND Ground	12	0dd_R _{IN} 1+	Positive LVDS differential data input	equivalent. Locking design				
14 0dd_R _{IN} 2- Negative LVDS differential data input 15 0dd_R _{IN} 2+ Positive LVDS differential data input 16 GND Ground 17 0dd_CLKIN- Negative LVDS differential clock input 18 0dd_CLKIN+ Positive LVDS differential clock input 19 GND Ground 20 Even_R _{IN} 0- Negative LVDS differential data input 21 Even_R _{IN} 0+ Positive LVDS differential data input 22 GND Ground 23 Even_R _{IN} 1+ Positive LVDS differential data input 24 Even_R _{IN} 1+ Positive LVDS differential data input 25 GND Ground 26 Even_R _{IN} 2+ Negative LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential data input 28 GND Ground 29 Even_CLKIN- Negative LVDS differential clock input	13							
16 GND Ground 17 Odd_CLKIN- Negative LVDS differential clock input 18 Odd_CLKIN+ Positive LVDS differential clock input 19 GND Ground 20 Even_R _{IN} 0- Negative LVDS differential data input 21 Even_R _{IN} 0+ Positive LVDS differential data input 22 GND Ground 23 Even_R _{IN} 1- Negative LVDS differential data input 24 Even_R _{IN} 1+ Positive LVDS differential data input 25 GND Ground 26 Even_R _{IN} 2- Negative LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential data input 28 GND Ground 29 Even_CLKIN- Negative LVDS differential clock input	14	0dd_R _{IN} 2-	Negative LVDS differential data input	2.3 Connector pin analigement				
16 GND Ground 17 Odd_CLKIN- Negative LVDS differential clock input 18 Odd_CLKIN+ Positive LVDS differential clock input 19 GND Ground 20 Even_R _{IN} 0- Negative LVDS differential data input 21 Even_R _{IN} 0+ Positive LVDS differential data input 22 GND Ground 23 Even_R _{IN} 1- Negative LVDS differential data input 24 Even_R _{IN} 1+ Positive LVDS differential data input 25 GND Ground 26 Even_R _{IN} 2- Negative LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential data input 28 GND Ground 29 Even_CLKIN- Negative LVDS differential clock input	15	0dd_R _{IN} 2+	Positive LVDS differential data input	301				
18 Odd_CLKIN+ Positive LVDS differential clock input 19 GND Ground 20 Even_R _{IN} 0- Negative LVDS differential data input 21 Even_R _{IN} 0+ Positive LVDS differential data input 22 GND Ground 23 Even_R _{IN} 1- Negative LVDS differential data input 24 Even_R _{IN} 1+ Positive LVDS differential data input 25 GND Ground 26 Even_R _{IN} 2- Negative LVDS differential data input 25 GND Ground 26 Even_R _{IN} 2- Negative LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential data input 28 GND Ground 29 Even_CLKIN- Negative LVDS differential clock input	16	GND	Ground					
19GND GNDGround[LCD Module Rear View]20Even_R1N 0-Negative LVDS differential data input21Even_R1N 0+Positive LVDS differential data input22GNDGround23Even_R1N 1-Negative LVDS differential data input24Even_R1N 1+Positive LVDS differential data input25GNDGround26Even_R1N 2-Negative LVDS differential data input27Even_R1N 2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	17	Odd_CLKIN-	Negative LVDS differential clock input					
19 GND Ground 20 Even_R _{IN} 0- Negative LVDS differential data input 21 Even_R _{IN} 0+ Positive LVDS differential data input 22 GND Ground 23 Even_R _{IN} 1- Negative LVDS differential data input 24 Even_R _{IN} 1+ Positive LVDS differential data input 25 GND Ground 26 Even_R _{IN} 2- Negative LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential data input 27 Even_R _{IN} 2+ Positive LVDS differential data input 28 GND Ground 29 Even_CLKIN- Negative LVDS differential clock input	18	Odd_CLKIN+	Positive LVDS differential clock input					
21Even_R_IN 0+Positive LVDS differential data input22GNDGround23Even_R_IN 1-Negative LVDS differential data input24Even_R_IN 1+Positive LVDS differential data input25GNDGround26Even_R_IN 2-Negative LVDS differential data input27Even_R_IN 2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	19	GND	Ground	[LCD Module Rear View]				
22GNDGround23Even_RIN 1-Negative LVDS differential data input24Even_RIN 1+Positive LVDS differential data input25GNDGround26Even_RIN 2-Negative LVDS differential data input27Even_RIN 2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	20	Even_R _{IN} 0-	Negative LVDS differential data input					
23Even_R_IN1-Negative LVDS differential data input24Even_R_IN1+Positive LVDS differential data input25GNDGround26Even_R_IN2-Negative LVDS differential data input27Even_R_IN2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	21	Even_R _{IN} 0+	Positive LVDS differential data input					
24Even_R_IN1+Positive LVDS differential data input25GNDGround26Even_R_IN2-Negative LVDS differential data input27Even_R_IN2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	22	GND						
25GNDGround26Even_R_IN 2-Negative LVDS differential data input27Even_R_IN 2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	23	Even_R _{IN} 1-	Negative LVDS differential data input					
26Even_RIN 2-Negative LVDS differential data input27Even_RIN 2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	24	Even_R _{IN} 1+	Positive LVDS differential data input					
27Even_RIN 2+Positive LVDS differential data input28GNDGround29Even_CLKIN-Negative LVDS differential clock input	25	GND	Ground					
28 GND Ground 29 Even_CLKIN- Negative LVDS differential clock input	26	Even_R _{IN} 2-	Negative LVDS differential data input					
29 Even_CLKIN- Negative LVDS differential clock input	27	Even_R _{IN} 2+	Positive LVDS differential data input					
······································	28	GND	Ground					
30 Even_CLKIN+ Positive LVDS differential clock input	29	Even_CLKIN-	Negative LVDS differential clock input					
	30	Even_CLKIN+	Positive LVDS differential clock input					

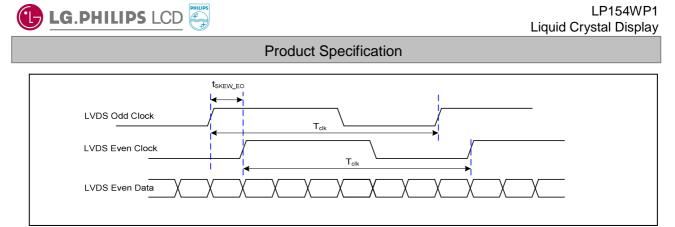
The electronics interface connector is a model FI-XB30SRL-HF11 manufactured by JAE.

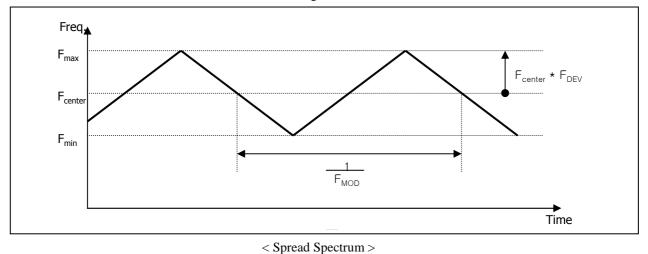
The backlight interface connector is a model BHSR-02VS-1, manufactured by JST or Compatible. The mating connector part number is AMP1674817-2 or equivalent.


[
	Table 4.	BACKLIGHT CONNECTOR PIN CONFIGU	RATION (J3)
Pin	Symbol	Description	Notes

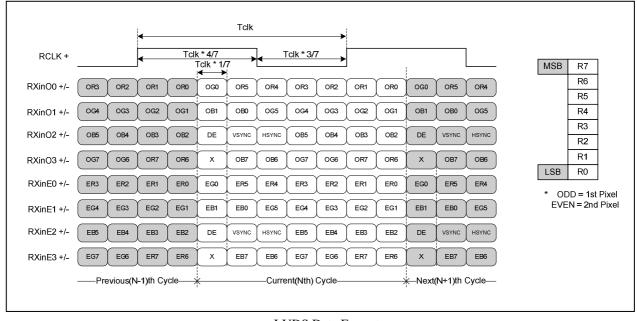
1 11 1			10005		
1	HV	Power supply for lamp (High voltage side)	1		
2	LV	Power supply for lamp (Low voltage side)	1		
Notes : 1. The high voltage side terminal is colored Pink and the low voltage side terminal is Black.					
Ver. 1.0 Oct. 31, 2007					

3-3. LVDS Signal Timing Specifications


3-3-1. DC Specification


Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification


LVDS Clock $LVDS Data$ $UVDS Data$ UVD							
Description	Symbol	Min	Max	Unit	Notes		
LVDS Clock to Data Skow Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz		
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz		
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-		
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-		
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-		

< Clock skew margin between channel >

3-3-3. Data Format 1) LVDS 2 Port

< LVDS Data Format >

Condition : VCC =3.3V

Product Specification

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

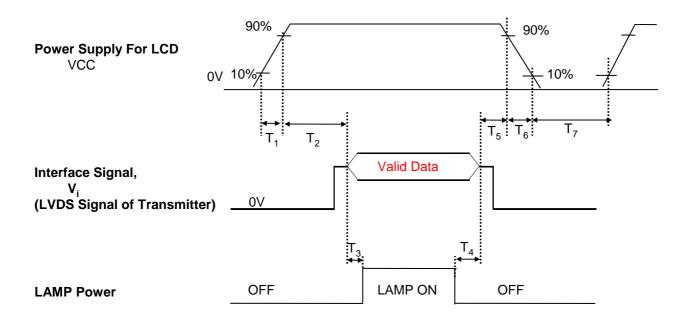
ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{CLK}	-	43.35	-	MHz	
	Period	Thp	-	776	1080		
Hsync	Width	t _{wH}	12	16	-	tCLK	
	Width-Active	t _{wha}	720	720	720		
	Period	t _{vP}	-	931	-		
Vsync	Width	t _{wv}	2	6	-	tHP	
	Width-Active	t _{wva}	900	900	900		
	Horizontal back porch	t _{HBP}	16	24	-	tCLK	
Data	Horizontal front porch	t _{HFP}	8	16	-	ICLK	
Enable	Vertical back porch	t _{vBP}	7	20	-	tHP	
	Vertical front porch	t _{vFP}	2	5	-	u IP	

Table 6. TIMING TABLE

3-5. Signal Timing Waveforms

High: 0.7VCC Data Enable, Hsync, Vsync Low: 0.3VCC tclk 0.5 Vcc DCLK t_{HP} Hsync t_{WH} twнa t_{HFP} t_{HBP} Data Enable t_{vP} τ_{W\} $\langle\!\!\!\langle$ Vsync t_{VFP} **t**wva t_{VBP} Data Enable 11/31 Ver. 1.0 Oct. 31, 2007

3-6. Color Input Data Reference


The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color ; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

									Inp	out Co	olor D	ata							
(Color			R	ED					GRI	EEN					BL	UE		
		MSE						MSE					LSB						LSB
	1	R 5	R 4	R 3	R 2	R 1	R 0		G 4	G 3	G 2	G 1	G 0	B 5	B 4	B 3	B 2	B 1	B 0
	Black	0	0	0	0 	0	0	0 	0	0	0	0	0	0 	0	0	0	0	0
	Red	1 	1 	1	1 	1 1	1	0 	0	0	0	0	0	0 	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1		1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																· · · · · · · · · · · · · · · · · · ·	 		
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN					•••••						 					· · · · · · · · · · · · · · · · · · ·	 		
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	 0	0	0	0	0	0	 0	0	0	0	0	 1
BLUE		1								•••••	 					· · · · · ·	••••• ••		
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	 1	1	1	1	1	0
	BLUE (63)	0	0	0	0	0	0	 0	0	0	0	0	0	1	 1	 1	····· 1	 1	 1

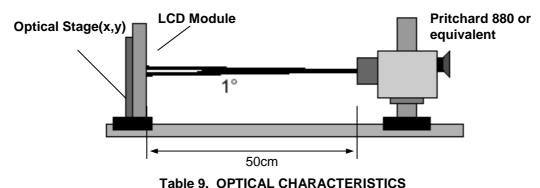
Table 7.	COLOR DATA REFERENCE
1001011	

3-7. Power Sequence

Table 8.	POWER SEQUENCE	ΓABLE
----------	----------------	-------

Parameter		Value		Units
	Min.	Тур.	Max.	
T ₁	0	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	400	-	-	(ms)

Note)


- 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 4. Lamp power must be turn on after power supply for LCD and interface signal are valid.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0°.

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

JIE 3.	OFICAL	CHARACTERISTICS	

_			Values	Values			
Parameter	Symbol	Min	Тур	Max	Units	Notes	
Contrast Ratio	CR	400	600			1	
Surface Luminance, white	L _{WH}	210	250		cd/m ²	2	
Luminance Variation	δ_{WHITE}			2.0]	3	
Response Time	Tr_{R} + Tr_{D}		16	25	ms	4	
Color Coordinates					1		
RED	RX	0.571	0.601	0.631	1		
	RY	0.320	0.350	0.380			
GREEN	GX	0.296	0.326	0.356	[
	GY	0.526	0.556	0.586	[
BLUE	BX	0.129	0.159	0.189	[
	BY	0.119	0.149	0.179			
WHITE	WX	0.283	0.313	0.343			
	WY	0.299	0.329	0.359			
Viewing Angle						5	
x axis, right(Φ =0°)	Θr		80		degree		
x axis, left (Φ =180°)	ΘΙ		80		degree		
y axis, up (Φ =90°)	Θu		60		degree		
y axis, down (Φ =270°)	Θd		60		degree		
Gray Scale						6	

Ta=25°C, VCC=3.3V, fv=60Hz, f _{CLK} = 86.7MHz, F _{BL}	₌ 60KHz , I _{BL} = 6.5mA
---	--

LP154WP1 Liquid Crystal Display

Note)

1. Contrast Ratio(CR) is defined mathematically as Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

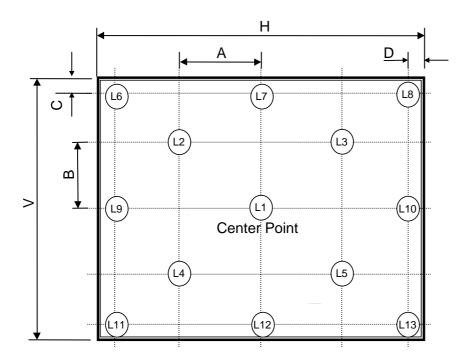
 $L_{WH} = Average(L_1, L_2, \dots L_5)$

3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

 $\delta_{\text{WHITE}} = \frac{\text{Maximum}(L_1, L_2, \dots L_{13})}{\text{Minimum}(L_1, L_2, \dots L_{13})}$

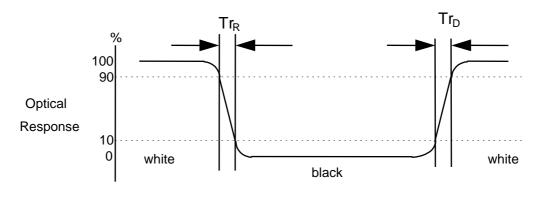
- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

6. (Gray	scale	specification
------	------	-------	---------------


 $f_{V} = 60 Hz$

Gray Level	Luminance [%] (Typ)
LO	0.12
L7	0.47
L15	3.24
L23	9.70
1.04	21.0
L39	35.9
L47	55.5
L55	79.1
L63	100

FIG. 2 Luminance

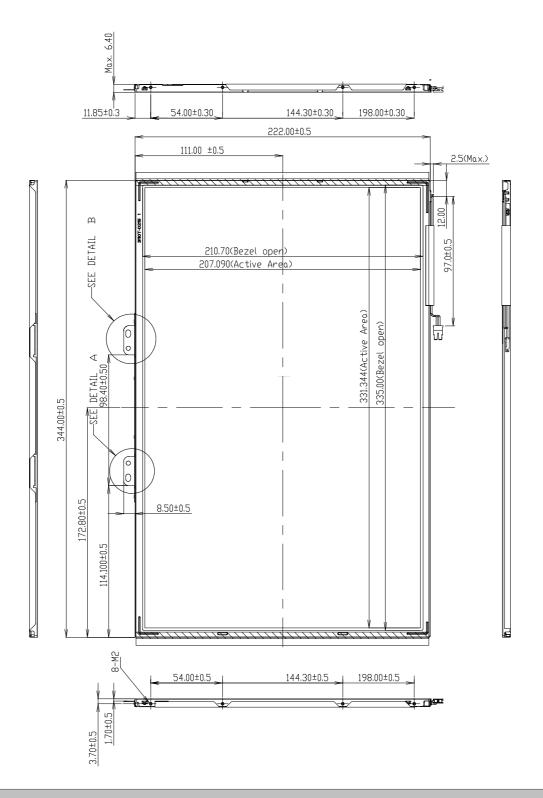

<measuring point for surface luminance & measuring point for luminance variation>

H,V : ACTIVE AREA A : H/4 mm B : V/4 mm C : 10 mm D : 10 mm POINTS : 13 POINTS

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

5. Mechanical Characteristics

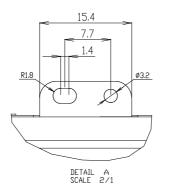

The contents provide general mechanical characteristics for the model LP154WP1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

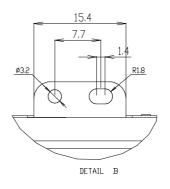
	Horizontal	$344.0\pm0.5\text{mm}$	
Outline Dimension	Vertical	$222.0\pm0.5\text{mm}$	
	Thickness	6.1 ± 0.3 mm	
Bezel Area	Horizontal	335.0 ± 0.5mm	
Dezei Area	Vertical	$210.7\pm0.5 \text{mm}$	
Active Display Area	Horizontal	331.344 mm	
Active Display Area	Vertical	207.090 mm	
Weight	515g (Max.)		
Surface Treatment	Hard coating(3H) Glare treatment of the front polarizer		

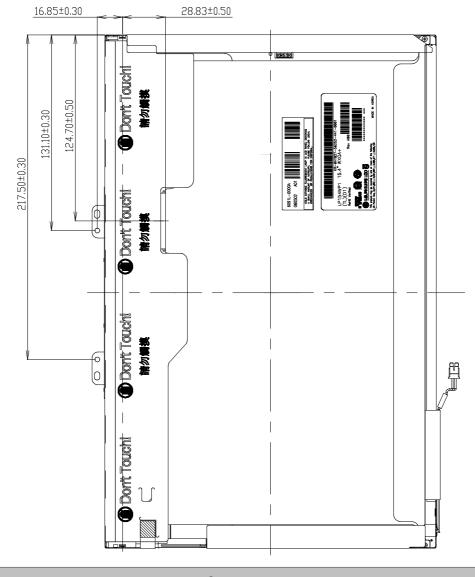
<FRONT VIEW>

Note) Unit:[mm], General tolerance: ± 0.5 mm

Oct. 31, 2007

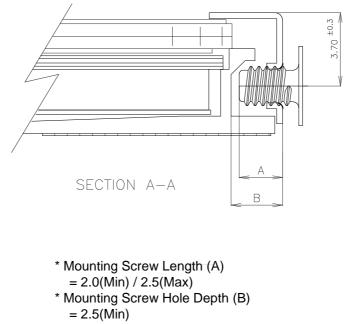

18/31




Note) Unit:[mm], General tolerance: ± 0.5 mm

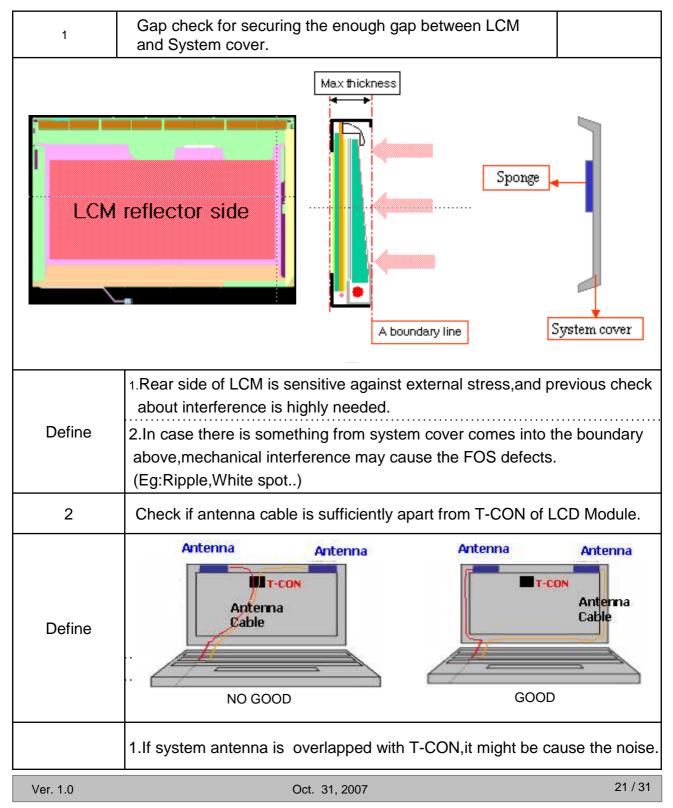
Product Specification

<REAR VIEW>

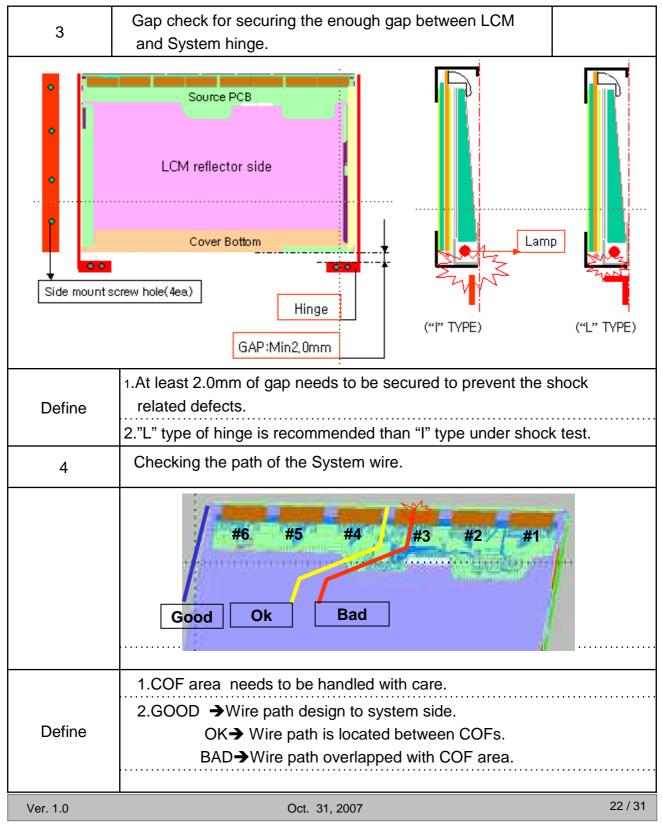


19/31

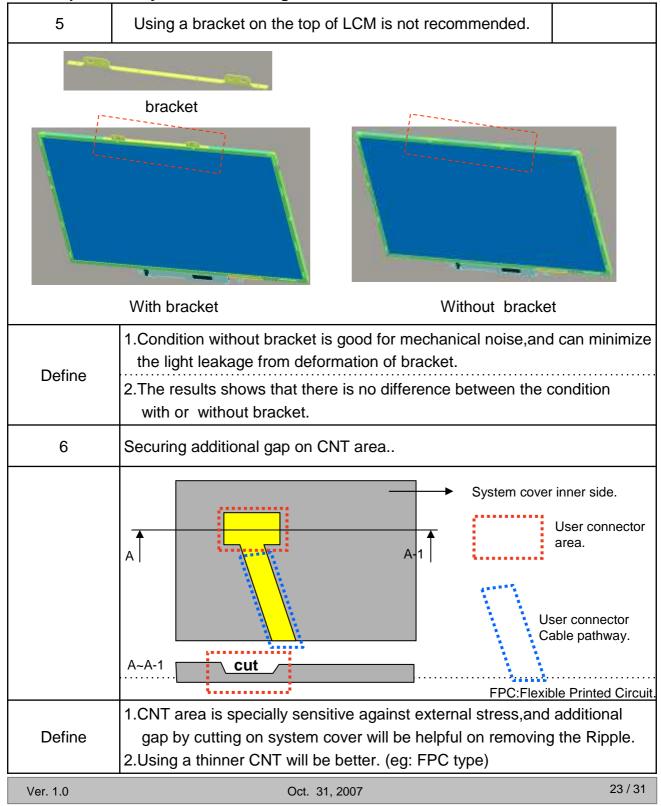
Oct. 31, 2007



- * Mounting hole location : 3.7(typ.)
- * Torque : 2.5 kgf.cm(Max)
- (Measurement gauge : torque meter)
- Notes : 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.



LPL Proposal for system cover design.(Appendix)



LPL Proposal for system cover design.

LPL Proposal for system cover design.

6. Reliability

Environment test condition

No.	Test Item	Conditions							
1	High temperature storage test	Ta= 60°C, 240h							
2	Low temperature storage test	Ta= -20°C, 240h							
3	High temperature operation test	Ta= 50°C, 50%RH, 240h							
4	Low temperature operation test	Ta= 0°C, 240h							
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis							
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 6ms for all six faces)							
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr							

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc., Standard for Safety of Information Technology Equipment.
b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association, Standard for Safety of Information Technology Equipment.
c) EN 60950-1:2001, First Edition, European Committee for Electrotechnical Standardization(CENELEC) European Standard for Safety of Information Technology Equipment.

7-2. EMC

a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992

b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.

c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH)
E : MONTH

D : YEAR F ~ M : SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one box : 20 pcs
- b) Box Size : 395mm × 390mm × 309mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental)
- to the polarizer.)(7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}(\text{Over and under shoot voltage})$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.

Please carefully peel off the protection film without rubbing it against the polarizer.

- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 1/3

Byte#	Byte#		Va	lue	Va	alue	
(decimal)	(HEX)	Field Name and Comments	(H	EX)	(bir	nary)	
0	00	Header	0	0	0000	0000	
1	01	Header	F	F	1111	1111	
2	02	Header	F	F	1111	1111	
3	03	Header	F	F	1111	1111	Header
4	04	Header	F	F	1111	1111	
5	05	Header	F	F	1111	1111	
6	06	Header	F	F	1111	1111	
7	07 08	Header	0		0000	0000 0010	
9	08	EISA manufacturer code(3 Character ID) = LPL EISA manufacture code (Compressed ASCII)	0	2 C	0011	1100	
9 10			0	0	0000	0000	
10	0A	Panel Supplier Reserved – Product code	-	F		1111	
-	0B	Panel Supplier Reserved – Product code	D		1101		\//
12	00	LCD Module Serial No. = 0 (If not used)	0	0	0000	0000	Vender/
13	0D	LCD Module Serial No. = 0 (If not used)	0	0	0000	0000	Product ID
14	0E	LCD Module Serial No. = 0 (If not used)	0	0	0000	0000	
15	0F	LCD Module Serial No. = 0 (If not used)	0	0	0000	0000	
16	10	Week of Manufacture = 00	0	0	0000	0000	
17		Year of Manufacture = 2007	1	1	0001	0001	
18		EDID Structure version # = 1	0		0000	0001	EDID Version/
19	13	EDID Revision $\# = 3$	0	_	0000	0011	Revision
20	14	Video Input Definition = Digital I/P, non TMDS CRGB	8		1000	0000	D : 1
21 22	15	Max H image size(cm) = 33.12cm(33)	2	1	0010	0001 0101	Display
22	16 17	Max V image size(cm) = 20.70cm(21) Display gamma =2.2	7	5 8	0001 0111	1000	Parameter
24	17	Feature support(DPMS) = Active off, RGB Color	0	A	0000	1000	
25	19	Red/Green low Bits	E	9	1110	1001	
26	1A	Blue/White Low Bits	D	5	1101	0101	
27	1B	Red X = 0.601	9	9	1001	1001	
28	1C	Red Y = 0.350	5	9	0101	1001	
29	1D	Green X = 0.326	5	3	0101	0011	Color
30	1E	Green Y = 0.556	8		1000	1110	Characteristic
31	1F	Blue X = 0.159	2	8	0010	1000	
32	20	Blue Y = 0.149	2	6	0010	0110	
33	21	White X = 0.313	5		0101	0000	
34 35	22	White $Y = 0.329$	-	4 0	0101	0100 0000	Established
36	23 24	Established timings 1 (00h if not used)	0	0	0000	0000	
		Established timings 2 (00h if not used) Manufacturer's timings (00h if not used)	0	0			Timings
37 38	25 26	Standard Timing Identification 1 was not used	0		0000	0000 0001	
38	26	Standard Timing Identification 1 was not used Standard Timing Identification 1 was not used	0	1	0000	0001	
40	27	Standard Timing Identification 1 was not used	0		0000	0001	
	28 29		_	1		0001	
41		Standard Timing Identification 2 was not used	0				
42	2A	Standard Timing Identification 3 was not used	_		0000	0001	
43	2B	Standard Timing Identification 3 was not used	0		0000	0001	Cton dd
44	2C	Standard Timing Identification 4 was not used	0		0000	0001	Standard
45	2D	Standard Timing Identification 4 was not used	0		0000	0001	Timing ID
46	2E	Standard Timing Identification 5 was not used	0	1	0000	0001	
47	2F	Standard Timing Identification 5 was not used	0	1	0000	0001	
48	30	Standard Timing Identification 6 was not used	0		0000	0001	
49	31	Standard Timing Identification 6 was not used	0	1	0000	0001	
50	32	Standard Timing Identification 7 was not used	0	1	0000	0001	
51	33	Standard Timing Identification 7 was not used	0	1	0000	0001	
52	34	Standard Timing Identification 8 was not used	0	1	0000	0001	
53	35	Standard Timing Identification 8 was not used	0	1	0000	0001	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 2/3

Byte#	Byte#	A. Emanoca Extended Display Identined	Val	_		alue	,
	(HEX)	Field Name and Comments	(HE			nary)	
(decimal)							
54 55		Pixel Clock/10,000 (LSB) Pixel Clock/10,000 (MSB) / 1440 x 900 @ 60Hz pixel clock = 86.3	D 2	E 1	0010	1110 0001	
56	37 38	Horizontal Active = 1440 pixels	A	0	1010	0000	
57	39		A 7	0	0111	0000	
58		Horizontal Blanking = 112 pixels Horizontal Active : Horizontal Blanking = 1440 : 112	5	0	0101	0000	
59	3A 3B	Vertical Avtive = 900 lines	8	4	1000	0100	
60	3D 3C	Vertical Blanking = 31 lines	1	F	0001	1111	Detailed
61	30 3D	Vertical Active : Vertical Blanking = 900 : 31	3	0	0001	0000	Timing
62		Horizontal Sync. Offset = 32 pixels	2	0	0010	0000	Description
63	3E 3F	Horizontal Sync Pulse Width = 32 pixels	2	0	0010	0000	#1
64	40	Vertical Sync Offset = 5 lines : Sync Width = 6 lines	5	6	0101	0110	π ι
65		Horizontal Vertical Sync Offset/Width upper 2bits = 0	0	0	0000	0000	
66		Horizontal Image Size = 33.12mm	4	B	0100	1011	
67	42	Vertical Image Size = 20.70mm	C	F	1100	1111	
68		Horizontal & Vertical Image Size	1	0	0001	0000	
69		Horizontal Border = 0	0	0	0000	0000	
70	46	Vertical Border = 0	0	0	0000	0000	
70	40	Non-interlaced,Normal display,no stereo,Digital separate sync,H/V pol negatives		8	0000	1000	
72		Pixel Clock/10,000 (LSB)		E		1110	
73	40	Pixel Clock/10,000 (MSB) / 1440 x 900 @ 60Hz pixel clock = 86.1	2	1	0010	0001	
74	43 4A	Horizontal Active = 1440 pixels	A	0	1010	0000	
75	4B	Horizontal Blanking = 112 pixels	7	0	0111	0000	
76		Horizontal Active : Horizontal Blanking = 1440 : 112	5	0	0101	0000	
70	40 4D	Vertical Avtive = 900 lines	8	4	1000	0100	
78	4E	Vertical Blanking = 31 lines	1	F	0001	1111	Detailed
79		Vertical Active : Vertical Blanking = 900 : 31	3	0	0011	0000	Timing
80		Horizontal Sync. Offset = 32 pixels	2	0	0010	0000	Description
81	51	Horizontal Sync Pulse Width = 32 pixels	2	0	0010	0000	#2
82	52	Vertical Sync Offset = 5 lines : Sync Width = 6 lines	5	6	0101	0110	
83		Horizontal Vertical Sync Offset/Width upper 2bits = 0	0	0	0000	0000	
84	54	Horizontal Image Size = 33.12mm	4	В	0100	1011	
85	55	Vertical Image Size = 20.70mm	С	F	1100	1111	
86		Horizontal & Vertical Image Size	1	0	0001	0000	
87		Horizontal Border = 0	0	0	0000	0000	
88	58	Vertical Border = 0	0	0	0000	0000	
89	59	Module "A" Revision = 00	0	0	0000	0000	
90		Flag	0	0		0000	
91	5B	Flag	0	0	0000	0000	
92		Flag	0	0	0000	0000	
93	5D	Dummy Descriptor	F	Ε	1111	1110	
94	5E	Flag		0	0000	0000	
95	5F	Dell P/N 1st Character = H		8	0100	1000	
96	60	Dell P/N 2nd Character = T	5	4	0101	0100	Detailed
97	61	Dell P/N 3nd Character = 8		8	0011	1000	Timing
98	62	Dell P/N 4th Character = 2		2	0011	0010	Description
99	63	Dell P/N 5th Character = 7	3	7	0011	0111	#3
100	64	LCD Supplier EEDID Revision # = 0.0	0	0	0000	0000	
101	65	Manufacturer P/N = 1	3	1	0011	0001	
102	66	Manufacturer P/N = 5	3	5	0011	0101	
103	67	Manufacturer $P/N = 4$	3	4	0011	0100	
104	68	Manufacturer P/N = W	5	7	0101	0111	
105	69	Manufacturer P/N = P	5	0	0101	0000	
106	6A	Manufacturer P/N = 1	3	1	0011	0001	
107	6B	P/N(If <13 char, then terminate with ASCII code 0Ah, set remaini	0	А	0000	1010	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID[™]) 3/3

Byte#	Byte#	Field Name and Comments	Va	lue	Value		
(decimal)	(HEX)		(HI	EX)	(binary)	
108	6C	Flag	0	0	0000 00	000	
109	6D	Flag	0	0	0000 00	000	
110	6E	Flag	0	0	0000 00	000	
111	6F	Data Type Tag : ASCII String	F	Е	1111 11	110	
112	70	Flag	0	0	0000 00	000	
113	71	SMBUS Value = 10 nits	2	3	0010 00	011	
114	72	SMBUS Value = 17 nits	3	3	0011 00	011	Detailed
115	73	SMBUS Value = 24 nits	3	D	0011 11	101	Timing
116	74	SMBUS Value = 30 nits	4	8	0100 10	000	Description
117	75	SMBUS Value = 60 nits	6	5	0110 01	101	#4
118	76	SMBUS Value = 110 nits	8	4	1000 01	100	
119	77	SMBUS Value = 180 nits	А	А	1010 10	010	
120	78	SMBUS Value = Max (Typically = FFh)	F	F	1111 11	111	
121	79	Number of LVDS receiver chips = 1 or 2	0	2	0000 00	010	
122	7A	BIST Enable: Yes = '01' No = '00'	0	1	0000 00	001	
123	7B	13 char, then terminate with ASCII code 0Ah, set remaining char=	0	А	0000 10	010	
124	7C	(If<13 char, then terminate with ASCII code 0Ah)	2	0	0010 00	000	
125	7D	(If<13 char, then terminate with ASCII code 0Ah)	2	0	0010 00	000	
126	7E	Extension flag = 00	0	0	0000 00	000	Extension Flag
127	7F	Checksum	9	Ε	1001 11	110	Checksum