Product Specification # SPECIFICATION FOR APPROVAL | (|) | Preliminary | Specification | |---|---|--------------------|----------------------| |---|---|--------------------|----------------------| ### (◆) Final Specification | Title | 10.1" WSVGA TFT LCD | |-------|---------------------| | • | | | Customer | Lenovo | |----------|--------| | MODEL | | | SUPPLIER | LG Display Co., Ltd. | |----------|----------------------| | *MODEL | LP101WSB | | Suffix | TLN1 | ^{*}When you obtain standard approval, please use the above model name without suffix | APPROVED BY | SIGNATURE | |-----------------------------|-----------------------| | / | | | / | | | 1 | | | | | | Please return 1 copy for yo | our confirmation with | your signature and comments. | APPROVED BY | SIGNATURE | |---|-----------| | C. J. Jun / Manager | | | REVIEWED BY | | | S. W. Paeng / Manager | | | PREPARED BY | | | J. J. Lee / Engineer | | | Products Engineering
LG Display Co., I | - | Ver. 1.0 Feb. 18, 2010 1 / 27 # **Product Specification** # Contents | No | ITEM | Page | |-----|---|------| | | COVER | 1 | | | CONTENTS | 2 | | | RECORD OF REVISIONS | 3 | | 1 | GENERAL DESCRIPTION | 4 | | 2 | ABSOLUTE MAXIMUM RATINGS | 5 | | 3 | ELECTRICAL SPECIFICATIONS | | | 3-1 | ELECTRICAL CHARACTREISTICS | 6 | | 3-2 | INTERFACE CONNECTION | 7 | | 3-3 | LVDS SIGNAL TIMING SPECIFICATIONS | 8 | | 3-4 | SIGNAL TIMING SPECIFICATIONS | 10 | | 3-5 | SIGNAL TIMING WAVEFORMS | 10 | | 3-6 | COLOR INPUT DATA REFERNECE | 11 | | 3-7 | POWER SEQUENCE | 12 | | 4 | OPTICAL SFECIFICATIONS | 13 | | 5 | MECHANICAL CHARACTERISTICS | 16 | | 6 | RELIABLITY | 20 | | 7 | INTERNATIONAL STANDARDS | | | 7-1 | SAFETY | 21 | | 7-2 | EMC | 21 | | 8 | PACKING | | | 8-1 | DESIGNATION OF LOT MARK | 22 | | 8-2 | PACKING FORM | 22 | | 9 | PRECAUTIONS | 23 | | Α | APPENDIX. Enhanced Extended Display Identification Data | 25 | # **Product Specification** # **RECORD OF REVISIONS** | Revision No | Revision Date | Page | Description | EDID
ver | |-------------|---------------|------|---|-------------| | 0.0 | Oct. 30. 2009 | All | First Draft (Preliminary Specification) | - | | 1.0 | Feb. 18. 2010 | | Final CAS | L | | | | | | | | | | l | | L | | L | | lJ | l | | L | | L | | lJ | | | | | | | | [|
 | | | | | | | | | | | | | ### **Product Specification** ### 1. General Description The LP101WSVGA is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 10.1inches diagonally measured active display area with WSVGA resolution(1024 horizontal by 600 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors. The LP101WSB has been designed to apply the interface method that enables low power, high speed, low EMI. The LP101WSB is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP101WSB characteristics provide an excellent flat display for office automation products such as Notebook PC. #### **General Features** | Active Screen Size | 10.1 inches diagonal | | | | | | |----------------------------|--|--|--|--|--|--| | Outline Dimension | 235.0(H) U 146.5(V) U .3.6(D,Max.) [mm] | | | | | | | Pixel Pitch | 0.2175mmx0.2088mm | | | | | | | Pixel Format | 1024 horiz. By 600 vert. Pixels RGB strip arrangement | | | | | | | Color Depth | 6-bit, 262,144 colors | | | | | | | Luminance, White | 200 cd/m ₂ (Typ.5 point) | | | | | | | Power Consumption (Mosaic) | Total 2.69 Watt(Typ.) @ LCM circuit 0.71 Watt(Typ.), B/L input 1.98 Watt(Typ.) | | | | | | | Weight | 180g (Max.) | | | | | | | Display Operating Mode | Transmissive mode, normally white | | | | | | | Surface Treatment | Glare treatment of the front polarizer | | | | | | | RoHS Comply | Yes | | | | | | ### **Product Specification** ### 2. Absolute Maximum Ratings The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit. Table 1. ABSOLUTE MAXIMUM RATINGS | Parameter | Symbol | Val | ues | Units | Notes | | |----------------------------|--------|------|-----|--------|-------------|--| | rarameter | Symbol | Min | Max | Offics | | | | Power Input Voltage | VCC | -0.3 | 4.0 | Vdc | at 25 ± 5°C | | | Operating Temperature | Тор | 0 | 50 | °C | 1 | | | Storage Temperature | Нѕт | -20 | 60 | °C | 1 | | | Operating Ambient Humidity | Нор | 10 | 90 | %RH | 1 | | | Storage Humidity | Hst | 10 | 90 | %RH | 1 | | Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39°C Max, and no condensation of water. **Dry Bulb Temperature** [$^{\circ}$ C] ### **Product Specification** ### 3. Electrical Specifications ### 3-1. Electrical Characteristics The LP101WSB requires two power inputs. The first logic is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second backlight is the input about LED BL with LED Driver. Table 2. ELECTRICAL CHARACTERISTICS | Downworton | | Symbol | Values | | | T T • | | |------------------------------|---------------------|---------------|--------|------|------|--------------|-------| | Parameter | | | Min | Тур | Max | Unit | Notes | | LOGIC: | | | | | | | | | Power Supply Input Voltage | | Vcc | 3.0 | 3.3 | 3.6 | V | 1 | | Dower Cupply Input Current | Mosaic | Icc | - | 238 | 273 | mA | 2 | | Power Supply Input Current | Black | ICC_max | - | 269 | 309 | mA | 3 | | Power Consumption | | Pcc | - | 0.78 | 0.90 | W | 2 | | Power Supply Inrush Current | | Icc_p | - | - | 1500 | mA | 4 | | LVDS Impedance | | ZLVDS | 90 | 100 | 110 | Ω | 5 | | BACKLIGHT : (with LED Drive | er) | | | | | | | | LED Power Input Voltage | | VLED | 7.0 | 12.0 | 21.0 | V | 6 | | LED Power Input Current | | ILED | - | 165 | 175 | mA | 7 | | LED Power Consumption | | PLED | - | 1.98 | 2.10 | W | 7 | | LED Power Inrush Current | | ILED_P | - | - | 1600 | mA | 8 | | PWM Duty Ratio | | | 5 | - | 100 | % | 9 | | PWM Jitter | | - | 0 | - | 0.3 | % | 10 | | PWM Impedance | | Zрwм | 20 | 40 | 60 | kΩ | | | PWM Frequency | | Fpwm | 1000 | 1000 | 5000 | Hz | 11 | | PWM High Level Voltage | | VPWM_H | 1.7 | - | 5.0 | V | | | PWM Low Level Voltage | | Vpwm_l | 0 | - | 0.5 | V | | | LED_EN Impedance | | Zpwm | 20 | 40 | 60 | kΩ | | | LED_EN High Voltage | LED_EN High Voltage | | 3.0 | - | 5.3 | V | | | LED_EN Low Voltage | | VLED_EN
_L | 0 | - | 0.4 | V | | | Life Time | | | 10,000 | - | - | Hrs | 12 | ### **Product Specification** #### Note) - 1. The measuring position is the connector of LCM and the test conditions are under 25 °C, fv = 60Hz, Mosaic pattern. - 2. The specified Icc current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency. - 3. This Spec. is the max load condition for the cable impedance designing. - 4. The below figures are the measuring Vcc condition and the Vcc control block LGD used. The Vcc condition is same the minimum of T1 at Power on sequence. - 5. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector. - 6. The measuring position is the connector of LCM and the test conditions are under 25 $^{\circ}$ C. - 7. The current and power consumption with LED Driver are under the Vled = 12.0V, 25° C, Dimming of Max luminance whereas White pattern is displayed and fv is the frame frequency. - 8. The below figures are the measuring Vled condition and the Vled control block LGD used. VLED control block is same with Vcc control block. - 9. The operation of LED Driver below 10% dimming ratio may cause flickering or reliability issue. - 10. If Jitter of PWM is bigger than maximum. It may cause flickering. - 11. This Spec. is not effective at 100% dimming ratio as an exception because it has DC level equivalent to 0Hz. In spite of acceptable range as defined, the PWM Frequency should be fixed and stable for more consistent brightness control at any specific level desired. - 12 The life time is determined as the time at which the typical brightness of LCD is 50% compare to that of initial value at the typical LED current. These LED backlight has 2 strings on it and the typical current of LED's string is base on 22mA. Ver. 1.0 Feb. 18, 2010 7 / 27 # **Product Specification** ### **3-2. Interface Connection** This LCD employs one interface connection, a 40 pin connector is used for the module electronics interface. Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1) | 1 - 2 | CT1/NC - VDD - VEDID - NC - CLKEDID - DATAEDID - RXINO- - RXINO- - RXINO- - RXINT- - RXINT- - RXINT- - RXINT- | Connector Test/No Connection(Reserved) +3.3V Power Supply +3.3V EDID Power No Connection EDID Clock Input EDID Data Input LVDS differential data input Ground LVDS differential data input LVDS differential data input LVDS differential data input | 1, Interface chips 1.1 LCD : SiW, 1port including LVDS Receiver 1.2 System: * Pin to Pin compatible with LVDS 2. Connector 2.1 LCD :HIROSE KN38A-40S-0.5H (Locking type) or equivalent | |--|---|--|---| | -3 | VEDID VEDID CLKEDID DATAEDID RXINO- RXINO- RXINO- RXINO- RXINT- RXINT- | +3.3V Power Supply +3.3V EDID Power No Connection EDID Clock Input EDID Data Input LVDS differential data input LVDS differential data input CVDS differential data input CVDS differential data input | 1.1 LCD : SiW, 1port including LVDS Receiver 1.2 System: * Pin to Pin compatible with LVDS 2. Connector 2.1 LCD :HIROSE KN38A-40S-0.5H (Locking type) or equivalent | | -4 | VEDID NC CLKEDID DATAEDID RXINO- RXINO- RXINO- RXINO- RXINT- RXINT- | +3.3V EDID Power No Connection EDID Clock Input EDID Data Input LVDS differential data input LVDS differential data input CVDS differential data input CVDS differential data input | 1.1 LCD : SiW, 1port including LVDS Receiver 1.2 System: * Pin to Pin compatible with LVDS 2. Connector 2.1 LCD :HIROSE KN38A-40S-0.5H (Locking type) or equivalent | | -5 | NC CLKEDID DATAEDID RXINO RXINO RXINO RXINO RXINO RXINO RXINO RXINO | No Connection EDID Clock Input EDID Data Input LVDS differential data input LVDS differential data input Ground LVDS differential data input | 1.1 LCD : SiW, 1port including LVDS Receiver 1.2 System: * Pin to Pin compatible with LVDS 2. Connector 2.1 LCD :HIROSE KN38A-40S-0.5H (Locking type) or equivalent | | - 6
- 7
- 8
- 9
- 10 | CLKEDID DATAEDID RXINO- RXINO- RXINO- RXINO- TXINO- TXINT- RXINT- | EDID Clock Input EDID Data Input LVDS differential data input LVDS differential data input Ground LVDS differential data input | 1.2 System: * Pin to Pin compatible with LVDS 2. Connector 2.1 LCD :HIROSE KN38A-40S-0.5H (Locking type) or equivalent | | -7 - 1 | DATAEDID | EDID Data Input LVDS differential data input LVDS differential data input Ground LVDS differential data input | * Pin to Pin compatible with LVDS 2. Connector 2.1 LCD :HIROSE KN38A-40S-0.5H (Locking type) or equivalent | | 8 | RXINO | EDID Data Input LVDS differential data input LVDS differential data input Ground LVDS differential data input | 2. Connector 2.1 LCD :HIROSE KN38A-40S-0.5H (Locking type) or equivalent | | 9 - + -
1 0
1 1 | RXINO+ | LVDS differential data input LVDS differential data input Ground LVDS differential data input | 2.1 LCD :HIROSE KN38A-40S-0.5H
(Locking type)
or equivalent | | ₁₀ - + - | · GND
· R⊼IÑ1
· R⊼IÑ1+ | Ground LVDS differential data input | (Locking type)
or equivalent | | -11 | - RXIN1
- RXIN1+ | LVDS differential data input | or equivalent | | 1 | RXIN1+ | | 0.014 % | | 12 - 1 - | | | 2.2 Mating : | | | · <u>- [vir</u> | LVDS differential data input | 2.3 Connector pin arrangement | | 13 - 1 - | GIND | | 2.0 Commoder par arrangement | | | RxIN2- | LVDS differential data input | | | 15 - 1- | RxIN2+ | LVDS differential data input | 40 1 | | 16 - 1 - | GND | Ground | <u> </u> | | - ₁₇ - † - | RxCLKIN | LVDS differential clock input | | | - 1 ₈ - + - | TRXCLKINF | LVDS differential clock input | [LCD Module Rear View] | | - ₁₉ - † - | gnd | | [LCD Module Real View] | | 20 - + - | DL | No Connection | | | 21 - + - | NC | No Connection | | | 22 | GND | | | | | . – – NG – – – | No Connection | | | 24 | NC | No Connection | | | 25 | GND | | | | - - 2 6 - + - | DC | No Connection | | | 27 - + - | NC | No Connection | | | 28 - + - | . – - GND- – | | | | 29 | NC | No Connection | | | - 30 - + - | DG | No Connection | | | 31 | VLED_GND | LED Ground | | | 32 | VLED_GND | LED Ground | | | 33 - + - | VLED_GND - | LED Ground | | | 34 - + - | | Connector Test/No Connection(Reserved) | | | 35 - + - | "S_PWMIN | System PWM signal input | | | 36 - + - | BE_QN | LED Enable[Note 1] | | | 37 - + - | NC | No Connection | | | 38 - + - | VLED | +7V~+21V LED Power Supply | [Note 1] | | | ·
· - VLED | +7V~+21V LED Power Supply
+7V~+21V LED Power Supply | [Note 1]
On: 3.0V↑ ,Off:0~0.4V | ## **Product Specification** # 3-3. LVDS Signal Timing Specifications ## 3-3-1. DC Specification | Description | Symb
ol | Min | Max | Unit | Notes | |---------------------------|-----------------|-----|-----|------|-------| | LVDS Differential Voltage | V _{ID} | 100 | 600 | mV | - | | LVDS Common mode Voltage | V _{CM} | 0.6 | 1.8 | V | - | | LVDS Input Voltage Range | V _{IN} | 0.3 | 2.1 | V | - | ### 3-3-2. AC Specification | Description | Symbol | Min | Max | Unit | Notes | |--|------------------|-------|-------|------------------|-------------------------| | LVDS Clock to Data Skew Margin | tskew | - 400 | + 400 | ps | 85MHz > Fclk ≥
65MHz | | 2000 Stock to Data Show margin | tskew | - 600 | + 600 | ps | 65MHz > Fclk ≥
25MHz | | LVDS Clock to Clock Skew Margin (Even to Odd) | tskew_eo | - 1/7 | + 1/7 | T _{clk} | - | | Maximum deviation of input clock frequency during SSC | F _{DEV} | - | ± 3 | % | - | | Maximum modulation frequency of input clock during SSC | F _{MOD} | - | 200 | KHz | - | ### **Product Specification** < Clock skew margin between channel > < Spread Spectrum > ### 3-3-3. Data Format ### - LVDS 1 Port < LVDS Data Format > ### **Product Specification** ### **3-4. Signal Timing Specifications** This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation. Table 5. TIMING TABLE | ITEM | Symbol | | Min | Тур | Max | Unit | Note | |--------|------------------------|-------------------------------|------|------|------|------|------| | DCLK | Frequency | f _{CLK} | - | 50.8 | - | MHz | | | | Period | Thp | 1320 | 1344 | 1362 | | | | Hsync | Width | t _{wн} | 132 | 136 | 150 | tCLK | | | | Width-Active | t _{wha} | 1024 | 1024 | 1024 | | | | ., | Period | t_{\scriptscriptstyleVP} | 621 | 625 | 632 | | | | Vsync | Width | t _{wv} | 1 | 3 | 5 | tHP | | | | Width-Active | t _{wva} | 600 | 600 | 600 | | | | | Horizontal back porch | t _{HBP} | 144 | 160 | 160 | +CLV | | | Data | Horizontal front porch | t _{HFP} | 20 | 24 | 28 | tCLK | | | Enable | Vertical back porch | $t_{\scriptscriptstyle{VBP}}$ | 20 | 22 | 24 | tHP | | | | Vertical front porch | $t_{\scriptscriptstyleVFP}$ | 0 | 0 | 3 | uir | | Note) Refresh Rate for Power Saving Mode In this documentation, all reliabilities are specified for timing specification based on refresh rate of 60Hz. However, LP101WSB has a good actual performance even at lower refresh rate (eg. 40Hz or 50Hz) for power saving mode, whereas LP101WSB is secured only for function under lower refresh rate. 60Hz at Normal mode, 50Hz, 40Hz at Power save mode. Don't care Flicker level (power save mode). ... ## **Product Specification** # 3-6. Color Input Data Reference The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. Table 7. COLOR DATA REFERENCE | | | | | | | | | Input Color Data | | | | | |] | | |-------|------------|--------------|---------------------|-------------------------|-------|------------------|----------------|------------------|----------|----------|----------------|----------------|----------------|----------|---| | | Color | | | REI | D | | | GREEN | | | BLUE | <u> </u> | | 1 | | | ' | Coloi | MSB | | | | | | LSB | MSE | 3 | | | | | | | | | LSB | <u> </u> | | | | | MSB | | | LSE | | |] | _ | | | Black | R 5 | R4
R4 | R 3
B 3 | | | ₹1 | R 0 | G 5 | G 4 | G 3 | G 2 | G 1 | G 0 | В | | | Red | 0 | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | Green | 0 | 0 | 0 | 0 | . _ | 7 | | | | | | ~ |] | ŭ | | Basic | Blue | 1 |
1 | - - | 1 |
1 | | 1 | 0 | 0 | 0 | - - | 0 | 0 | 0 | | Color | Cyan | 10 | 0 | 0 | 0 | c | 1 | | | | | | | | | | | Magenta | 0 | 0 | 0 | 0 | - - - | 1 | 0 | | 1 | ·
1 | -
1 | . – – –
1 |
 1 | 0 | | | Yellow | 0 | 0 | 0 | 0_ | . _ | 7 | | | | | | | | | | | White | 0 | - - ° | 0 | 0 | c | 7 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | | | RED (00) | 1 | 1 | 1 | 1 | 1 | | • | | | | | | 1 | • | | | RED (01) | 0 | [.] | - -
0 | 0 | · | 1 | 0 | | _ 1 | ·
1 |
1 | 1 |
 1 | 1 | | | | 1 | - <u>-</u>
1 | - -
1 | 1 |
1 | | | + | | ` | | ` | | • | | | | 1 | ʾ
1 | - -
1 | 1 |
1 | 1 | 1 | | 0 | 0 | 0 | 0 | 0 | 1 | | | | - | [·]
1 | - -
1 | 1 | <u>۔</u>
1 | 1 | | | | <u> </u> | - <u>-</u> | <u> </u> | | · | | | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | | 0 | 0 | 0 | 0 | | | | + | | | | ` | 1 | | | | | 1 |
1 | - -
1 | 1 | 1
1 | | 1 | · |
1 | ·
1 |
1 | . – – –
1 | 1 | 1 | | | | - | [·]
1 | - -
1 | · - | <u>-</u> | 1 | | | | ` | | ` | ! | • | | | | - | '
0 | - -
0 | '- | <u></u> - | 1 | 0 | | 0 | 0 | -
0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | | | <u> </u> | <u> </u> | | | | | 1 | Ü | | | | 0 | 0 | | 0 | c | 1 | 1 | | | 0 | | . – – – | 0 | 0 | | | | 7 |
0 | | | | 7 | -' | | | | | | - " | U | | RED | | □ | | | 0_ | | ' – | | | | | | | - | | | ר עבט | RED (62) | 1 | - - | - · · ·
1 |
1 | . -
1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED (62) | 0 | 0 | 0 | 0 | <u>'</u> | | V | <u> </u> | <u> </u> | <u> </u> | U | <u> </u> | 10 | U | | | KED (03) | 1 | 1 | 1 | 1 | 1 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | C | | 1 | U | J | U | U | J | J | J | | | GREEN (00) | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (| | | 0 0 0 | 0 | 0 | | | | | | | | | | | | | | GREEN | GREEN (01) | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 0 0 0 | 1 0 | 0 | 0 0 | 0 | 0 | | | # Shown by WWW.LCD-SCREEN.COM.UA | GREEN (62) 0 0 0 0 | 0 | 0 | | | | | | | | | | | | | | | | | |--------------------|---|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 0 0 0 GREEN (63) | 0 | 0 0 | 0 | 0 | 0 | | | | | | 1 | 1 | 1 | 1 | | 1 | 1 | 0 | | 0 1 0 0 0 | 0 | 0 | | | | | | | | | | | | | | | | | | 1 1 1 1 BLUE (00) | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 0 BLUE (01) | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | | BLUE | BLUE (62) | 0 | 0 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | | BLUE (63) | 1 | 1 1 | 1 | 0 | | | | | | | | | | | | | | | | | 0 | 0 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | | | 1 | 1 1 | 1 | 1 | | | | | | | | | | | | | | | Ver. 1.0 Feb. 18, 2010 12 / 27 ### **Product Specification** ### **3-7. Power Sequence** **Table 6. POWER SEQUENCE TABLE** | Logic | | Value | | | LED | | Value | | | |-----------------------|------|-------|------|-------|-----------------|------|-------|------|-------| | Parameter | Min. | Тур. | Max. | Units | Parameter | Min. | Тур. | Max. | Units | | T ₁ | 0.5 | - | 10 | ms | T ₈ | 10 | - | - | ms | | T ₂ | 0 | - | 50 | ms | T ₉ | 0 | - | - | ms | | T ₃ | 0 | - | 50 | ms | T ₁₀ | 0 | - | - | ms | | T ₄ | 400 | - | 1 | ms | T ₁₁ | 10 | - | - | ms | | T ₅ | 200 | - | - | ms | T ₁₂ | 0.5 | - | - | ms | | T ₆ | 200 | 1 | 1 | ms | | | | | | | T ₇ | 3 | - | 10 | ms | | | | | | #### Note) - 1. Do not insert the mating cable when system turn on. - 2. Valid Data have to meet "3-3. LVDS Signal Timing Specifications" - 3. LVDS, LED_EN and PWM need to pull-down condition on invalid status. - 4. LGD recommend the rising sequence of VLED after the Vcc and valid status of LVDS turn on. ### **Product Specification** ### 4. Optical Specification Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° . FIG. 1 presents additional information concerning the measurement equipment and method. Table 8. OPTICAL CHARACTERISTICS Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 50.8MHz, I_{BL} = 22 mA | | | | Values | | | 50.01VII 12, 1 _{BL} — 22 111A | |--------------------------|-----------------------------------|-------|--------------|--------------|---------------|--| | Parameter | Symbol | Min | Тур | Max | Units | Notes | | Contrast Ratio | _CR_ | 300 | | | | 11 | | Surface Luminance, white | _ L wn | 170 | 200 | - | _cd/m²_ | 22 | | Luminance Variation | _δ_WHITE_ | | 1.4 | 1.6 | | 33 | | Response Time | Tr _R + Tr _D | | 16 | 25 | ms | 4 | | Color Coordinates | | | | | | | | RED | RX | 0.561 | 0.591 | 0.621 | | | | | _RY_ | 0.322 | 0.352 | 0.382 | l | | | GREEN | _GX_ | 0.305 | 0.335 | 0.365 | ll | | | | <u>GY</u> | 0.520 | 0.550 | 0.580 | ll | | | BLUE | _ <u>BX</u> | 0.124 | 0.154 | 0.184 | ll | | | | BY_ | 0.090 | 0.120 | 0.150 | ll | | | _WHITE | _ <u>wx</u> | 0.283 | 0.313 | 0.343 | ll | | | | _ <u>WY</u> | 0.299 | 0.329 | 0.359 | | | | Viewing Angle | | | | | | 55 | | _x axis, right(Φ=0°) | <u>Θr</u> | 30 | - | | degree | | | _x axis, left (Φ=180°) | <u>Θl</u> | 30 | - | <u>-</u> | degree | | | _y axis, up (Φ=90°) | _ <u></u> <u> </u> | 10 | - | | degree | | | y_axis, down (Φ=270°) | _ <u>Θ</u> d | 20 | |
 | <u>degree</u> | | | Gray Scale | | | 2.2 | | | 6 | ### **Product Specification** | N I | - 4 - | ١ | |-----|-------|---| | IN | വാ | | | | | | - 1. Contrast Ratio(CR) is defined mathematically as Surface Luminance with all white pixels Contrast Ratio = Surface Luminance with all black pixels - 2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1. $$L_{WH}$$ = Average($L_1, L_2, ... L_5$) 3. The variation in surface luminance , The panel total variation (δ white) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2. $$\delta \text{ white}^{=} \frac{\text{Maximum}(\textbf{L}_{\scriptscriptstyle{1}},\textbf{L}_{\scriptscriptstyle{2}},\,\ldots\,\textbf{L}_{\scriptscriptstyle{13}})}{\text{Minimum}(\textbf{L}_{\scriptscriptstyle{1}},\textbf{L}_{\scriptscriptstyle{2}},\,\ldots\,\textbf{L}_{\scriptscriptstyle{13}})}$$ - 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3. - 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4. - 6. Gray scale specification * $$f_{v} = 60 Hz$$ | Gray Level | Luminance [%] (Typ) | |------------|---------------------| | LO | 0.18 | | L7 | 1.5 | | L15 | 5.8 | | L23 | 12.78 | | L31 | 22.2 | | L39 | 37.3 | | L47 | 57.5 | | L55 | 80.3 | | L63 | 100 | ### **Product Specification** #### FIG. 2 Luminance <measuring point for surface luminance & measuring point for luminance variation> ### FIG. 3 Response Time The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white". ### FIG. 4 Viewing angle # **Product Specification** ### 5. Mechanical Characteristics The contents provide general mechanical characteristics for the model LP101WSB. In addition the figures in the next page are detailed mechanical drawing of the LCD. | | Horizontal | $235.0 \pm 0.5 \text{ mm}$ | | | | | | |---------------------|--|----------------------------|--|--|--|--|--| | Outline Dimension | Vertical | 146.5 ± 0.5 mm | | | | | | | | Thickness | 3.6mm (max) | | | | | | | Bezel Area | Horizontal | $226.9 \pm 0.5 \text{ mm}$ | | | | | | | Bozol / Wod | Vertical | $128.5 \pm 0.5 \text{ mm}$ | | | | | | | Active Display Area | Horizontal | 222.72 ± 0.3 mm | | | | | | | rtouve Biopiay ruea | Vertical | 125.28 ± 0.3 mm | | | | | | | Weight | 180.0g (Max.) | | | | | | | | Surface Treatment | Glare treatment of the front polarizer | | | | | | | # **Product Specification** <FRONT VIEW> Note) Unit:[mm], General tolerance: ± 0.5mm # **Product Specification** <REAR VIEW> Note) Unit:[mm], General tolerance: ± 0.5mm ### **Product Specification** # 6. Reliability ### **Environment test condition** | No. | Test Item | Conditions | |-----|---------------------------------|--| | 1 | High temperature storage test | Ta= 60°C, 240h | | 2 | Low temperature storage test | Ta= -20°C, 240h | | 3 | High temperature operation test | Ta= 50°C, 50%RH, 240h | | 4 | Low temperature operation test | Ta= 0°C, 240h | | 5 | Vibration test (non-operating) | Random, 1.0Grms, X,Y,Z Direction Test time : each direction 1hour | | 6 | Shock test (non-operating) | Half sine wave, 180G, 2ms
one shock of each six faces(I.e. run 180G 6ms
for all six faces) | | 7 | Altitude | 0 ~ 10,000 feet (3,048m) 24Hr
0 ~ 40,000 feet (12,192m) 24Hr | storage / shipment ### { Result Evaluation Criteria } There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition. ### **Product Specification** #### 7. International Standards ### 7-1. Safety a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc., Standard for Safety of Information Technology Equipment. - b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association, Standard for Safety of Information Technology Equipment. - c) EN 60950-1:2001, First Edition, European Committee for Electrotechnical Standardization(CENELEC) European Standard for Safety of Information Technology Equipment. #### 7-2. EMC - a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992 - b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference. - c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000) ## **Product Specification** # 8. Packing ### 8-1. Designation of Lot Mark a) Lot Mark A,B,C : SIZE(INCH) D : YEAR E: MONTH $F \sim M$: SERIAL NO. #### Note #### 1. YEAR | Year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | |------|------|------|------|------|------|------|------|------|------|------| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | #### 2. MONTH | Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | ### b) Location of Lot Mark Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice. ### 8-2. Packing Form a) Package quantity in one box: 40 pcs b) Box Size: 365x478x240 ### **Product Specification** ### 9. PRECAUTIONS Please pay attention to the followings when you use this TFT LCD module. #### 9-1. MOUNTING PRECAUTIONS - (1) You must mount a module using holes arranged in four corners or four sides. - (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.) - (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. #### 9-2. OPERATING PRECAUTIONS - (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 mV$ (Over and under shoot voltage) - (2) Response time depends on the temperature.(In lower temperature, it becomes longer.) - (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer. - (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (5) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. ### **Product Specification** #### 9-3. ELECTROSTATIC DISCHARGE CONTROL Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. #### 9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE Strong light exposure causes degradation of polarizer and color filter. #### 9-5. STORAGE When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. #### 9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM - (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer. - Please carefully peel off the protection film without rubbing it against the polarizer. - (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off. - (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane. # **Product Specification** # APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3 | | Byte
(Dec) | Byte
(Hex) | Field Name and Comments | Value
(Hex) | Value
(Bin) | |------------------------------|---------------|---------------|---|---------------------|----------------| | | 0 | 00 | Header | 00 | 00000000 | | Header | 1 | 01 | Header | FF | 11111111 | | | 2 | 02 | Header | FF | 11111111 | | | 3 | 03 | Header | FF | 11111111 | | | 4 | 04 | Header | FF | 111111111 | | | 5 | 05 | Header | FF | 11111111 | | | 6 | 06 | Header | FF | 11111111 | | | 7 | 07 | Header | 00 | 00000000 | | EDID | 8 | 08 | EISA manufacture code (3 Character ID) LGD | 30 | 00110000 | | | 9 | 09 | EISA manufacture code (Compressed ASC II) | E4 | 11100100 | | | 10 | 0A | Panel Supplier Reserved - Product Code 026Eh | 6E | 01101110 | | * | 11 | 0B | (Hex. LSB first) | 02 | 00000010 | | roduc 1
Version | 12 | 0C | LCD Module Serial No - Preferred but Optional ("0" If not used) | 00 | 00000000 | | ers | 13 | 0D | LCD Module Serial No - Preferred but Optional ("0" If not used) | 00 | 00000000 | | V_{ϵ} | 14 | 0E | LCD Module Serial No - Preferred but Optional ("0" If not used) | 00 | 00000000 | | Vendor / Produc t
Version | 15 | 0F | LCD Module Serial No - Preferred but Optional ("0" If not used) | 00 | 00000000 | | dor | 16 | 10 | Week of Manufacture | 0 weeks 00 | 00000000 | | en | 17 | 11 | Year of Manufacture | 2009years 13 | 00010011 | | 7 | 18 | 12 | EDID structure version # = 1 | 01 | 00000001 | | 50 | 19 | 13 | EDID revision #= 3 | 03 | 00000011 | | ıy
ter | 20 | 14 | Video input Definition = Digital signal | 80 | 10000000 | | Display
Parameter | 21 | 15 | Max H image size (Rounded cm) = 22 cm | 16 | 00010110 | |)is _i | 22 | 16 | Max V image size (Rounded cm) = 13 cm | 0D | 00001101 | | l
Pa | 23 | 17 | Display gamma = (gamma*100)-100 = Example:(2.2*100)-100=120 = 2.2 Gamma | 78 | 01111000 | | | 24 | 18 | Feature Support (no_DPMS, no_Active Off/Very Low Power, RGB color display, Timing BLK 1,no_ | 0A | 00001010 | | te | | | GTF) | CF | 11001111 | | Panel ColorCoordinate | 25
26 | 19
1A | Red/Green Low Bits (RxRy/GxGy) Blue/White Low Bits (BxBv/WxWv) | C5 | 11000101 | | | 27 | 1B | Red X Rx = 0.585 | 95 | 10010101 | | | 28 | 1C | Red Y Ry =0.348 | 59 | 01011001 | | »r(| 29 | 1D | Green X $Gx = 0.331$ | 54 | 01010100 | | ole | 30 | 1E | Green Y Gy =0.55 | 8C | 10001100 | | 21 | 31 | 1F | Blue X Bx = 0.155 | 27 | 00100111 | | ne | 32 | 20 | Blue Y By = 0.117 | 1E | 00011110 | | Pa | 33 | 21 | White X Wx =0.313 | 50 | 01010000 | | | 34 | 22 | White Y Wy =0.329 | 54 | 01010100 | | ished
Timi
gs | 35 | 23 | Established timing 1 (00h if not used) | 00 | 00000000 | | ishea
Timi
gs | 36 | 24 | Established timing 2 (00h if not used) | 00 | 00000000 | | | 37 | 25 | Manufacturer's timings (00h if not used) | 00 | 00000000 | | Stan dard Tim ing 1D | 38 | 26 | Standard timing ID1 (01h if not used) | 01 | 00000001 | | | 39 | 27 | Standard timing ID1 (01h if not used) | 01 | 00000001 | | | 40 | 28 | Standard timing ID2 (01h if not used) | 01 | 00000001 | | | 41 | 29 | Standard timing ID2 (01h if not used) | 01 | 00000001 | | | 42 | 2A | Standard timing ID3 (01h if not used) | 01 | 00000001 | | | 43 | 2B | Standard timing ID3 (01h if not used) | 01 | 00000001 | | | 44 | 2C | Standard timing ID4 (01h if not used) | 01 | 00000001 | | | 45 | 2D | Standard timing ID4 (01h if not used) | 01 | 00000001 | | | 46 | 2E | Standard timing ID5 (01h if not used) | 01 | 00000001 | | | 47 | 2F | Standard timing ID5 (01h if not used) | 01 | 00000001 | | Sta | 48 | 30 | Standard timing ID6 (01h if not used) | 01 | 00000001 | | | 49 | 31 | Standard timing ID6 (01h if not used) | 01 | 00000001 | | | 50 | 32 | Standard timing ID7 (01h if not used) | 01 | 00000001 | | | 51 | 33 | Standard timing ID7 (01h if not used) | 01 | 00000001 | | | 52 | 34 | Standard timing ID8 (01h if not used) | 01 | 00000001 | | | 53 | 35 | Standard timing ID8 (01h if not used) | 01 | 00000001 | # **Product Specification** # APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3 | | Byte
(Dec) | Byte
(Hex) | Field Name and Comments | Value
(Hex) | Value
(Bin) | |-----------------------|---------------|---------------|--|-----------------------|----------------------| | | 54 | 36 | Pixel Clock/10,000 (LSB) | 54.2 MHz 2C | 00101100 | | | @ 59 | 99Hz | | 15 | 00010101 | | | 55 | 37 | Pixel Clock/10,000 (MSB) | 00 | 00000000 | | | 56 | 38 | Horizontal Active (low er 8 bits) | 1024 Pixels 9A | 10011010 | | _ | 57 | 39 | Horizontal Blanking(Thp-HA) (lower 8 bits) 410 F | ixels 41 | 01000001 | | Timing Descriptor #1 | 58 | 3A | Horizontal Active / Horizontal Blanking(Thp-HA) (upper 4:4bits) | 58 | 01011000 | | | 59 | 3B | Vertical Avtive | 1E | 00011110 | | | 600 I | | | 20 | 00100000 | | | 60 | 3C | Vertical Blanking (Tvp-HA) (DE Blanking typ.for DE only panels) 30 Lines | 30 | 00110000 | | | 61 | 3D | Vertical Active : Vertical Blanking (Tvp-HA) (upper 4:4bits) | 20 | 00100000 | | nin | 62
D: 1 | 3E | Horizontal Sync. Offset (Thfp) | 48 36 | 00110110 | | Ţ: Ţ | Pixel | 215 | H. Santal Comp. Polic. W. Jdd. (HCDW) | 00
20 Pinula FO | 00000000 | | | 63 | 3F | Horizontal Sync Pulse Width (HSPW) | 32 Pixels E0 | 11100000 | | | 64 | 40 | Vertical Sync Offset(Tvfp) : Sync Width (VSPW) 3 Lines : 6 Lines | 7E
00 | 01111110 | | | 65 | 41 | Horizontal Vertical Sync Offset/Width (upper 2bits) | 00 | 00000000 | | | 224 n | | Horizontal Image Size (mm) | | 00000000 | | | 67 | 43 | Vertical Image Size (mm) | 00 | | | | 126 n | | vertear mage size (min) | 1B | 00011011 | | | 68 | 44 | Horizontal Image Size / Vertical Image Size | | | | | 69 | 45 | Horizontal Border = 0 (Zero for Notebook LCD) | | | | | 70 | 46 | Vertical Border = 0 (Zero for Notebook LCD) | | | | | 71 | 47 | Non-Interlace, Normal display, no stereo, D igital Separate (Vsyne_NEG, Hsyne_POS), DE only note: | | | | #2 | | 40 | ISR is set to 'I' if panel is DE-timing only. H/V can be ignored | 00 | 00000000 | | tor | 72
73 | 48
49 | Flag Flag | 00 | 00000000 | | Timing D escriptor #2 | 74 | 4A | Flag | 00 | 00000000 | | ssci | 75 | 4B | Data Type Tag (Descriptor Defined by manufacturer) | 00 | 00000000 | | Ã | 76 | 4C | Flag | 00 | 00000000 | | Bu | 77 | 4D | Descriptor Defined by manufacturer | 00 | 00000000 | | imi. | 78 | 4E | Descriptor Defined by manufacturer | 00 | 00000000 | | Ĭ | 79 | 4F | Descriptor Defined by manufacturer | 00 | 00000000 | | | 80 | 50 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 81 | 51 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 82 | 52 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 83 | 53 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 84 | 54 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 85 | 55 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 86 | 56 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 87 | 57 | Descriptor Defined by manufacturer | 00 | 00000000 | | | 88 | 58 | Descriptor Defined by manufacturer | 00 | 00000000 | | 33 | 89 | 59 | Descriptor Defined by manufacturer | 00 | 00000000 | | ř. | 90 | 5A | Flag | 00 | 00000000 | | pto | 91 | 5B | Flag | 00 | 00000000 | | cri | 92 | 5C | Flag | 00 | 00000000 | |)es | 93 | 5D | Data Type Tag (ASCII String) | FE | 11111110 | | 18 | 94 | 5E | Flag | 00 | 00000000 | | nin | 95 | 5F | ASCII String | L 4C | 01001100 | | Timing Descriptor #3 | 96 | 60 | ASCII String | G 47 | 01000111 | | | 97 | 61 | ASCII String | 20 | 00100000 | | | 98 | 62 | ASCII String D | 44 | 01000100 | | | 99 | 63 | ASCII String | i 69 | 011101001 | | | 100 | 64 | ASCII String | s 73 | 01110011 | | | 101 | 65
66 | ASCII String ASCII String | p 70 | 01110000
01101100 | | | | | - | 1.7 | 01101100 | | | 103 | 67 | ASCII String ASCII String | | 011100001 | | | 104 | 69 | ASCII string Manufacturer P/N(If<13 char> 0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h) | | 00001010 | | | 105 | 6A | Manufacturer P/N(If<13 char> OAh, then terminate with ASC II code OAh,set remaining char = 20h) Manufacturer P/N(If<13 char> OAh, then terminate with ASC II code OAh,set remaining char = 20h) | * | 00100000 | | | 107 | 6B | Manufacturer P/N(If<13 char> 0Ah, then terminate with ASC [] code 0Ah,set remaining char = 20h) Manufacturer P/N(If<13 char> 0Ah, then terminate with ASC [] code 0Ah,set remaining char = 20h) | = * | 00100000 | | | 107 | OD. | 40 | 00100000 | | # **Product Specification** # APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3 | | Byte | Byte | | | Value | Value | |---------------------|-------|------------|--|---|-------|----------| | | (Dec) | (Hex) | Field Name and Comments | | (Hex) | (Bin) | | | 108 | 6C | Flag | | 00 | 00000000 | | | 109 | 6D | Flag | | 00 | 00000000 | | | 110 | 6E | Flag | | 00 | 00000000 | | | 111 | 6F | Data Type Tag (Monitor Name, stored as ASCII) | | FC | 11111100 | | 4 | 112 | 70 | Flag | | 00 | 00000000 | | . | 113 | 71 | Monitor Name, stored as ASCII | L | 4C | 01001100 | | pto | 114 | 72 | Monitor Name, stored as ASCII | P | 50 | 01010000 | | cri | 115 | 73 | Monitor Name, stored as ASCII | 1 | 31 | 00110001 | | Sec | 116 | 74 | Monitor Name, stored as ASCII | 0 | 30 | 00110000 | | 7 S | 117 | 75 | Monitor Name, stored as ASCII | 1 | 31 | 00110001 | | Timing Descriptor#4 | 118 | 76 | Monitor Name, stored as ASCII | W | 57 | 01010111 | | | 119 | 77 | Monitor Name, stored as ASCII | S | 53 | 01010011 | | | 120 | 78 | Monitor Name, stored as ASCII | В | 42 | 01000010 | | | 121 | 79 | Monitor Name, stored as ASCII | - | 2D | 00101101 | | | 122 | 7A | Monitor Name, stored as ASCII | T | 54 | 01010100 | | eck | 123 | 7B | Monitor Name, stored as ASCII | L | 4C | 01001100 | | | 124 | 7C | Monitor Name, stored as ASCII | N | 4E | 01001110 | | | 125 | 7D | Monitor Name, stored as ASCII | 1 | 31 | 00110001 | | Ch | 126 | 7E | Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0) | | 00 | 00000000 | |) | 127 | 7 F | Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall = 0) | | 07 | 00000111 |