

LMT070TN83-NNA

LCD Module User Manual

Prepared by:	Checked by:	Approved by:
	•	
HT LIU		
III LIO		
Date: 2016-04-05	Date:	Date:

Rev.	Descriptions	Release Date
0.1	Preliminary release	2012-03-19
0.2	Typing correction	2016-4-5

Document Name: LMT070TN83-NNA-Manual-Rev0.2.DOC Page: 1 of 14

Table of Content

1.	Applications	3
2.	General Specification	3
3.	Terminal Function (Input Terminal)	4
4.	Absolute Maximum Ratings	6
5.	Electrical Characteristics	6
5.1	DC Characteristics	6
5.2	Touch Panel Characteristics	6
5.3	Power Sequence	7
6.	AC Characteristics	8
6.1	Timing Conditions	8
6.2	Timing Diagram	10
7.	Optical Characteristics	11
Not	te 1: Definition of viewing angle range	11
8.	Precautions of using LCD Modules	13
9.	Appendix <inspection and="" appearance="" criteria="" defect="" for="" items=""></inspection>	14
Ω 1	Bright/Dark Dote:	1/

1. Applications

This Module is designed for portable DVD, GPS car TV & PMP(portable multimedia player) application which require high quality flat panel displays. It is also a good substitute for many outmoded CSTN module in the industrial application.

This product is composed of a TFT-LCD panel, driver ICs and LED backlight unit.

2. General Specification

Signal Interface : Digital 18-bits RGB
Display Technology : a-Si TFT active matrix

Display Mode: Transmissive / Normal White

Screen Size(Diagonal): 7.0"

Outline Dimension : 165 x 104.0 x 7.0 (mm)

(see attached drawing for details)

Active Area : 152.4 x 91.44 (mm)

Number of dots : 800 x 3 (RGB) x 480

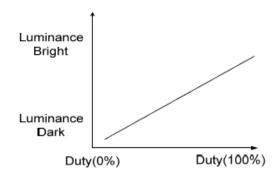
Pixel Pitch : 0.0635 x 0.1905 (mm)

Pixel Configuration: RGB Stripe

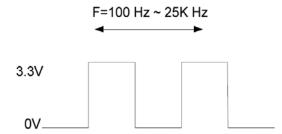
Backlight: LED

Surface Treatment : Anti-Glare Treatment

Viewing Direction : 6 o'clock Operating Temperature : $-20 \sim +60^{\circ}$ C Storage Temperature : $-30 \sim +70^{\circ}$ C


3. Terminal Function (Input Terminal)

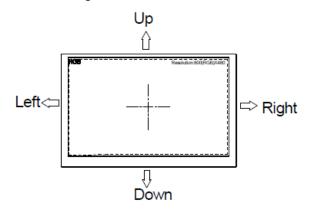
3.1 TFT Terminal


	Terriiriai		
Pin No.	Pin Name	1/0	Descriptions
1,2	VLED	Power	Positive Supply for LED Driver
3	ADJ	Input	Adjust the led brightness with PWM Pulse (*1,2)
4,5	GLED	Power	Ground for LED Circuit
6,7	VCC	Power	Power supply for digital circuit
8	MODE	Input	DE or HV mode control (*3)
9	DE	Input	Data input enable
10	VS	Input	Vertical Sync Input
11	HS	Input	Horizontal Sync Input
12	GND	Power	Power Ground
13	B5		
14	B4	Input	Blue data input
15	B3		
16	GND	Power	Power Ground
17	B2		
18	B1	Input	Blue data input
19	B0		
20	GND	Power	Power Ground
21	G5		
22	G4	Input	Green data input
23	G3		
24	GND	Power	Power Ground
25	G2		
26	G1	Input	Green data input
27	G0		
28	GND	Power	Power Ground
29	R5		
30	R4	Input	Green data input
31	R3		
32	GND	Power	Power Ground
33	R2		
34	R1	Input	Red data input
35	R0		
36	GND	Power	Power Ground
37	DCLK	Input	Sample clock
38	GND	Power	Power Ground
39	L/R	Input	Left / right selection (*4,5)
40	U/D	Input	Up/down selection (*4,5)

Note:

^{* 1:} Pin3. is used to adjust brightness.

* 2: ADJ signal=0 ~3.3V; Operating frequency:100~25KHz



 * 3: DE Mode: Mode=" H " , HS floating and VS floating. HV Mode: Mode=" L " $\,$ and DE floating.

*4: Selection of scanning mode

Setting of scan		
control input		Scanning direction
U/D	L/R	
GND	VCC	Up to down, left to right
VCC	GND	Down to up, right to left
GND	GND	Up to down, right to left
VCC	VCC	Down to up, left to right

*5: Scanning direction refer to the figure below.

3.2 Touch Panel Terminal

Pin No.	Pin Name	I/O	Descriptions
1	YU	Passive	y-axis upper side
2	XL	Passive	x-axis left side
3	YD	Passive	y-axis down side
4	XR	Passive	x-axis right side

4. Absolute Maximum Ratings

Items	Symbol	Min.	Max.	Unit	Condition
Power voltage	VCC	-0.3	6.0	V	
Fower voitage	VLED	-	13.5	V	
Input signal voltage	VI	-0.3	6.3	V	
Operating Temperature	T _{OP}	-20	60	°C	No Condensation
Storage Temperature	T _{ST}	-30	70	°C	No Condensation

Note:

The absolute maximum rating values of this product are not allowed to be exceeded at any times. A module should be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme condition, the module may be permanently destroyed.

5. Electrical Characteristics

5.1 DC Characteristics

Items	Symbol	Min.	Тур.	Max.	Unit	Remark
Dower voltage	VCC	3.1	3.3	3.5	V	Note1
Power voltage	VLED	4.8	5.0	5.2	V	Note 2
Current consumption	Icc	-	250	300	mΑ	
Current consumption	ILED	-	500	550	mA	Note 3
Input logic high voltage	VIH	0.7VCC	1	VCC	V	Note 4
Input logic low voltage	VIL	0	1	0.3VCC	V	
LED life time	-	20,000	-	-	Hr	Note 5

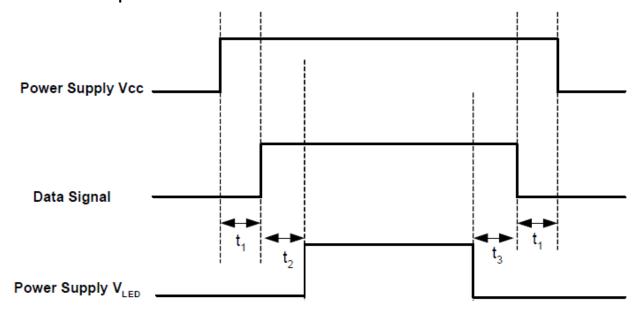
Note1: VCC setting should match the signals output voltage (refer to Note 4) of customer's system board.

Note 2: LED driving voltage.

Note 3: LED driving current.

Note 4: DCLK, DE, HS, VS, R0~ R5,,G0~ G5,B0~ B5.

Note 5: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and VLED=5.0V. The LED lifetime could be decreased if operating VLED is larger than 5.0V.


5.2 Touch Panel Characteristics

T_{OP}=25°C

Items	MIN.	TYP.	MAX.	Unit	Note
Operating Voltage	-	5.0	-	V	XL, XR, YU, YD
Operating Pressure	30	-	70	g	XL, XR, YU, YD
Life time	-	1000000	-	times	XL, XR, YU, YD
Response Time	-	-	10	ms	XL, XR, YU, YD
Linearity	-	-	±1.5	%	XL, XR, YU, YD

URL: www.topwaydisplay.com
Document Name: LMT070TN83-NNA-Manual-Rev0.2.DOC
www.topwaysz.com
Page: 6 of 14

5.3 Power Sequence

 $t_1 > 50 \; mSec$

 $t_2 \ge 200 \text{ mSec}$

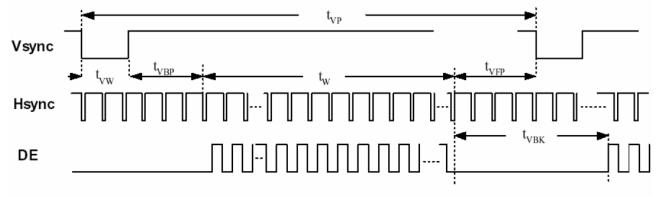
 $t_3 \ge 200 \text{ mSec}$

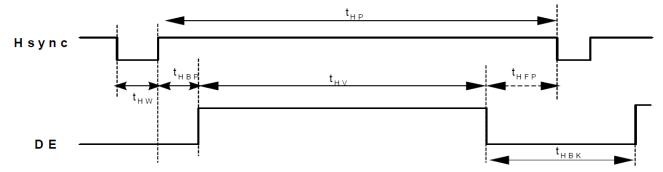
Note: Data Signal includes DCLK, DE, HS, VS, R0~ R5, G0~ G5, B0~ B5.

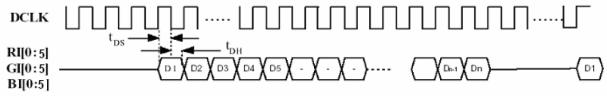
6. AC Characteristics

6.1 Timing Conditions

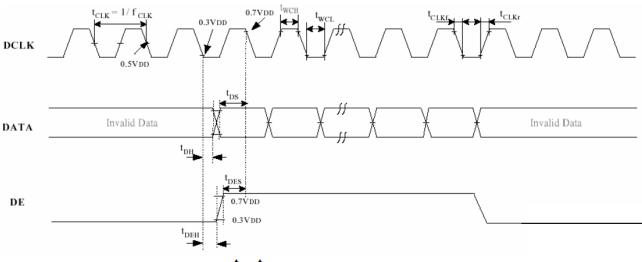
Input signal characteristics of SYNC mode.

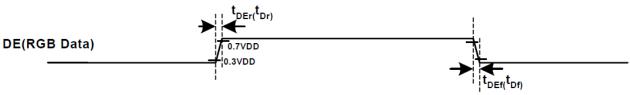

input signal characteristics of 3 TNC II			Values	Huit	Damank	
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock Period	tclk	23.2	25.0	30.7	ns	
Clock Frequency	fcLK	32.4	40	43	MHz	
Clock Low Level Width	twcL	8	-	-		
Clock High Level Width	twcн	8	-	-	ns	
Clock Rise/Fall Time	tclkr, tclkf	-	-	3		
HSYNC Period	the	862	1056	1100	tclk	
HSYNC Pulse Width	tнw	-	1	-	tclk	
HSYNC Back Porch	tнвр	-	45	-	tclk	
HSYNC Width + Back Porch	thw + tHBP		46		tclk	
Horizontal valid data width	thv		800		tclk	
HSYNC Front Porch	thrp	the - t	нw - tнвр	- thv	tclk	
Horizontal Blank	tнвк		thp - thv		tclk	
VSYNC Period	tvp	628	635	650	thp	
VSYNC Pulse Width	tvw	-	1	-	tнР	
VSYNC Back Porch	tvBP		22		tнР	
Vertical valid data width	tw		480		thp	
Vertical Front Porch	tvrp	tvp - tvw - tvpp - tw			tнР	
Vertical Blank	tvвк	tvp - tw		tнР		
Data Setup Time	tos	5	-	-	ns	
Data Hold Time	tон	10	-	-	ns	


Input signal characteristics of DE mode.

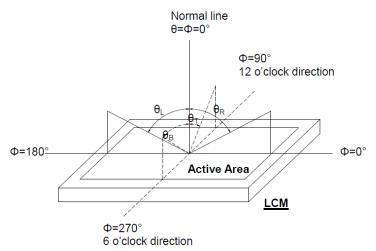

Item		Symbol		Values		Unit	
	item		Min.	Тур.	Max.	Unit	Remark
	Period	tclk	23.2	25.0	30.7	ns	
	Frequency	fclk	32.4	40	43	MHz	
DCLK	Low Level Width	twcL	6	-	-		
DCLK	High Level Width	twcн	6	-	-	ns	
	Rise/Fall Time	tclkr, tclkf	-	-	3		
	Duty	-	0.45	0.50	0.55	-	tclkl/ tclk
	Setup Time	toes	5	-	-		
	Hold Time	tоен	10	-	-	ns	
	Rise/Fall Time	toer, toer	-	-	16		
	Horizontal Period	thp	862	1056	1100		
DE	Horizontal ∀alid	thv		800		tclk	
	Horizontal Blank	tнвк		thp - thv			
	Vertical Period	tvp	628	635	650		
	Vertical Valid	tw		480		tHP	
	Vertical Blank	tvвк		tvp - tw			
	Setup Time	tos	5	-	-		
DATA	Hold Time	tон	10	-	-	ns	
	Rise/Fall Time	tor, tof	-	-	3		

6.2 Timing Diagram



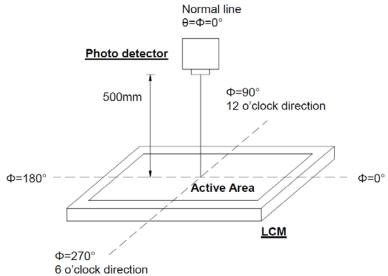

Input Vertical Timing

Input Horizontal Timing


DE and RGB Input Timing

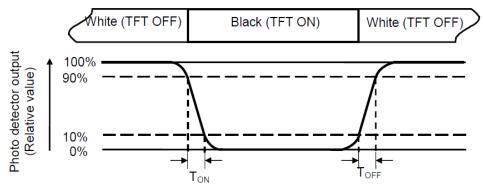
7. Optical Characteristics

VCC=3.3V	VI FD=5 0\	/ Top=25°C
V O O O O V	, , , , , , , , , , , , , , , , , ,	,,,op_20 C


Item	Symbol	Condition	MIN.	TYP.	MAX.	UNIT	Note.
Viewing angle (CR≥10)	θ_{L}	9 o'clock	60	70	-	- degree	Note1
	θ_{R}	3 o'clock	60	70	-		
	θ_{T}	12 o'clock	40	50	-		
	θ_{B}	6 o'clock	60	70	-		
Response Time	T _{on}	Normal θ=0°	-	10	20	msec	Note3
	T_{off}		-	15	30	msec	
Contrast ratio	CR		400	500	-	-	Note2 Note5 Note6
Color chromaticity	W _X		0.26	0.31	0.36	-	
	W_{Y}		0.28	0.33	0.38	-	
Luminance	L		-	300	-	cd/m ²	Note6
Luminance uniformity	Y _U		70	75	-	%	Note7

Note 1: Definition of viewing angle range

Note 2: Definition of optical measurement system.


The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

JRL: <u>www.topwaydisplay.com</u> <u>www.topwaysz.com</u> Document Name: LMT070TN83-NNA-Manual-Rev0.2.DOC Page: 11 of 14

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio

Contrast ratio (CR) = <u>Luminance measured when LCD on the "Black" state</u> Luminance measured when LCD on the "White" state

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is VLED=5.0V.

8. Precautions of using LCD Modules

- Mounting must use holes arranged in four corners or four sides.
- The mounting structure so provide even force on to LCD module. Uneven force (ex. Twisted stress) should not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- It is suggested to attach a transparent protective plate to the surface in order to protect the polarizer. It should have sufficient strength in order to the resist external force.
- The housing should adopt radiation structure to satisfy the temperature specification.
- Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. Never rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics deteriorate the polarizer.)
- When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer

Operating

- The spike noise causes the mis-operation of circuits. It should be within the ± 200 mV level (Over and under shoot voltage)
- Response time depends on the temperature.(In lower temperature, it becomes longer.)
- Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- When fixed patterns are displayed for a long time, remnant image is likely to occur.
- Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference

Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

When storing modules as spares for a long time, the following precautions are necessary.

- Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

Protection Film

- When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt tore main on the polarizer. Please carefully peel off the protection film without rubbing it against the
- When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Transportation

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

Document Name: LMT070TN83-NNA-Manual-Rev0.2.DOC

www.topwaydisplay.com

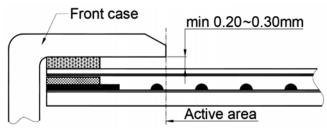
9. Appendix < Inspection items and criteria for appearance defect>

9.1 **Bright/Dark Dots:**

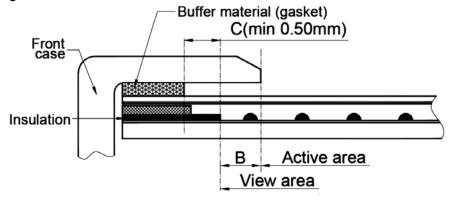
Defect Type	Specification	Major	Minor
Bright Dots	N≤ 2		•
Dark Dots	N≤ 3		•
Total Bright and Dark Dots	N≤ 4		•

Note: 1. The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.

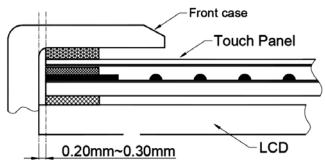
- 2. Bright dot: Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.
- 3. Dark dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue pattern.

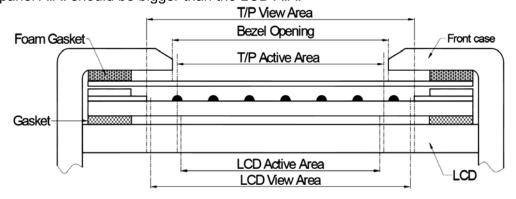

Document Name: LMT070TN83-NNA-Manual-Rev0.2.DOC

Page: 14 of 14


附录: Touch panel Design Precautions

1. It should prevent front case touching the touch panel Active Area (A.A.) to prevent abnormal touch.


It should left gab (e.g. 0.2~0.3mm) in between.


Outer case design should take care about the area outside the A.A.
 Those areas contain circuit wires which is having different thickness. Touching those areas could deform the ITO film. As a result case the ITO cold be damaged and shorten its lifetime.
 It is suggested to protect those areas with gasket (between the front case and the touch panel).
 The suggested figures are B≥0.50mm; C≥0.50mm.

3. The front case side wall should keep space (e.g. $0.2 \sim 0.3$ mm) from the touch panel.

 In general design, touch panel V.A. should be bigger than the LCD V.A. and touch panel A.A. should be bigger than the LCD A.A.

