

LMT070DIMFWD-NFA

LCD Module User Manual

Prepared by:	Checked by:	Approved by:		
Liu Tihou				
Date: 2016-11-17	Date:	Date:		

Rev.	Descriptions	Release Date
0.1	Preliminary release	2016-11-17

Document Name: LMT070DIMFWD-NFA-Manual-Rev0.1.DOC Page: 1 of 9

Table of Content

1.	General Specification	3
2.	Block Diagram	3
3.	Terminal Function	4
3.1	K1 Power Terminal	4
3.2	K2 HDMI Terminal	
3.3	K3 VGA Terminal	5
3.4	K4 Touch Panel Controller Terminal	5
4.	Absolute Maximum Ratings	5
5.	Electrical Characteristics	6
5.1	Driving TFT LCD Panel	6
5.2	Driving Touch Panel	6
6.	Optical Characteristics	6
7.	Touch panel Design Precautions	8
8.	Precautions of using LCD Modules	9

1. General Specification

Signal Interface: VGA/HDMI

Display Mode: Transmissive with Normally White

Screen Size(Diagonal): 7.0 inch

Outline Dimension : 185.9 x 109.5x 19.0max (mm)

(see attached drawing for details)

Active Area: 154.2144x 85.92 (mm)

Color Depth: 16.7M

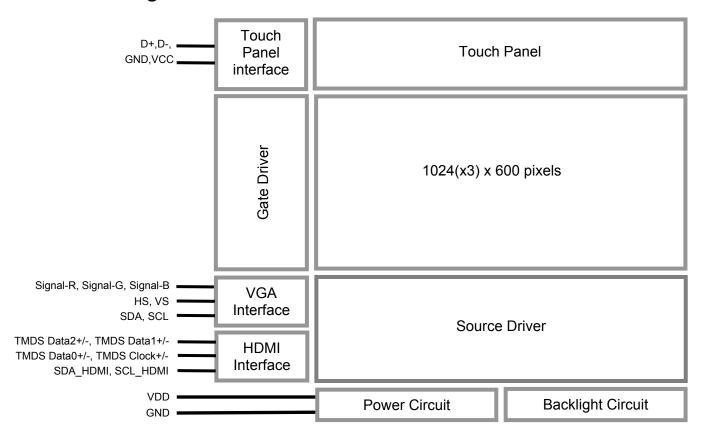
Number of dots: 1024 x3(RGB) x 600 Pixel Pitch: 0.1506 x 0.1432 (mm) Pixel Configuration: R.G.B. Vertical Stripe

Backlight: White LED Surface Treatment: Hard Coating

Viewing Direction: 6 o'clock (Gray scale Inversion) (*1)

12 o'clock (*2)

Operating Temperature : $0 \sim +50^{\circ}$ C Storage Temperature : $-10 \sim +60^{\circ}$ C


Note:

*1. For saturated color display content (eg. pure-red, pure-green, pure-blue or pure-colors-combinations).

*2. For "color scales" display content.

*3. Color tone may slightly change by temperature and driving condition.

2. Block Diagram

3. Terminal Function

3.1 K1 Power Terminal

Pin No.	Pin Name	10	Descriptions
1	VDD	Power	Positive Power Supply(12.0V)
2	VDD	Power	Positive Power Supply(12.0V)
3	NC	-	No connection
4	NC	-	No connection
5	GND	Power	Power Supply GND (0V)
6	GND	Power	Power Supply GND (0V)

3.2 K2 HDMI Terminal

Pin No.	Pin Name	IO	Descriptions
1	TMDS Data2+	Input	HDMI receiver positive signal channel 2
2	TMDS Data2 Shield	Power	Signal Ground
3	TMDS Data2-	Input	HDMI receiver negative signal channel 2
4	TMDS Data1+	Input	HDMI receiver positive signal channel 1
5	TMDS Data1 Shield	Power	Signal Ground
6	TMDS Data1-	Input	HDMI receiver negative signal channel 1
7	TMDS Data0+	Input	HDMI receiver positive signal channel 0
8	TMDS Data0 Shield	Power	Signal Ground
9	TMDS Data0-	Input	HDMI receiver negative signal channel 0
10	TMDS Clock+	Input	HDMI receiver positive signal clock
11	TMDS Clock Shield	Power	Signal Ground
12	TMDS Clock-	Input	HDMI receiver negative signal clock
13	NC	-	No connection
14	NC	-	No connection
15	SCL_HDMI	Input	Serial data clock
16	SDA_HDMI	Output	Serial data out
17	GND	Power	Signal Ground
18	+5V Power	Power	Power supply for DDC memory
19	Hot Plug Detect	Output	Hot Plug Detect signal

Note:

- 1. HDMI terminal should be well connect before power on (hot-plug is not allowed)
- 2. Support Standard HDMI Signal, from PC:
 - ``800x600,60Hz
 - 1024x600,60Hz
 - 1024x768,60Hz

3.3 K3 VGA Terminal

Pin No.	Pin Name	Ю	Descriptions
1	GND	Power	Signal Ground
2	VS	Input	Analogue VGA Vertical Sync signal input
3	HS	Input	Analogue VGA Horizontal Sync signal input
4	GND	Power	Signal Ground
5	Signal-R	Input	Analogue VGA Red signal input
6	GND	Power	Signal Ground
7	Signal-G	Input	Analogue VGA Green signal input
8	GND	Power	Signal Ground
9	Signal-B	Input	Analogue VGA Blue signal input
10	GND	Power	Signal Ground
11	SDA	Output	Serial data out
12	SCL	Input	Serial data clock

Note:

- 1. VGA terminal should be well connect before power on (hot-plug is not allowed).
- 2. Support Standard VGA Signal, from PC:
 - 800x600.60Hz
 - 1024x600,60Hz
 - 1024x768,60Hz

3.4 K4 Touch Panel Controller Terminal

Pin No.	Pin Name	I/O	Descriptions
1	GND	Power	Ground
2	VCC	Power	Positive Power Supply(5.0V)
3	GND	Power	Ground
4	D+	I/O	USB D+ signal
5	D-	I/O	USB D- signal
6	NC	-	No connection
7	NC	-	No connection
8	NC	-	No connection
9	NC	1	No connection
10	NC	ı	No connection

4. Absolute Maximum Ratings

Top=25°C, VDD =12.0V, GND=0V

Items	Symbol	Min.	Max.	Unit	Condition
Power Supply Voltage	VDD	-0.3	+13.0	V	
Operating Temperature	T_OP	0	50	$^{\circ}$	No Condensation
Storage Temperature	T _{ST}	-10	60	$^{\circ}$	No Condensation

Note:

- *1. This rating applies to all parts of the module. And should not be exceeded.
- *2. The operating temperature only guarantees operation of the circuit. The contrast, response speed, and the other specification related to electro-optical display quality is determined at the room temperature, T_{OP}=25°C.
- *3. Ambient temperature when the backlight is lit (reference value).
- *4. Any Stresses exceeding the Absolute Maximum Ratings may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

www.topwaydisplay.com Document Name: LMT070DIMFWD-NFA-Manual-Rev0.1.DOC www.topwaysz.com Page: 5 of 9

5. Electrical Characteristics

5.1 Driving TFT LCD Panel

Top=25 $^{\circ}$ C, VDD =12.0V ,GND=0V

Items	Symbol	MIN.	TYP.	MAX.	Unit	Note
Supply Voltage	VDD	11.5	12.0	12.5	V	
VDD Power Consumption	I_{VDD}	-	380	760	mA	

5.2 Driving Touch Panel

Top=25°C, VCC =5.0V,GND=0V

Items	Symbol	MIN.	TYP.	MAX.	Unit	Note
Supply Voltage	VCC	4.8	5.0	5.2	V	
Operating Current	I _{VCC}	-	21.8	-	mA	

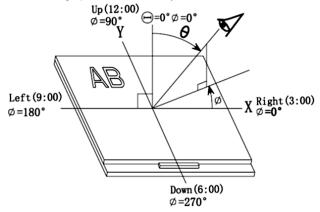
6. Optical Characteristics

Item	Symbol	Condition	MIN.	TYP.	MAX.	UNIT	Note.
Viewing angle (CR≥10)	θ_{L}	9 o'clock	65	75	-		
	θ_{R}	3 o'clock	65	75	-		Note 2
	θ_{T}	12 o'clock	60	70	-	degree	Note 2
	θв	6 o'clock	65	75	-		
Response Time	T _{on}		-	10	20	msec	Note 1.4
	T_{off}		-	15	30	msec	Note 1,4
Contrast ratio	CR		600	800	-	-	
Color obromotialty	W _X	Normal θ=0°	0.26	0.31	0.36		Note 1,3,5
Color chromaticity	W_{Y}	0–0	0.28	0.33	0.38		
Luminance	L		240	300	-	cd/m ²	Note 1,6
Luminance uniformity	Yu		70	75	-	%	Note 1,7

Test Conditions:

^{1.} IF= 250mA, VF=8.5V, and the ambient temperature is 25. $^{\circ}\mathrm{C}$

^{2.} The test systems refer to Note 1 and Note 2.


The data are measured after LEDs are turned on for 5 minutes. LCM displays full white. The brightness is the average value of 9 measured spots. Measurement equipment SR-3A (1°) Measuring condition:

- Measuring surroundings: Dark room
- Measuring temperature: Ta=25℃.
- Adjust operating voltage to get optimum contrast at the center of the display.

Note 2:

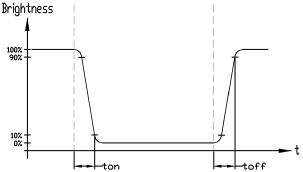
The definition of viewing angle:

Refer to the graph below marked by θ and Φ

Note 3:

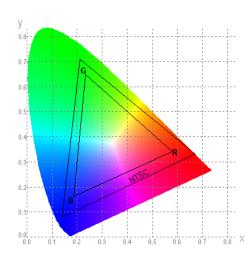
The definition of contrast ratio (Test LCM using SR-3A (1°)): Luminance When LCD is at "White" state Contrast Ratio(CR) Luminance When LCD is at "Black" state (Contrast Ratio is measured in optimum common electrode voltage)

Definition of Response time. (Test LCD using BM-7A(2 $^{\circ}$)):


The output signals of photo detector are measured

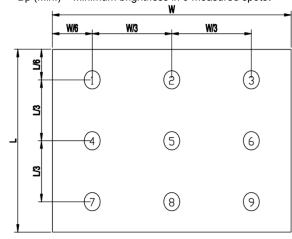
when the input signals are changed from

"black" to "white" (falling time)
and from "white" to "black" (rising time), respectively.


The response time is defined as

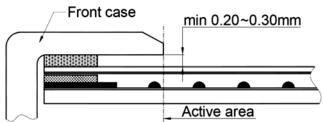
the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

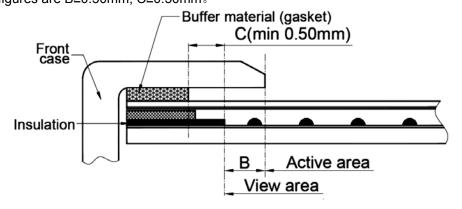
Definition of Color of CIE1931 Coordinate and NTSC Ratio.


Color gamut:

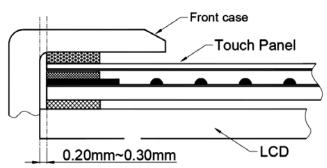
Note 6:

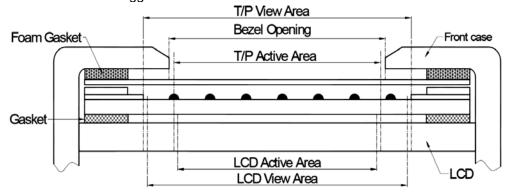
The luminance uniformity is calculated by using following formula. \triangle Bp = Bp (Min.) / Bp (Max.)×100 (%)


Bp (Max.) = Maximum brightness in 9 measured spots Bp (Min.) = Minimum brightness in 9 measured spots.


Measured the luminance of white state at center point

7. Touch panel Design Precautions


1. It should prevent front case touching the touch panel Active Area (A.A.) to prevent abnormal touch. It should left gab (e.g. 0.2~0.3mm) in between.


Outer case design should take care about the area outside the A.A.
 Those areas contain circuit wires which is having different thickness. Touching those areas could de-form the ITO film. As a result case the ITO cold be damaged and shorten its lifetime.
 It is suggested to protect those areas with gasket (between the front case and the touch panel).
 The suggested figures are B≥0.50mm; C≥0.50mm.

3. The front case side wall should keep space (e.g. 0.2 ~ 0.3mm) from the touch panel.

 In general design, touch panel V.A. should be bigger than the LCD V.A. and touch panel A.A. should be bigger than the LCD A.A.

8. Precautions of using LCD Modules

Mounting

- Mounting must use holes arranged in four corners or four sides.
- The mounting structure so provide even force on to LCD module. Uneven force (ex. Twisted stress) should not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- It is suggested to attach a transparent protective plate to the surface in order to protect the polarizer. It should have sufficient strength in order to the resist external force.
- The housing should adopt radiation structure to satisfy the temperature specification.
- Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- Do not fouch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. Never rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics deteriorate the polarizer.)
- When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer

Operating

- The spike noise causes the mis-operation of circuits. It should be within the ±200mV level (Over and under shoot voltage)
- Response time depends on the temperature.(In lower temperature, it becomes longer.)
- Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- When fixed patterns are displayed for a long time, remnant image is likely to occur.
- Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference

Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

Storage

When storing modules as spares for a long time, the following precautions are necessary.

- Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

Protection Film

- When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt tore main on the polarizer. Please carefully peel off the protection film without rubbing it against the polarizer.
- When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Transportation

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.