

LM3S6611 Microcontroller

DATA SHEET

Copyright © 2007 Luminary Micro, Inc. www.DataSheet4U.com

DS-LM3S6611-1728

Legal Disclaimers and Trademark Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007 Luminary Micro, Inc. All rights reserved. Stellaris is a registered trademark and Luminary Micro and the Luminary Micro logo are trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com

LUMINARY MICRO[™]

Table of Contents

	This Document	
	ce	
	This Manual	
	Related Documents	
Docum	ocumentation Conventions 1	
1	Architectural Overview	
1.1	Product Features	
1.2	Target Applications	
1.3	High-Level Block Diagram	
1.4	Functional Overview	
1.4.1	ARM Cortex™-M3	
1.4.2	Motor Control Peripherals	
1.4.3	Analog Peripherals	
1.4.4	Serial Communications Peripherals	
1.4.5	System Peripherals	
1.4.6	Memory Peripherals	
1.4.7	Additional Features	
1.4.8	Hardware Details	31
2	ARM Cortex-M3 Processor Core	33
2.1	Block Diagram	34
2.2	Functional Description	34
2.2.1	Serial Wire and JTAG Debug	34
2.2.2	Embedded Trace Macrocell (ETM)	35
2.2.3	Trace Port Interface Unit (TPIU)	35
2.2.4	ROM Table	35
2.2.5	Memory Protection Unit (MPU)	35
2.2.6	Nested Vectored Interrupt Controller (NVIC)	35
3	Метогу Мар	39
4	Interrupts	41
5	JTAG Interface	43
5.1	Block Diagram	
5.2	Functional Description	
5.2.1	JTAG Interface Pins	
5.2.2	JTAG TAP Controller	
5.2.3	Shift Registers	
5.2.4	Operational Considerations	
5.3	Initialization and Configuration	
5.4	Register Descriptions	
5.4.1	Instruction Register (IR)	
5.4.2	Data Registers	
6	System Control	
6 .1	Functional Description	
6.1.1	Device Identification	
6.1.2	Reset Control	
5.1.2		57

6.1.3	Power Control	. 57
6.1.4	Clock Control	. 57
6.1.5	System Control	. 59
6.2	Initialization and Configuration	. 60
6.3	Register Map	. 60
6.4	Register Descriptions	. 61
7	Hibernation Module	112
7.1	Block Diagram	
7.2	Functional Description	113
7.2.1	Register Access Timing	113
7.2.2	Clock Source	114
7.2.3	Battery Management	
7.2.4	Real-Time Clock	114
7.2.5	Non-Volatile Memory	115
7.2.6	Power Control	
7.2.7	Interrupts and Status	115
7.3	Initialization and Configuration	116
7.3.1	Initialization	116
7.3.2	RTC Match Functionality (No Hibernation)	116
7.3.3	RTC Match/Wake-Up from Hibernation	116
7.3.4	External Wake-Up from Hibernation	117
7.3.5	RTC/External Wake-Up from Hibernation	117
7.4	Register Map	117
7.5	Register Descriptions	118
8	Internal Memory	131
8.1	Block Diagram	131
8.2	Functional Description	131
8.2.1	SRAM Memory	131
8.2.2	Flash Memory	132
8.3	Flash Memory Initialization and Configuration	133
8.3.1	Flash Programming	
8.3.2	Nonvolatile Register Programming	134
8.4		
	Register Map	
8.5	Flash Register Descriptions (Flash Control Offset)	135
8.5 8.6		135
	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs)	135 142 155
8.6 9 9.1	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description	135 142 155 155
8.6 9 9.1 9.1.1	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control	135 142 155 155 155
8.6 9 9.1 9.1.1 9.1.2	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control	135 142 155 155 155 156
8.6 9 9.1 9.1.1 9.1.2 9.1.3	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control	135 142 155 155 155 156 157
8.6 9.1 9.1.1 9.1.2 9.1.3 9.1.4	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control Commit Control	135 142 155 155 155 156 157 157
8.6 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control	135 142 155 155 155 156 157 157 157
8.6 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control Identification	135 142 155 155 156 157 157 157 157
8.6 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.2	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control Identification Initialization and Configuration	135 142 155 155 155 156 157 157 157 157
8.6 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control Identification	135 142 155 155 155 157 157 157 157 157 157

10	General-Purpose Timers	195
10.1	Block Diagram	196
10.2	Functional Description	196
10.2.1	GPTM Reset Conditions	196
10.2.2	32-Bit Timer Operating Modes	196
10.2.3	16-Bit Timer Operating Modes	198
10.3	Initialization and Configuration	202
10.3.1	32-Bit One-Shot/Periodic Timer Mode	
10.3.2	32-Bit Real-Time Clock (RTC) Mode	203
10.3.3	16-Bit One-Shot/Periodic Timer Mode	203
10.3.4	16-Bit Input Edge Count Mode	
10.3.5	16-Bit Input Edge Timing Mode	
10.3.6	16-Bit PWM Mode	205
10.4	Register Map	205
10.5	Register Descriptions	206
11	Watchdog Timer	231
11.1	Block Diagram	231
11.2	Functional Description	231
11.3	Initialization and Configuration	232
11.4	Register Map	232
11.5	Register Descriptions	
12	Universal Asynchronous Receivers/Transmitters (UARTs)	254
12.1	Block Diagram	
12.2	Functional Description	
12.2.1	Transmit/Receive Logic	
12.2.2	Baud-Rate Generation	
12.2.3	Data Transmission	
12.2.4	Serial IR (SIR)	257
12.2.5	FIFO Operation	258
12.2.6	Interrupts	
12.2.7	Loopback Operation	259
12.2.8	IrDA SIR block	259
12.3	Initialization and Configuration	259
12.4	Register Map	260
12.5	Register Descriptions	261
13	Synchronous Serial Interface (SSI)	295
13.1	Block Diagram	
13.2	Functional Description	
13.2.1	Bit Rate Generation	
13.2.2	FIFO Operation	
13.2.3	Interrupts	
13.2.4	Frame Formats	
13.3	Initialization and Configuration	
13.4	Register Map	
13.5	Register Descriptions	
14	Inter-Integrated Circuit (I ² C) Interface	
14.1	Block Diagram	

14.2	Functional Description	
14.2.1	I ² C Bus Functional Overview	
	Available Speed Modes	
14.2.3	Interrupts	
14.2.4	Loopback Operation	
14.2.5	Command Sequence Flow Charts	
14.3 14.4	Initialization and Configuration I ² C Register Map	
14.4	Register Descriptions (I ² C Master)	
14.5	Register Descriptions (I2C Slave)	
15	Ethernet Controller	
15.1	Block Diagram	
15.2	Functional Description	
15.2.1	Internal MII Operation	
15.2.2	PHY Configuration/Operation	
15.2.3	MAC Configuration/Operation	
15.2.4	Interrupts	. 372
15.3	Initialization and Configuration	. 373
15.4	Ethernet Register Map	. 373
15.5	Ethernet MAC Register Descriptions	
15.6	MII Management Register Descriptions	. 392
16	Analog Comparators	411
16.1	Block Diagram	. 411
16.2	Functional Description	
16.2.1	Internal Reference Programming	
16.3	Initialization and Configuration	
16.4	Register Map	
16.5	Register Descriptions	
17	Pin Diagram	
18	Signal Tables	424
19	Operating Characteristics	438
20	Electrical Characteristics	439
20.1	DC Characteristics	
	Maximum Ratings	
	Recommended DC Operating Conditions	
	On-Chip Low Drop-Out (LDO) Regulator Characteristics	
	Power Specifications	
	5	
20.2	AC Characteristics	
20.2.1	Load Conditions	
	Clocks Analog Comparator	
	I ² C	
20.2.4	Ethernet Controller	
20.2.5	Hibernation Module	
	Synchronous Serial Interface (SSI)	
	JTAG and Boundary Scan	

20.2.9	General-Purpose I/O	451
20.2.10	Reset	451
21	Package Information	454
Α	Serial Flash Loader	456
A.1	Serial Flash Loader	456
A.2	Interfaces	456
A.2.1	UART	456
A.2.2	SSI	456
A.3	Packet Handling	457
A.3.1	Packet Format	457
A.3.2	Sending Packets	457
A.3.3	Receiving Packets	457
A.4	Commands	
A.4.1	COMMAND_PING (0X20)	458
A.4.2	COMMAND_GET_STATUS (0x23)	
A.4.3	COMMAND_DOWNLOAD (0x21)	458
A.4.4	COMMAND_SEND_DATA (0x24)	459
A.4.5	COMMAND_RUN (0x22)	459
A.4.6	COMMAND_RESET (0x25)	459
В	Register Quick Reference	461
С	Ordering and Contact Information	476
C.1	Ordering Information	
C.2	Kits	476
C.3	Company Information	476
C.4	Support Information	477

List of Figures

Figure 1-1.	Stellaris [®] 1000 Series High-Level Block Diagram	26
Figure 2-1.	CPU Block Diagram	34
Figure 2-2.	TPIU Block Diagram	35
Figure 5-1.	JTAG Module Block Diagram	44
Figure 5-2.	Test Access Port State Machine	47
Figure 5-3.	IDCODE Register Format	52
Figure 5-4.	BYPASS Register Format	53
Figure 5-5.	Boundary Scan Register Format	53
Figure 6-1.	External Circuitry to Extend Reset	55
Figure 7-1.	Hibernation Module Block Diagram	. 113
Figure 8-1.	Flash Block Diagram	. 131
Figure 9-1.	GPIODATA Write Example	156
Figure 9-2.	GPIODATA Read Example	156
Figure 10-1.	GPTM Module Block Diagram	196
Figure 10-2.	16-Bit Input Edge Count Mode Example	200
Figure 10-3.	16-Bit Input Edge Time Mode Example	201
Figure 10-4.	16-Bit PWM Mode Example	. 202
Figure 11-1.	WDT Module Block Diagram	231
Figure 12-1.	UART Module Block Diagram	255
Figure 12-2.	UART Character Frame	256
Figure 12-3.	IrDA Data Modulation	258
Figure 13-1.	SSI Module Block Diagram	295
Figure 13-2.	TI Synchronous Serial Frame Format (Single Transfer)	297
Figure 13-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	298
Figure 13-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	299
Figure 13-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	299
Figure 13-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	. 300
Figure 13-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	. 301
Figure 13-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	
Figure 13-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	. 302
	MICROWIRE Frame Format (Single Frame)	
	MICROWIRE Frame Format (Continuous Transfer)	
-	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	
Figure 14-1.	I ² C Block Diagram	
Figure 14-2.	I ² C Bus Configuration	
Figure 14-3.	START and STOP Conditions	
Figure 14-4.	Complete Data Transfer with a 7-Bit Address	. 334
Figure 14-5.	R/S Bit in First Byte	
Figure 14-6.	Data Validity During Bit Transfer on the I ² C Bus	
Figure 14-7.	Master Single SEND	337
Figure 14-8.	Master Single RECEIVE	
Figure 14-9.	Master Burst SEND	
•	Master Burst RECEIVE	
•	Master Burst RECEIVE after Burst SEND	
Figure 14-12.	Master Burst SEND after Burst RECEIVE	. 342

Figure 14-13.	Slave Command Sequence	343
Figure 15-1.	Ethernet Controller Block Diagram	368
Figure 15-2.	Ethernet Controller	368
Figure 15-3.	Ethernet Frame	370
Figure 16-1.	Analog Comparator Module Block Diagram	411
Figure 16-2.	Structure of Comparator Unit	412
Figure 16-3.	Comparator Internal Reference Structure	413
Figure 17-1.	Pin Connection Diagram	423
Figure 20-1.	Load Conditions	
Figure 20-2.	I ² C Timing	444
Figure 20-3.	External XTLP Oscillator Characteristics	447
Figure 20-4.	Hibernation Module Timing	448
Figure 20-5.	SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement	448
Figure 20-6.	SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	449
Figure 20-7.	SSI Timing for SPI Frame Format (FRF=00), with SPH=1	449
Figure 20-8.	JTAG Test Clock Input Timing	450
Figure 20-9.	JTAG Test Access Port (TAP) Timing	451
Figure 20-10.	JTAG TRST Timing	451
Figure 20-11.	External Reset Timing (RST)	452
Figure 20-12.	Power-On Reset Timing	452
Figure 20-13.	Brown-Out Reset Timing	452
Figure 20-14.	Software Reset Timing	453
Figure 20-15.	Watchdog Reset Timing	453
Figure 21-1.	100-Pin LQFP Package	454

List of Tables

Table 1.	Documentation Conventions	. 18
Table 3-1.	Memory Map	. 39
Table 4-1.	Exception Types	. 41
Table 4-2.	Interrupts	. 42
Table 5-1.	JTAG Port Pins Reset State	
Table 5-2.	JTAG Instruction Register Commands	50
Table 6-1.	System Control Register Map	60
Table 7-1.	Hibernation Module Register Map	117
Table 8-1.	Flash Protection Policy Combinations	133
Table 8-2.	Flash Resident Registers	
Table 8-3.	Flash Register Map	134
Table 9-1.	GPIO Pad Configuration Examples	158
Table 9-2.	GPIO Interrupt Configuration Example	158
Table 9-3.	GPIO Register Map	159
Table 10-1.	16-Bit Timer With Prescaler Configurations	199
Table 10-2.	Timers Register Map	205
Table 11-1.	Watchdog Timer Register Map	232
Table 12-1.	UART Register Map	260
Table 13-1.	SSI Register Map	306
Table 14-1.	Examples of I ² C Master Timer Period versus Speed Mode	335
Table 14-2.	Inter-Integrated Circuit (I ² C) Interface Register Map	344
Table 14-3.	Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)	
Table 15-1.	TX & RX FIFO Organization	
Table 15-2.	Ethernet Register Map	374
Table 16-1.	Comparator 0 Operating Modes	412
Table 16-2.	Comparator 1 Operating Modes	
Table 16-3.	Internal Reference Voltage and ACREFCTL Field Values	413
Table 16-4.	Analog Comparators Register Map	415
Table 18-1.	Signals by Pin Number	424
Table 18-2.	Signals by Signal Name	428
Table 18-3.	Signals by Function, Except for GPIO	432
Table 18-4.	GPIO Pins and Alternate Functions	436
Table 19-1.	Temperature Characteristics	438
Table 19-2.	Thermal Characteristics	438
Table 20-1.	Maximum Ratings	439
Table 20-2.	Recommended DC Operating Conditions	439
Table 20-3.	LDO Regulator Characteristics	440
Table 20-4.	Detailed Power Specifications	441
Table 20-5.	Flash Memory Characteristics	442
Table 20-6.	Phase Locked Loop (PLL) Characteristics	442
Table 20-7.	Clock Characteristics	442
Table 20-8.	Crystal Characteristics	
Table 20-9.	Analog Comparator Characteristics	443
Table 20-10.	Analog Comparator Voltage Reference Characteristics	
Table 20-11.	I ² C Characteristics	
Table 20-12.	100BASE-TX Transmitter Characteristics	444

Table 20-13.	100BASE-TX Transmitter Characteristics (informative)	444
Table 20-14.	100BASE-TX Receiver Characteristics	445
Table 20-15.	10BASE-T Transmitter Characteristics	445
Table 20-16.	10BASE-T Transmitter Characteristics (informative)	445
Table 20-17.	10BASE-T Receiver Characteristics	445
Table 20-18.	Isolation Transformers	445
Table 20-19.	Ethernet Reference Crystal	446
Table 20-20.	External XTLP Oscillator Characteristics	447
Table 20-21.	Hibernation Module Characteristics	447
Table 20-22.	SSI Characteristics	448
Table 20-23.	JTAG Characteristics	449
Table 20-24.	GPIO Characteristics	451
Table 20-25.	Reset Characteristics	451
Table C-1.	Part Ordering Information	476

List of Registers

System Con	trol	
Register 1:	Device Identification 0 (DID0), offset 0x000	. 62
Register 2:	Brown-Out Reset Control (PBORCTL), offset 0x030	. 64
Register 3:	LDO Power Control (LDOPCTL), offset 0x034	. 65
Register 4:	Raw Interrupt Status (RIS), offset 0x050	. 66
Register 5:	Interrupt Mask Control (IMC), offset 0x054	
Register 6:	Masked Interrupt Status and Clear (MISC), offset 0x058	. 68
Register 7:	Reset Cause (RESC), offset 0x05C	
Register 8:	Run-Mode Clock Configuration (RCC), offset 0x060	. 70
Register 9:	XTAL to PLL Translation (PLLCFG), offset 0x064	
Register 10:	Run-Mode Clock Configuration 2 (RCC2), offset 0x070	
Register 11:	Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144	. 77
Register 12:	Device Identification 1 (DID1), offset 0x004	
Register 13:	Device Capabilities 0 (DC0), offset 0x008	
Register 14:	Device Capabilities 1 (DC1), offset 0x010	. 81
Register 15:	Device Capabilities 2 (DC2), offset 0x014	
Register 16:	Device Capabilities 3 (DC3), offset 0x018	. 85
Register 17:	Device Capabilities 4 (DC4), offset 0x01C	
Register 18:	Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100	. 89
Register 19:	Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110	. 90
Register 20:	Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120	. 91
Register 21:	Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104	. 92
Register 22:	Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114	
Register 23:	Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124	
Register 24:	Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108	101
Register 25:	Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118	103
Register 26:	Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128	105
Register 27:	Software Reset Control 0 (SRCR0), offset 0x040	
Register 28:	Software Reset Control 1 (SRCR1), offset 0x044	
Register 29:	Software Reset Control 2 (SRCR2), offset 0x048	110
Hibernation	Module	112
Register 1:	Hibernation RTC Counter (HIBRTCC), offset 0x000	119
Register 2:	Hibernation RTC Match 0 (HIBRTCM0), offset 0x004	120
Register 3:	Hibernation RTC Match 1 (HIBRTCM1), offset 0x008	121
Register 4:	Hibernation RTC Load (HIBRTCLD), offset 0x00C	122
Register 5:	Hibernation Control (HIBCTL), offset 0x010	123
Register 6:	Hibernation Interrupt Mask (HIBIM), offset 0x014	125
Register 7:	Hibernation Raw Interrupt Status (HIBRIS), offset 0x018	126
Register 8:	Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C	127
Register 9:	Hibernation Interrupt Clear (HIBIC), offset 0x020	128
Register 10:	Hibernation RTC Trim (HIBRTCT), offset 0x024	129
Register 11:	Hibernation Data (HIBDATA), offset 0x030-0x12C	130
Internal Mer	nory	131
Register 1:	Flash Memory Address (FMA), offset 0x000	
Register 2:	Flash Memory Data (FMD), offset 0x004	
-		

Register 3:	Flash Memory Control (FMC), offset 0x008	138
Register 4:	Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C	
Register 5:	Flash Controller Interrupt Mask (FCIM), offset 0x010	141
Register 6:	Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	
Register 7:	USec Reload (USECRL), offset 0x140	
Register 8:	Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200	
Register 9:	Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400	
Register 10:	User Debug (USER_DBG), offset 0x1D0	
Register 11:	User Register 0 (USER_REG0), offset 0x1E0	
Register 12:	User Register 1 (USER_REG1), offset 0x1E4	
Register 13:	Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204	
Register 14:	Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208	
Register 15:	Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C	
Register 16:	Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404	
Register 17:	Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408	
Register 18:	Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C	
General-Pu	pose Input/Outputs (GPIOs)	155
Register 1:	GPIO Data (GPIODATA), offset 0x000	
Register 2:	GPIO Direction (GPIODIR), offset 0x400	
Register 3:	GPIO Interrupt Sense (GPIOIS), offset 0x404	
Register 4:	GPIO Interrupt Both Edges (GPIOIBE), offset 0x408	
Register 5:	GPIO Interrupt Event (GPIOIEV), offset 0x40C	
Register 6:	GPIO Interrupt Mask (GPIOIM), offset 0x410	
Register 7:	GPIO Raw Interrupt Status (GPIORIS), offset 0x414	
Register 8:	GPIO Masked Interrupt Status (GPIOMIS), offset 0x418	
Register 9:	GPIO Interrupt Clear (GPIOICR), offset 0x41C	
Register 10:	GPIO Alternate Function Select (GPIOAFSEL), offset 0x420	
Register 11:	GPIO 2-mA Drive Select (GPIODR2R), offset 0x500	
Register 12:	GPIO 4-mA Drive Select (GPIODR4R), offset 0x504	
Register 13:	GPIO 8-mA Drive Select (GPIODR8R), offset 0x508	174
Register 14:	GPIO Open Drain Select (GPIOODR), offset 0x50C	175
Register 15:	GPIO Pull-Up Select (GPIOPUR), offset 0x510	176
Register 16:	GPIO Pull-Down Select (GPIOPDR), offset 0x514	177
Register 17:	GPIO Slew Rate Control Select (GPIOSLR), offset 0x518	178
Register 18:	GPIO Digital Enable (GPIODEN), offset 0x51C	179
Register 19:	GPIO Lock (GPIOLOCK), offset 0x520	180
Register 20:	GPIO Commit (GPIOCR), offset 0x524	181
Register 21:	GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0	
Register 22:	GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4	184
Register 23:	GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8	
Register 24:	GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC	186
Register 25:	GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0	187
Register 26:	GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4	188
Register 27:	GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8	
Register 28:	GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC	
Register 29:	GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0	
Register 30:	GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4	
Register 31:	GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8	193

Register 32:	GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	194
General-Purpose Timers 1		
Register 1:	GPTM Configuration (GPTMCFG), offset 0x000	207
Register 2:	GPTM TimerA Mode (GPTMTAMR), offset 0x004	208
Register 3:	GPTM TimerB Mode (GPTMTBMR), offset 0x008	210
Register 4:	GPTM Control (GPTMCTL), offset 0x00C	212
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	215
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x028	221
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	
Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	
-	Fimer	
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	
Register 2:	Watchdog Value (WDTVALUE), offset 0x004	
-	Watchdog Control (WDTCTL), offset 0x004	
Register 3:	Watchdog Control (WDTCTE), onset 0x000	
Register 4: Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x000	
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x010	
Register 7:	Watchdog Test (WDTTEST), offset 0x418	
Register 8:	Watchdog Lock (WDTLOCK), offset 0x410	
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD4	
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	
Register 12:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	
-		
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4	
Register 15: Register 16:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	
•		
Register 17:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0	
Register 18:	-	
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	
Register 20:	Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC	
	synchronous Receivers/Transmitters (UARTs)	
Register 1:	UART Data (UARTDR), offset 0x000	
Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	
Register 3:	UART Flag (UARTFR), offset 0x018	
Register 4:	UART IrDA Low-Power Register (UARTILPR), offset 0x020	
Register 5:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	
Register 6:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	270

Register 7:	UART Line Control (UARTLCRH), offset 0x02C	271
Register 8:	UART Control (UARTCTL), offset 0x030	
Register 9:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	
Register 10:	UART Interrupt Mask (UARTIM), offset 0x038	
Register 11:	UART Raw Interrupt Status (UARTRIS), offset 0x03C	
Register 12:	UART Masked Interrupt Status (UARTMIS), offset 0x040	
Register 13:	UART Interrupt Clear (UARTICR), offset 0x044	
Register 14:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	
Register 15:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	
Register 16:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	
Register 17:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	
Register 18:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	
Register 19:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	
Register 20:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	
Register 21:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	
Register 22:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	
Register 23:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	
Register 24:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	
Register 25:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	
•	us Serial Interface (SSI)	
Register 1:	SSI Control 0 (SSICR0), offset 0x000	
Register 2:	SSI Control 1 (SSICR1), offset 0x004	
Register 3:	SSI Data (SSIDR), offset 0x008	
Register 4:	SSI Status (SSISR), offset 0x00C	
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	
Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	
Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	
Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	319
Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	320
Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	321
Register 12:	SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8	322
Register 13:	SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC	323
Register 14:	SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0	324
Register 15:	SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4	
Register 16:	SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8	
Register 17:	SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC	
Register 18:	SSI PrimeCell Identification 0 (SSIPCelIID0), offset 0xFF0	
Register 19:	SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4	
Register 20:	SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8	
Register 21:	SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC	
-	rated Circuit (I ² C) Interface	
Register 1:	I ² C Master Slave Address (I2CMSA), offset 0x000	
Register 2:	I ² C Master Control/Status (I2CMCS), offset 0x004	
Register 3:	I ² C Master Data (I2CMDR), offset 0x008	
Register 4:	I ² C Master Timer Period (I2CMTPR), offset 0x00C	352
Register 5:	I ² C Master Interrupt Mask (I2CMIMR), offset 0x010	
Register 6:	I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014	354

Register 8: I ² C Master Configuration (I2CMCR), offset 0x01C 356 Register 9: I ² C Slave Own Address (I2CSOAR), offset 0x000 357 Register 11: I ² C Slave Own Address (I2CSOAR), offset 0x004 360 Register 12: I ² C Slave Data (I2CSCRS), offset 0x004 363 Register 14: I ² C Slave Interrupt Mask (I2CSINS), offset 0x004 363 Register 15: I ² C Slave Interrupt Mask (I2CSINS), offset 0x014 365 Register 16: I ² C Slave Raw Interrupt Status (I2CSINS), offset 0x014 366 Ethernet Controller 366 366 Register 16: I ² C Slave Raw Interrupt Status (MACRIS), offset 0x000 376 Register 2: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 378 Register 3: Ethernet MAC Receive Control (MACRCTL), offset 0x004 379 Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x002 380 Register 7: Ethernet MAC Individual Address 0 (MACIA), offset 0x014 384 Register 8: Ethernet MAC Management Control (MACRCHL), offset 0x024 387 Register 9: Ethernet MAC Management Control (MACRCHL), offset 0x024 386 Register 11: Ethernet MAC Management Register 0 </th <th>Register 7:</th> <th>I²C Master Masked Interrupt Status (I2CMMIS), offset 0x018</th> <th>355</th>	Register 7:	I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018	355
Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x000 359 Register 11: I ² C Slave Control/Status (I2CSCASR), offset 0x004 360 Register 13: I ² C Slave Data (I2CSDR), offset 0x006 363 Register 14: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x010 364 Register 15: I ² C Slave Raw Interrupt Status (I2CSINS), offset 0x014 365 Register 16: I ² C Slave Raw Interrupt Status (I2CSINS), offset 0x014 366 Ethernet Controller 366 Register 11: Ethernet MAC Raw Interrupt Status (IACRIS), offset 0x000 376 Register 2: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000 377 Register 3: Ethernet MAC Receive Control (MACRCTL), offset 0x004 379 Register 4: Ethernet MAC Transmit Control (MACCTL), offset 0x014 384 Register 5: Ethernet MAC Transmit Control (MACCTL), offset 0x014 384 Register 8: Ethernet MAC Management Control (MACCMCLO), offset 0x024 386 Register 9: Ethernet MAC Management Control (MACCTL), offset 0x024 388 Register 11: Ethernet MAC Management Control (MACCTL), offset 0x024 388 Register 11: Ethernet MAC Management Receive DAUO1 </td <td>Register 8:</td> <td>I²C Master Interrupt Clear (I2CMICR), offset 0x01C</td> <td>356</td>	Register 8:	I ² C Master Interrupt Clear (I2CMICR), offset 0x01C	356
Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x000 359 Register 11: I ² C Slave Control/Status (I2CSCASR), offset 0x004 360 Register 13: I ² C Slave Data (I2CSDR), offset 0x006 363 Register 14: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x010 364 Register 15: I ² C Slave Raw Interrupt Status (I2CSINS), offset 0x014 365 Register 16: I ² C Slave Raw Interrupt Status (I2CSINS), offset 0x014 366 Ethernet Controller 366 Register 11: Ethernet MAC Raw Interrupt Status (IACRIS), offset 0x000 376 Register 2: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000 377 Register 3: Ethernet MAC Receive Control (MACRCTL), offset 0x004 379 Register 4: Ethernet MAC Transmit Control (MACCTL), offset 0x014 384 Register 5: Ethernet MAC Transmit Control (MACCTL), offset 0x014 384 Register 8: Ethernet MAC Management Control (MACCMCLO), offset 0x024 386 Register 9: Ethernet MAC Management Control (MACCTL), offset 0x024 388 Register 11: Ethernet MAC Management Control (MACCTL), offset 0x024 388 Register 11: Ethernet MAC Management Receive DAUO1 </td <td>Register 9:</td> <td>I²C Master Configuration (I2CMCR), offset 0x020</td> <td>357</td>	Register 9:	I ² C Master Configuration (I2CMCR), offset 0x020	357
Register 11: I ² C Slave Data (I2CSDR), offset 0x008 360 Register 12: I ² C Slave Interrupt Mask (I2CSMR), offset 0x000 363 Register 14: I ² C Slave Raw Interrupt Status (I2CSMIS), offset 0x010 364 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x014 365 Register 16: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x014 366 Ethernet Controller 367 Register 1: Ethernet MAC Interrupt Status (MACRIS), offset 0x000 376 Register 3: Ethernet MAC Interrupt Mask (MACIN), offset 0x004 379 Register 4: Ethernet MAC Control (MACCACL), offset 0x008 380 Register 5: Ethernet MAC Control (MACCACL), offset 0x001 382 Register 6: Ethernet MAC Control (MACCACL), offset 0x014 384 Register 7: Ethernet MAC Individual Address 0 (MACIA), offset 0x014 384 Register 10: Ethernet MAC Management Control (MACCAL), offset 0x020 387 Register 11: Ethernet MAC Management Toasmit Data (MACMTXD), offset 0x024 388 Register 12: Ethernet MAC Management Recieve Data (MACMAC), offset 0x024 389 Register 13: Ethernet MAC Management Recieve Data (MACMTXD), o	-		
Register 12: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x00C 363 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x010 364 Register 15: I ² C Slave Masked Interrupt Status (I2CSIRS), offset 0x010 364 Register 16: I ² C Slave Masked Interrupt Status (I2CSIRS), offset 0x014 365 Register 11: Ethernet MAC Raw Interrupt Status (IACCR), offset 0x000 376 Register 21: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 378 Register 3: Ethernet MAC Interrupt Ask (MACRI), offset 0x004 379 Register 4: Ethernet MAC Careceive Control (MACRCTL), offset 0x002 381 Register 5: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 7: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014 384 Register 9: Ethernet MAC Individual Address 0 (MACIA0), offset 0x016 386 Register 10: Ethernet MAC Management Control (MACMOTTL), offset 0x020 387 Register 11: Ethernet MAC Management Receive Data (MACMARXD), offset 0x033 390 Register 12: Ethernet MAC Management Receive Data (MACMARXD), offset 0x034 391 Register 13: Ethernet MAC Management Receive Data (MACMRXD), offset 0x033 390 <td>-</td> <td></td> <td></td>	-		
Register 13: I ² C Slave laterrupt Mask (I2CSINR), offset 0x000 363 Register 14: I ² C Slave Masked Interrupt Status (I2CSINS), offset 0x010 364 Register 15: I ² C Slave Masked Interrupt Status (I2CSINS), offset 0x014 365 Register 16: I ² C Slave Interrupt Status (I2CSINS), offset 0x000 376 Register 2: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 376 Register 3: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000 377 Register 4: Ethernet MAC Cransmit Control (MACRCTL), offset 0x002 381 Register 5: Ethernet MAC Transmit Control (MACCTL), offset 0x002 381 Register 6: Ethernet MAC Individual Address 0 (MACIA), offset 0x014 384 Register 7: Ethernet MAC Individual Address 0 (MACIA), offset 0x014 384 Register 9: Ethernet MAC Management Control (MACCIAT), offset 0x020 387 Register 10: Ethernet MAC Management Divider (MACMDP), offset 0x034 391 Register 11: Ethernet MAC Management Divider (MACMP), offset 0x034 391 Register 12: Ethernet MAC Management Register 10 393 Register 13: Ethernet MAC Namagement Register 10 S00 Register 14	-	-	
Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x010 364 Register 15: I ² C Slave Interrupt Clear (I2CSICR), offset 0x018 365 Ethernet Controller 367 Register 15: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 376 Register 2: Ethernet MAC Interrupt Mask (MACIA), offset 0x004 379 Register 3: Ethernet MAC Interrupt Mask (MACIA), offset 0x004 379 Register 4: Ethernet MAC Transmit Control (MACRCTL), offset 0x004 380 Register 5: Ethernet MAC Transmit Control (MACTCL), offset 0x010 382 Register 6: Ethernet MAC Individual Address 0 (MACIA), offset 0x014 384 Register 7: Ethernet MAC Individual Address 1 (MACIA1), offset 0x014 384 Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x012 386 Register 10: Ethernet MAC Management Tornsmit Data (MACMTXD), offset 0x020 387 Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x034 390 Register 12: Ethernet MAC Management Register 0 – Control (MRO), address 0x00 393 Register 13: Ethernet MAC Management Register 1 – Status (MR1), address 0x03 392 Register 14:	•		
Register 15: I ² C Slave Interrupt Clear (I2CSIR), offset 0x014 365 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x018 366 Register 11: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 376 Register 2: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000 378 Register 3: Ethernet MAC Interrupt Mask (MACRID), offset 0x004 379 Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x006 380 Register 5: Ethernet MAC Individual Address 0 (MACIAO), offset 0x014 384 Register 6: Ethernet MAC Individual Address 0 (MACIAO), offset 0x014 384 Register 7: Ethernet MAC Individual Address 0 (MACIAI), offset 0x012 387 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Divider (MACMTZL), offset 0x020 388 Register 12: Ethernet MAC Management Receive Data (MACMTXD), offset 0x038 390 Register 13: Ethernet MAC Nanagement Register 0 Control (MRO), address 0x00 393 Register 14: Ethernet MAC Nanagement Register 0 Control (MRO), address 0x01 392 Register 13: Ethernet MAC Nanagement Register 1 </td <td>-</td> <td></td> <td></td>	-		
Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x018 366 Ethernet Controller 367 Register 1: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 376 Register 3: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000 378 Register 3: Ethernet MAC Interrupt Mask (MACRIS), offset 0x004 379 Register 4: Ethernet MAC Cacevice Control (MACRCTL), offset 0x006 381 Register 5: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 6: Ethernet MAC Individual Address 0 (MACIAO), offset 0x014 384 Register 7: Ethernet MAC Individual Address 1 (MACIA1), offset 0x016 386 Register 9: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 10: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x024 388 Register 11: Ethernet MAC Management Receive Data (MACMTXD), offset 0x024 389 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MRO), address 0x00 393 Register 16: Ethernet PHY Management Register 1 – Status (MR1), address 0x03 398 Register 17:	-		
Ethernet Controller 367 Register 1: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 376 Register 2: Ethernet MAC Interrupt Status (MACRIS), offset 0x000 378 Register 3: Ethernet MAC Interrupt Mask (MACIM), offset 0x004 379 Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x006 380 Register 5: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 7: Ethernet MAC Individual Address 0 (MACIA), offset 0x010 382 Register 9: Ethernet MAC Individual Address 1 (MACIA1), offset 0x016 386 Register 9: Ethernet MAC Management Control (MACMOV), offset 0x020 387 Register 10: Ethernet MAC Management Drivider (MACMDV), offset 0x020 388 Register 11: Ethernet MAC Management Receive Data (MACMTXD), offset 0x020 389 Register 12: Ethernet MAC Management Receive Data (MACMTXD), offset 0x030 390 Register 13: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Manage	-		
Register 1: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000 376 Register 2: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x004 379 Register 3: Ethernet MAC Receive Control (MACRCTL), offset 0x008 380 Register 4: Ethernet MAC Receive Control (MACTCTL), offset 0x007 381 Register 5: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 6: Ethernet MAC Individual Address 0 (MACIAO), offset 0x014 384 Register 7: Ethernet MAC Individual Address 1 (MACIAI), offset 0x018 385 Register 9: Ethernet MAC Individual Address 1 (MACIAI), offset 0x020 387 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x024 388 Register 11: Ethernet MAC Management Receive Data (MACMNZD), offset 0x030 390 Register 12: Ethernet MAC Management Receive Data (MACMNZD), offset 0x034 391 Register 13: Ethernet MAC Management Receive Data (MACMNZD), offset 0x034 391 Register 14: Ethernet MAC Management Receive Data (MACTR), offset 0x038 392 Register 15: Ethernet MAC Management Register 1 - Status (MR1), address 0x01 393 Register 16: Ethernet PHY Management Register 2 - PHY Identifier 1 (MR2), add	-		
Register 2: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000 378 Register 3: Ethernet MAC Interrupt Mask (MACIM), offset 0x004 379 Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x006 380 Register 5: Ethernet MAC Transmit Control (MACRCTL), offset 0x006 381 Register 6: Ethernet MAC Individual Address 0 (MACIAI), offset 0x014 384 Register 7: Ethernet MAC Individual Address 1 (MACIAI), offset 0x014 385 Register 9: Ethernet MAC Individual Address 1 (MACIAI), offset 0x020 387 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x020 388 Register 12: Ethernet MAC Management Receive Data (MACMTXD), offset 0x034 391 Register 13: Ethernet MAC Number of Packets (MACNP), offset 0x034 392 Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x034 392 Register 15: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 397 Register 14: Ethernet PHY Management Register 2 – PHY Identifier 2 (MR3), address 0x03 398 Register 15: Ethernet PHY Management Register 2 –			
Register 3: Ethernet MAC Interrupt Mask (MACIM), offset 0x004 379 Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x008 380 Register 5: Ethernet MAC Transmit Control (MACRCTL), offset 0x000 381 Register 6: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 7: Ethernet MAC Individual Address 0 (MACIA), offset 0x014 384 Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 385 Register 9: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 10: Ethernet MAC Management Divider (MACMTL), offset 0x024 388 Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x024 389 Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x030 390 Register 13: Ethernet MAC Management Receive Data (MACMTR), offset 0x034 391 Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x034 392 Register 15: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 393 Register 16: Ethernet PHY Management Register 1 – Nato-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 1 – Auto-Neg	-		
Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x008 380 Register 5: Ethernet MAC Transmit Control (MACTCTL), offset 0x00C 381 Register 6: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 7: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014 384 Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 385 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Control (MACMCNU), offset 0x020 388 Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x020 389 Register 13: Ethernet MAC Management Receive Data (MACMXD), offset 0x030 390 Register 14: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x034 392 Register 16: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 393 Register 19: Ethernet PHY Management Register 3 – PHY Identifier 1 (MR2), address 0x03 398 Register 20: Ethernet PHY Management Register 5 – Auto-Negotiation Advertisement (MR4), address 0x06 400 Register 22: Ethernet PHY Man	-		
Register 5: Ethernet MAC Transmit Control (MACTCTL), offset 0x00C 381 Register 6: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 7: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014 384 Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 385 Register 9: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 10: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x020 388 Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x020 389 Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x030 390 Register 13: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 16: Ethernet MAC Transmission Request (MACTR), offset 0x034 392 Register 17: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x01 393 Register 18: Ethernet PHY Management Register 2 – PHY Identifier 2 (MR3), address 0x03 398 Register 20: Ethernet PHY Management Register 5 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401	-		
Register 6: Ethernet MAC Data (MACDATA), offset 0x010 382 Register 7: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014 384 Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 385 Register 9: Ethernet MAC Threshold (MACTHR), offset 0x010 386 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Divider (MACMDV), offset 0x024 388 Register 12: Ethernet MAC Management Receive Data (MACMTXD), offset 0x020 390 Register 13: Ethernet MAC Management Receive Data (MACMXD), offset 0x034 391 Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x034 392 Register 15: Ethernet PHY Management Register 0 – Control (MRO), address 0x00 393 Register 16: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 17: Ethernet PHY Management Register 3 – PHY Identifier 1 (MR2), address 0x03 398 Register 20: Ethernet PHY Management Register 5 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x10 401 Register 22:	-		
Register 7: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014 384 Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 385 Register 9: Ethernet MAC Threshold (MACTHR), offset 0x01C 386 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Divider (MACMDV), offset 0x024 388 Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x030 390 Register 13: Ethernet MAC Nanagement Receive Data (MACMRXD), offset 0x034 391 Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x034 392 Register 15: Ethernet PHY Management Register 0 - Control (MR0), address 0x00 393 Register 16: Ethernet PHY Management Register 1 - Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 3 - PHY Identifier 1 (MR2), address 0x03 398 Register 20: Ethernet PHY Management Register 4 - Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 - Auto-Negotiation Expansion (MR6), address 0x06 402 Register 22: Ethernet PHY Management Register 16 - Vendor-Specific (MR16), address 0x10 403	-		
Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 385 Register 9: Ethernet MAC Threshold (MACTHR), offset 0x01C 386 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x024 388 Register 12: Ethernet MAC Management Receive Data (MACMTXD), offset 0x02C 389 Register 13: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 16: Ethernet MAC Transmission Request (MACTR), offset 0x034 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 23: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 24: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), add	-		
Register 9: Ethernet MAC Threshold (MACTHR), offset 0x01C 386 Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Divider (MACMDV), offset 0x024 388 Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C 389 Register 13: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030 390 Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x034 391 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 15 – Auto-Negotiation Expansion (MR6), address 0x06 401 Register 22: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 23: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11	-		
Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020 387 Register 11: Ethernet MAC Management Divider (MACMDV), offset 0x024 388 Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C 389 Register 13: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x030 390 Register 14: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 3 – PHY Identifier 1 (MR2), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 6 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 23: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 24: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x13 405 Register 25: Ethernet PHY Management Register 18	-		
Register 11: Ethernet MAC Management Divider (MACMDV), offset 0x024 388 Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C 389 Register 13: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030 390 Register 14: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 15: Ethernet MAC Transmission Request (MACR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 3 – PHY Identifier 1 (MR2), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 22: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 402 Register 23: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 403 Register 24: Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12 407 Register 25: Ethernet PHY Management	-		
Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C 389 Register 13: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030 390 Register 14: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 3 – PHY Identifier 1 (MR2), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 22: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 23: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 405 Register 25: Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12 407 Register 26: Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17 409 Register 26:	-		
Register 13: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030 390 Register 14: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 397 Register 19: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 398 Register 20: Ethernet PHY Management Register 5 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06 401 Register 22: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 23: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x13 405 Register 25: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 406 Register 26: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 406 Register 27: <t< td=""><td>-</td><td> ,</td><td></td></t<>	-	,	
Register 14: Ethernet MAC Number of Packets (MACNP), offset 0x034 391 Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 397 Register 19: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 22: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 23: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 405 Register 24: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 406 Register 25: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 406 Register 27: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 406 <t< td=""><td>-</td><td>•</td><td></td></t<>	-	•	
Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038 392 Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 393 Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 395 Register 18: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 397 Register 19: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 22: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06 402 Register 23: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 24: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 405 Register 25: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 408 Register 27: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 406 Register 27: Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x13 <	-		
Register 16:Ethernet PHY Management Register 0 – Control (MR0), address 0x00393Register 17:Ethernet PHY Management Register 1 – Status (MR1), address 0x01395Register 18:Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02397Register 19:Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03398Register 20:Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04399Register 21:Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05401Register 22:Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06402Register 23:Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10403Register 24:Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11405Register 25:Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13408Register 27:Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17409Register 28:Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18411Register 11:Analog Comparator Masked Interrupt Status (ACRIS), offset 0x04417Register 21:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04418	-		
Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01	-		
Register 18: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 397 Register 19: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 22: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06 402 Register 23: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 24: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 405 Register 25: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 408 Register 26: Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17 409 Register 28: Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18 411 Register 11: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00 416 Register 21: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04 417 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08 418<	-		
Register 19: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 398 Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 399 Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 401 Register 22: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06 402 Register 23: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 403 Register 24: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 405 Register 25: Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12 407 Register 26: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 408 Register 27: Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x13 409 Register 28: Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18 410 Analog Comparators 411 411 Register 1: Analog Comparator Masked Interrupt Status (ACRIS), offset 0x04 417 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x04 418	-		
Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04	-		
0x04399Register 21:Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05401Register 22:Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06402Register 23:Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10403Register 24:Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11405Register 25:Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12407Register 26:Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13408Register 27:Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17409Register 28:Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18411Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x08418	-		398
(MR5), address 0x05401Register 22:Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06402Register 23:Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10403Register 24:Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11405Register 25:Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12407Register 26:Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13408Register 27:Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17409Register 28:Ethernet PHY Management Register 24 –MDI/MDIX Control (MR24), address 0x18410Analog Comparators411Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 3:Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x08418	Register 20:	0x04	399
0x06402Register 23:Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10403Register 24:Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11405Register 25:Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12407Register 26:Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13408Register 27:Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17409Register 28:Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18410Analog Comparators411Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x08418	Register 21:		401
Register 24: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 405 Register 25: Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12 407 Register 26: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 408 Register 27: Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17 409 Register 28: Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18 410 Analog Comparators 411 Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00 416 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04 417 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08 418	Register 22:		402
0x11405Register 25:Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12407Register 26:Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13408Register 27:Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17409Register 28:Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18410Analog Comparators411Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x08418	Register 23:	Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10	403
Register 26:Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 408Register 27:Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17 409Register 28:Ethernet PHY Management Register 24 –MDI/MDIX Control (MR24), address 0x18 410Analog Comparators	Register 24:		405
Register 27:Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17 409Register 28:Ethernet PHY Management Register 24 –MDI/MDIX Control (MR24), address 0x18	Register 25:	Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12	407
Register 28:Ethernet PHY Management Register 24 –MDI/MDIX Control (MR24), address 0x18410Analog Comparators411Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x08418	-	Ethernet PHY Management Register 19 - Transceiver Control (MR19), address 0x13	408
Register 28:Ethernet PHY Management Register 24 –MDI/MDIX Control (MR24), address 0x18410Analog Comparators411Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x08418	Register 27:	Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17	409
Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x08418	Register 28:		
Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00416Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x08418	Analog Con	nparators	411
Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04417Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x08418			
Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08 418	-		
	-		
	-		

Register 5:	Analog Comparator Status 0 (ACSTAT0), offset 0x20	420
Register 6:	Analog Comparator Status 1 (ACSTAT1), offset 0x40	420
Register 7:	Analog Comparator Control 0 (ACCTL0), offset 0x24	421
Register 8:	Analog Comparator Control 1 (ACCTL1), offset 0x44	421

About This Document

This data sheet provides reference information for the LM3S6611 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following documents are referenced by the data sheet, and available on the documentation CD or from the Luminary Micro web site at www.luminarymicro.com:

- ARM® Cortex™-M3 Technical Reference Manual
- ARM® CoreSight Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual

The following related documents are also referenced:

IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 1 on page 18.

Table 1. Documentation Conventions

Notation	Meaning		
General Register Notation			
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0, SRCR1 , and SRCR2 .		
bit	A single bit in a register.		
bit field	Two or more consecutive and related bits.		
offset 0xnnn	A hexadecimal increment to a register's address, relative to that module's base address as specified in "Memory Map" on page 39.		
Register N	Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.		

Notation	Meaning
reserved	Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
уу:хх	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.
Register Bit/Field Types	This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.
RC	Software can read this field. The bit or field is cleared by hardware after reading the bit/field.
RO	Software can read this field. Always write the chip reset value.
R/W	Software can read or write this field.
R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.
	This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.
W1C	Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.
	This register is typically used to clear the corresponding bit in an interrupt register.
WO	Only a write by software is valid; a read of the register returns no meaningful data.
Register Bit/Field Reset Value	This value in the register bit diagram shows the bit/field value after any reset, unless noted.
0	Bit cleared to 0 on chip reset.
1	Bit set to 1 on chip reset.
-	Nondeterministic.
Pin/Signal Notation	
[]	Pin alternate function; a pin defaults to the signal without the brackets.
pin	Refers to the physical connection on the package.
signal	Refers to the electrical signal encoding of a pin.
assert a signal	Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).
deassert a signal	Change the value of the signal from the logically True state to the logically False state.
SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.
SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.
Numbers	
X	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.
0x	Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.
	All other numbers within register tables are assumed to be binary. Within conceptual information, binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written without a prefix or suffix.

1 Architectural Overview

The Luminary Micro Stellaris[®] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The Stellaris[®] family offers efficient performance and extensive integration, favorably positioning the device into cost-conscious applications requiring significant control-processing and connectivity capabilities. The Stellaris[®] LM3S1000 series extends the Stellaris[®] family with larger on-chip memories, enhanced power management, and expanded I/O and control capabilities. The Stellaris[®] LM3S2000 series, designed for Controller Area Network (CAN) applications, extends the Stellaris family with Bosch CAN networking technology, the golden standard in short-haul industrial networks. The Stellaris[®] LM3S2000 series also marks the first integration of CAN capabilities with the revolutionary Cortex-M3 core. The Stellaris[®] LM3S6000 series combines both a 10/100 Ethernet Media Access Control (MAC) and Physical (PHY) layer, marking the first time that integrated connectivity is available with an ARM cortex-M3 MCU and the only integrated 10/100 Ethernet MAC and PHY available in an ARM architecture MCU. The Stellaris[®] LM3S8000 series combines Bosch Controller Area Network technology with both a 10/100 Ethernet Media Access Control (MAC) and Physical (PHY) layer.

The LM3S6611 microcontroller is targeted for industrial applications, including remote monitoring, electronic point-of-sale machines, test and measurement equipment, network appliances and switches, factory automation, HVAC and building control, gaming equipment, motion control, medical instrumentation, and fire and security.

For applications requiring extreme conservation of power, the LM3S6611 microcontroller features a Battery-backed Hibernation module to efficiently power down the LM3S6611 to a low-power state during extended periods of inactivity. With a power-up/power-down sequencer, a continuous time counter (RTC), a pair of match registers, an APB interface to the system bus, and dedicated non-volatile memory, the Hibernation module positions the LM3S6611 microcontroller perfectly for battery applications.

In addition, the LM3S6611 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S6611 microcontroller is code-compatible to all members of the extensive Stellaris[®] family; providing flexibility to fit our customers' precise needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network.

1.1 Product Features

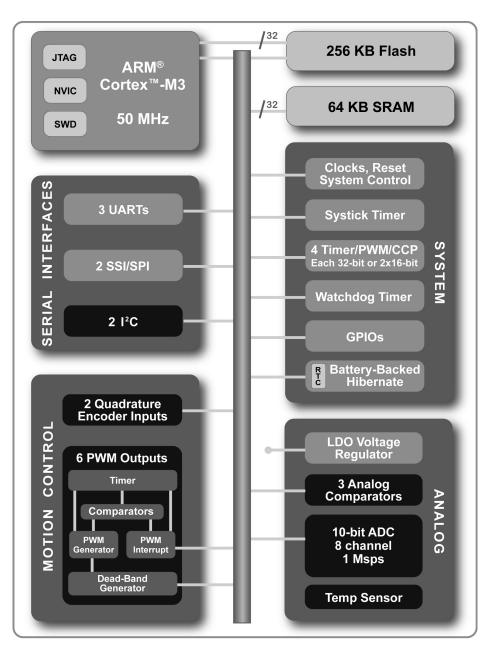
The LM3S6611 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications

- System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
- Thumb®-compatible Thumb-2-only instruction set processor core for high code density
- 50-MHz operation
- Hardware-division and single-cycle-multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
- 30 interrupts with eight priority levels
- Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
- Unaligned data access, enabling data to be efficiently packed into memory
- Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- Internal Memory
 - 128 KB single-cycle flash
 - User-managed flash block protection on a 2-KB block basis
 - User-managed flash data programming
 - · User-defined and managed flash-protection block
 - 32 KB single-cycle SRAM
- General-Purpose Timers
 - Four General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timer/counters. Each GPTM can be configured to operate independently as timers or event counters as a single 32-bit timer, as one 32-bit Real-Time Clock (RTC) to event capture, or for Pulse Width Modulation (PWM)
 - 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU Halt flag during debug
 - 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler

- Programmable one-shot timer
- Programmable periodic timer
- · User-enabled stalling when the controller asserts CPU Halt flag during debug
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable
 - Programmable interrupt generation logic with interrupt masking
 - Lock register protection from runaway software
 - Reset generation logic with an enable/disable
 - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- 10/100 Ethernet Controller
 - Conforms to the IEEE 802.3-2002 Specification
 - Full- and half-duplex for both 100 Mbps and 10 Mbps operation
 - Integrated 10/100 Mbps Transceiver (PHY)
 - Automatic MDI/MDI-X cross-over correction
 - Programmable MAC address
 - Power-saving and power-down modes
- Synchronous Serial Interface (SSI)
 - Two SSI modules, each with the following features:
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
 - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces

- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing
- UART
 - Three fully programmable 16C550-type UARTs with IrDA support
 - Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service loading
 - Programmable baud-rate generator with fractional divider
 - Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
 - FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
 - Standard asynchronous communication bits for start, stop, and parity
 - False-start-bit detection
 - Line-break generation and detection
- Analog Comparators
 - Two independent integrated analog comparators
 - Configurable for output to: drive an output pin or generate an interrupt
 - Compare external pin input to external pin input or to internal programmable voltage reference
- I²C
 - Two l²C modules
 - Master and slave receive and transmit operation with transmission speed up to 100 Kbps in Standard mode and 400 Kbps in Fast mode
 - Interrupt generation
 - Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode
- GPIOs
 - 10-46 GPIOs, depending on configuration
 - 5-V-tolerant input/outputs
 - Programmable interrupt generation as either edge-triggered or level-sensitive
 - Bit masking in both read and write operations through address lines
 - Programmable control for GPIO pad configuration:


- Weak pull-up or pull-down resistors
- 2-mA, 4-mA, and 8-mA pad drive
- Slew rate control for the 8-mA drive
- Open drain enables
- Digital input enables
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
 - Hibernation module handles the power-up/down 3.3 V sequencing and control for the core digital logic and analog circuits
 - Low-power options on controller: Sleep and Deep-sleep modes
 - Low-power options for peripherals: software controls shutdown of individual peripherals
 - User-enabled LDO unregulated voltage detection and automatic reset
 - 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
 - Power-on reset (POR)
 - Reset pin assertion
 - Brown-out (BOR) detector alerts to system power drops
 - Software reset
 - Watchdog timer reset
 - Internal low drop-out (LDO) regulator output goes unregulated
- Additional Features
 - Six reset sources
 - Programmable clock source control
 - Clock gating to individual peripherals for power savings
 - IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
 - Debug access via JTAG and Serial Wire interfaces
 - Full JTAG boundary scan
- Industrial-range 100-pin RoHS-compliant LQFP package

1.2 Target Applications

- Remote monitoring
- Electronic point-of-sale (POS) machines
- Test and measurement equipment
- Network appliances and switches
- Factory automation
- HVAC and building control
- Gaming equipment
- Motion control
- Medical instrumentation
- Fire and security
- Power and energy
- Transportation

1.3 High-Level Block Diagram

Figure 1-1 on page 26 represents the full set of features in the Stellaris[®] 1000 series of devices; not all features may be available on the LM3S6611 microcontroller.

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S6611 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 476.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 **Processor Core (see page 33)**

All members of the Stellaris[®] product family, including the LM3S6611 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

"ARM Cortex-M3 Processor Core" on page 33 provides an overview of the ARM core; the core is detailed in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

1.4.1.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

1.4.1.3 Nested Vectored Interrupt Controller (NVIC)

The LM3S6611 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 30 interrupts.

"Interrupts" on page 41 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S6611 controller features Pulse Width Modulation (PWM) outputs.

1.4.2.1 **PWM** (see page 201)

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control. On the LM3S6611, PWM motion control functionality can be achieved through the motion control features of the general-purpose timers (using the CCP pins).

CCP Pins (see page 201)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

1.4.3 Analog Peripherals

For support of analog signals, the LM3S6611 microcontroller offers two analog comparators.

1.4.3.1 Analog Comparators (see page 411)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S6611 microcontroller provides two independent integrated analog comparators that can be configured to drive an output or generate an interrupt .

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

1.4.4 Serial Communications Peripherals

The LM3S6611 controller supports both asynchronous and synchronous serial communications with:

- Three fully programmable 16C550-type UARTs
- Two SSI modules
- Two I²C modules

1.4.4.1 UART (see page 254)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S6611 controller includes three fully programmable 16C550-type UARTs that support data transfer speeds up to 460.8 Kbps. (Although similar in functionality to a 16C550 UART, it is not register-compatible.) In addition, each UART is capable of supporting IrDA.

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (see page 295)

Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The LM3S6611 controller includes two SSI modules that provide the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

Each SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

Each SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

Each SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

1.4.4.3 I²C (see page 332)

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The I²C bus interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The LM3S6611 controller includes two I^2C modules that provide the ability to communicate to other IC devices over an I^2C bus. The I^2C bus supports devices that can both transmit and receive (write and read) data.

Devices on the I^2C bus can be designated as either a master or a slave. Each I^2C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four I^2C modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

A Stellaris[®] I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I²C master and slave can generate interrupts. The I²C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I²C slave generates interrupts when data has been sent or requested by a master.

1.4.4.4 Ethernet Controller (see page 367)

Ethernet is a frame-based computer networking technology for local area networks (LANs). Ethernet has been standardized as IEEE 802.3. It defines a number of wiring and signaling standards for the physical layer, two means of network access at the Media Access Control (MAC)/Data Link Layer, and a common addressing format.

The Stellaris® Ethernet Controller consists of a fully integrated media access controller (MAC) and network physical (PHY) interface device. The Ethernet Controller conforms to IEEE 802.3 specifications and fully supports 10BASE-T and 100BASE-TX standards. In addition, the Ethernet Controller supports automatic MDI/MDI-X cross-over correction.

1.4.5 System Peripherals

1.4.5.1 Programmable GPIOs (see page 155)

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris[®] GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 10-46 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 424 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines.

1.4.5.2 Four Programmable Timers (see page 195)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris[®] General-Purpose Timer Module (GPTM) contains four GPTM blocks. Each GPTM block provides two 16-bit timer/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

When configured in 32-bit mode, a timer can run as a one-shot timer, periodic timer, or Real-Time Clock (RTC). When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 231)

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The LM3S6611 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 131)

The LM3S6611 static random access memory (SRAM) controller supports 32 KB SRAM. The internal SRAM of the Stellaris[®] devices is located at offset 0x0000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 132)

The LM3S6611 Flash controller supports 128 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the

block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

1.4.7.1 Memory Map (see page 39)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S6611 controller can be found in "Memory Map" on page 39. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The *ARM*® *Cortex*™-*M*3 *Technical Reference Manual* provides further information on the memory map.

1.4.7.2 JTAG TAP Controller (see page 43)

The Joint Test Action Group (JTAG) port provides a standardized serial interface for controlling the Test Access Port (TAP) and associated test logic. The TAP, JTAG instruction register, and JTAG data registers can be used to test the interconnects of assembled printed circuit boards, obtain manufacturing information on the components, and observe and/or control the inputs and outputs of the controller during normal operation. The JTAG port provides a high degree of testability and chip-level access at a low cost.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

1.4.7.3 System Control and Clocks (see page 54)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

1.4.7.4 Hibernation Module (see page 112)

The Hibernation module provides logic to switch power off to the main processor and peripherals, and to wake on external or time-based events. The Hibernation module includes power-sequencing logic, a real-time clock with a pair of match registers, low-battery detection circuitry, and interrupt signalling to the processor. It also includes 64 32-bit words of non-volatile memory that can be used for saving state during hibernation.

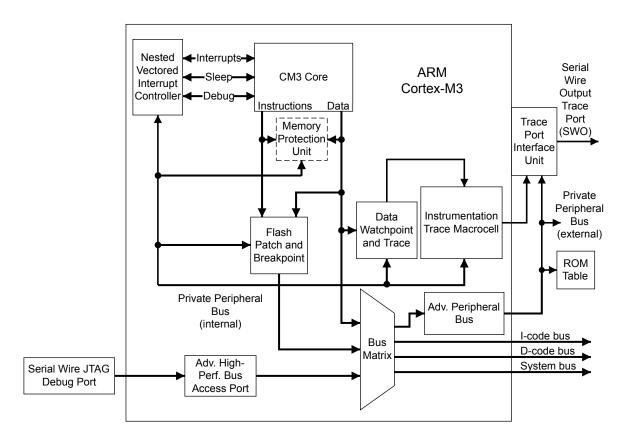
1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 423
- Signal Tables" on page 424
- "Operating Characteristics" on page 438
- "Electrical Characteristics" on page 439
- "Package Information" on page 454

2 ARM Cortex-M3 Processor Core

The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:


- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution with a:
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

The Stellaris[®] family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motors.

For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex[™]-M3 Technical Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference Manual.

2.1 Block Diagram

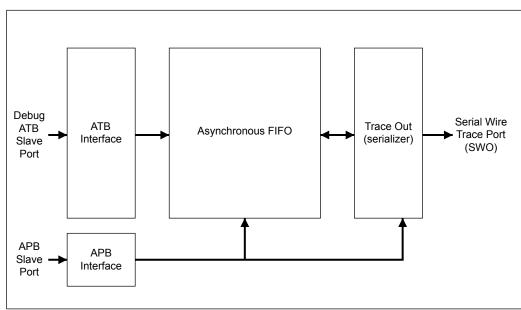
2.2 Functional Description

Important: The ARM® Cortex[™]-M3 Technical Reference Manual describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris[®] implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 34. As noted in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

2.2.1 Serial Wire and JTAG Debug

Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, "Debug Port," of the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* does not apply to Stellaris[®] devices.


The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight™ Design Kit Technical Reference Manual* for details on SWJ-DP.

2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris[®] devices. This means Chapters 15 and 16 of the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* can be ignored.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris[®] devices have implemented TPIU as shown in Figure 2-2 on page 35. This is similar to the non-ETM version described in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.

Figure 2-2. TPIU Block Diagram

2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S6611 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

2.2.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC):

- Facilitates low-latency exception and interrupt handling
- Controls power management
- Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of priority. The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode if you enable the Configuration Control Register (see the ARM® Cortex[™]-M3 Technical Reference Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

All NVIC registers and system debug registers are little endian regardless of the endianness state of the processor.

2.2.6.1 Interrupts

The *ARM*® *Cortex*[™]-*M3 Technical Reference Manual* describes the maximum number of interrupts and interrupt priorities. The LM3S6611 microcontroller supports 30 interrupts with eight priority levels.

2.2.6.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

Functional Description

The timer consists of three registers:

- A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- The reload value for the counter, used to provide the counter's wrap value.
- The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris[®] devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an external clock source.

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is 0x0000.0000.

Bit/Field	Name	Туре	Reset	Description
31:17	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
16	COUNTFLAG	R/W	0	Returns 1 if timer counted to 0 since last time this was read. Clears on read by application. If read by the debugger using the DAP, this bit is cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the COUNTFLAG bit is not changed by the debugger read.
15:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	CLKSOURCE	R/W	0	 0 = external reference clock. (Not implemented for Stellaris microcontrollers.) 1 = core clock. If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values are unpredictable.
1	TICKINT	R/W	0	 1 = counting down to 0 pends the SysTick handler. 0 = counting down to 0 does not pend the SysTick handler. Software can use the COUNTFLAG to determine if ever counted to 0.
0	ENABLE	R/W	0	 1 = counter operates in a multi-shot way. That is, counter loads with the Reload value and then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting. 0 = counter disabled.

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
23:0	RELOAD	W1C	-	Value to load into the SysTick Current Value Register when the counter reaches 0.

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	CURRENT	W1C		Current value at the time the register is accessed. No read-modify-write protection is provided, so change with care. This register is write-clear. Writing to it with any value clears the register to 0. Clearing this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

3 Memory Map

The memory map for the LM3S6611 controller is provided in Table 3-1 on page 39.

In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM*® *Cortex*[™]*-M3 Technical Reference Manual*.

Important: In Table 3-1 on page 39, addresses not listed are reserved.

Table 3-1. Memory Map^a

Start	End	Description	For details on registers, see page
Memory			I
0x0000.0000	0x0001.FFFF	On-chip flash ^b	135
0x2000.0000	0x2000.7FFF	Bit-banded on-chip SRAM ^c	135
0x2010.0000	0x21FF.FFFF	Reserved non-bit-banded SRAM space	-
0x2200.0000	0x23FF.FFFF	Bit-band alias of 0x2000.0000 through 0x200F.FFFF	131
0x2400.0000	0x3FFF.FFFF	Reserved non-bit-banded SRAM space	-
FiRM Peripherals			
0x4000.0000	0x4000.0FFF	Watchdog timer	233
0x4000.4000	0x4000.4FFF	GPIO Port A	160
0x4000.5000	0x4000.5FFF	GPIO Port B	160
0x4000.6000	0x4000.6FFF	GPIO Port C	160
0x4000.7000	0x4000.7FFF	GPIO Port D	160
0x4000.8000	0x4000.8FFF	SSIO	306
0x4000.9000	0x4000.9FFF	SSI1	306
0x4000.C000	0x4000.CFFF	UART0	261
0x4000.D000	0x4000.DFFF	UART1	261
0x4000.E000	0x4000.EFFF	UART2	261
Peripherals			
0x4002.0000	0x4002.07FF	I2C Master 0	345
0x4002.0800	0x4002.0FFF	I2C Slave 0	358
0x4002.1000	0x4002.17FF	I2C Master 1	345
0x4002.1800	0x4002.1FFF	I2C Slave 1	358
0x4002.4000	0x4002.4FFF	GPIO Port E	160
0x4002.5000	0x4002.5FFF	GPIO Port F	160
0x4002.6000	0x4002.6FFF	GPIO Port G	160
0x4002.7000	0x4002.7FFF	GPIO Port H	160
0x4003.0000	0x4003.0FFF	Timer0	206
0x4003.1000	0x4003.1FFF	Timer1	206
0x4003.2000	0x4003.2FFF	Timer2	206
0x4003.3000	0x4003.3FFF	Timer3	206
0x4003.C000	0x4003.CFFF	Analog Comparators	411
	I		

www.datasheet4u.com

Start	End	Description	For details on registers, see page
0x4004.8000	0x4004.8FFF	Ethernet Controller	375
0x400F.C000	0x400F.CFFF	Hibernation Module	118
0x400F.D000	0x400F.DFFF	Flash control	135
0x400F.E000	0x400F.EFFF	System control	61
0x4200.0000	0x43FF.FFFF	Bit-banded alias of 0x4000.0000 through 0x400F.FFFF	-
Private Peripheral B	us		L
0xE000.0000	0xE000.0FFF	Instrumentation Trace Macrocell (ITM)	ARM®
0xE000.1000	0xE000.1FFF	Data Watchpoint and Trace (DWT)	Cortex™-M3 Technical
0xE000.2000	0xE000.2FFF	Flash Patch and Breakpoint (FPB)	Reference
0xE000.3000	0xE000.DFFF	Reserved	Manual
0xE000.E000	0xE000.EFFF	Nested Vectored Interrupt Controller (NVIC)	
0xE000.F000	0xE003.FFFF	Reserved	
0xE004.0000	0xE004.0FFF	Trace Port Interface Unit (TPIU)	
0xE004.1000	0xE004.1FFF	Reserved	-
0xE004.2000	0xE00F.FFFF	Reserved	-
0xE010.0000	0xFFFF.FFFF	Reserved for vendor peripherals	-

a. All reserved space returns a bus fault when read or written.

b. The unavailable flash will bus fault throughout this range.

c. The unavailable SRAM will bus fault throughout this range.

4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 41 lists all the exceptions. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 30 interrupts (listed in Table 4-2 on page 42).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You can also group priorities by splitting priority levels into pre-emption priorities and subpriorities. All the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower the position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on exceptions and interrupts.

Note: In Table 4-2 on page 42 interrupts not listed are reserved.

Exception Type	Position	Priority ^a	Description	
-	0	-	Stack top is loaded from first entry of vector table on reset.	
Reset	1	-3 (highest)	Invoked on power up and warm reset. On first instruction, drops to lowest priority (and then is called the base level of activation). This is asynchronous.	
Non-Maskable Interrupt (NMI)	2	-2	 Invoked on power up and warm reset. On first instruction, drops to lopriority (and then is called the base level of activation). This is asynchronous. Cannot be stopped or preempted by any exception but reset. This asynchronous. An NMI is only producible by software, using the NVIC Interrupt Costate register. All classes of Fault, when the fault cannot activate due to priority or configurable fault handler has been disabled. This is synchronous. MPU mismatch, including access violation and no match. This is synchronous. The priority of this exception can be changed. 	
			An NMI is only producible by software, using the NVIC Interrupt Control State register.	
Hard Fault	3	-1	All classes of Fault, when the fault cannot activate due to priority or the configurable fault handler has been disabled. This is synchronous.	
Memory Management	4	settable		
			The priority of this exception can be changed.	
Bus Fault	5	settable		
			You can enable or disable this fault.	
Usage Fault	6	settable	Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.	
-	7-10	-	Reserved.	
SVCall	11	settable	System service call with SVC instruction. This is synchronous.	

Table 4-1. Exception Types

Exception Type	Position	Priority ^a	Description
Debug Monitor	12	settable	Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.
-	13	-	Reserved.
PendSV	14	settable	Pendable request for system service. This is asynchronous and only pended by software.
SysTick	15	settable	System tick timer has fired. This is asynchronous.
Interrupts	16 and above	settable	Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 on page 42 lists the interrupts on the LM3S6611 controller.

a. 0 is the default priority for all the settable priorities.

Table 4-2. Interrupts

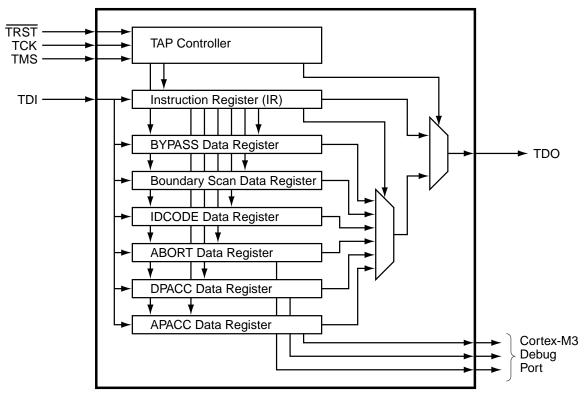
Interrupt (Bit in Interrupt Registers)	Description
0	GPIO Port A
1	GPIO Port B
2	GPIO Port C
3	GPIO Port D
4	GPIO Port E
5	UART0
6	UART1
7	SSI0
8	12C0
18	Watchdog timer
19	Timer0 A
20	Timer0 B
21	Timer1 A
22	Timer1 B
23	Timer2 A
24	Timer2 B
25	Analog Comparator 0
26	Analog Comparator 1
28	System Control
29	Flash Control
30	GPIO Port F
31	GPIO Port G
32	GPIO Port H
33	UART2
34	SSI1
35	Timer3 A
36	Timer3 B
37	I2C1
42	Ethernet Controller
43	Hibernation Module
44-47	Reserved

5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.


The JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions:
 - BYPASS instruction
 - IDCODE instruction
 - SAMPLE/PRELOAD instruction
 - EXTEST instruction
 - INTEST instruction
- ARM additional instructions:
 - APACC instruction
 - DPACC instruction
 - ABORT instruction
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on the ARM JTAG controller.

5.1 Block Diagram

5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 44. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 50 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 449 for JTAG timing diagrams.

5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1 on page 45. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
TCK	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 5-1. JTAG Port Pins Reset State

5.2.1.1 Test Reset Input (TRST)

The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the $\overline{\text{TRST}}$ pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

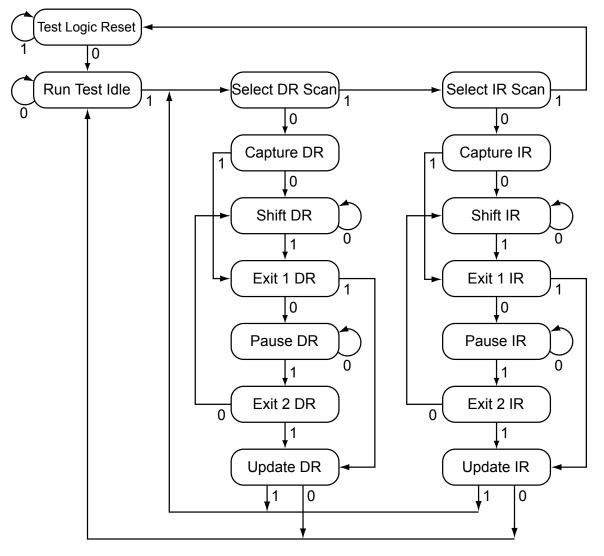
Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 47.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.


5.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 47. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

Figure 5-2. Test Access Port State Machine

5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 50.

5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or \overline{RST} , the JTAG/SWD port pins default to their JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting **GPIODEN** to 1), enabling the pull-up resistors (setting **GPIOPUR** to 1), and enabling the alternate hardware function (setting **GPIOAFSEL** to 1) for the PB7 and PC[3:0] JTAG/SWD pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG/SWD port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply $\overline{\text{RST}}$ or power-cycle the part.

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 170) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 180) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 181) have been set to 1.

Recovering a "Locked" Device

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate with the debugger, there is a debug sequence that can be used to recover the device. Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset mass erases the flash memory. The sequence to recover the device is:

- **1.** Assert and hold the \overline{RST} signal.
- 2. Perform the JTAG-to-SWD switch sequence.
- 3. Perform the SWD-to-JTAG switch sequence.
- 4. Perform the JTAG-to-SWD switch sequence.
- 5. Perform the SWD-to-JTAG switch sequence.
- 6. Perform the JTAG-to-SWD switch sequence.
- 7. Perform the SWD-to-JTAG switch sequence.
- 8. Perform the JTAG-to-SWD switch sequence.
- 9. Perform the SWD-to-JTAG switch sequence.
- 10. Perform the JTAG-to-SWD switch sequence.
- **11.** Perform the SWD-to-JTAG switch sequence.

12. Release the \overline{RST} signal.

The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in "ARM Serial Wire Debug (SWD)" on page 49. When performing switch sequences for the purpose of recovering the debug capabilities of the device, only steps 1 and 2 of the switch sequence need to be performed.

5.2.4.2 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select IR, and Test Logic Reset states.

Stepping through this sequences of the TAP state machine enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the ARM® *Cortex*TM-*M3 Technical Reference Manual* and the ARM® *CoreSight Technical Reference Manual*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.
- Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in SWD mode, before sending the switch sequence, the SWD goes into the line reset state.

SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to JTAG mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.

- 2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.
- Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic Reset state.

5.3 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) for their alternate function using the **GPIOAFSEL** register.

5.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2 on page 50. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.

Table 5-2. JTAG Instruction Register Commands

5.4.1.1 EXTEST Instruction

The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows

tests to be developed that drive known values out of the controller, which can be used to verify connectivity.

5.4.1.2 INTEST Instruction

The INTEST instruction does not have an associated Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable.

5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 53 for more information.

5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 53 for more information.

5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 53 for more information.

5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 53 for more information.

5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 52 for more information.

5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 52 for more information.

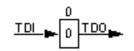
5.4.2 Data Registers

The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

5.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3 on page 52. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

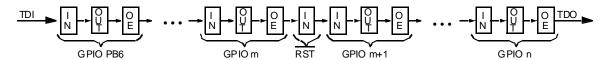
The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x3BA00477. This value indicates an ARM Cortex-M3, Version 1 processor. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.


Figure 5-3. IDCODE Register Format

5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4 on page 53. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format



5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 53. Each GPIO pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure. In addition to the GPIO pins, the controller reset pin, \overline{RST} , is included in the chain. Because the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 5-5. Boundary Scan Register Format

For detailed information on the order of the input, output, and output enable bits for each of the GPIO ports, please refer to the Stellaris[®] Family Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual.*

5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see "Device Identification" on page 54
- Local control, such as reset (see "Reset Control" on page 54), power (see "Power Control" on page 57) and clock control (see "Clock Control" on page 57)
- System control (Run, Sleep, and Deep-Sleep modes), see "System Control" on page 59

6.1.1 Device Identification

Seven read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

6.1.2.1 CMOD0 and CMOD1 Test-Mode Control Pins

Two pins, CMOD0 and CMOD1, are defined for use by Luminary Micro for testing the devices during manufacture. They have no end-user function and should not be used. The CMOD pins should be connected to ground.

6.1.2.2 Reset Sources

The controller has five sources of reset:

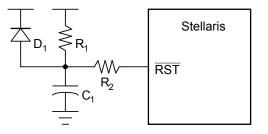
- **1.** External reset input pin (\overline{RST}) assertion, see "RST Pin Assertion" on page 54.
- 2. Power-on reset (POR), see "Power-On Reset (POR)" on page 55.
- 3. Internal brown-out (BOR) detector, see "Brown-Out Reset (BOR)" on page 55.
- 4. Software-initiated reset (with the software reset registers), see "Software Reset" on page 56.
- 5. A watchdog timer reset condition violation, see "Watchdog Timer Reset" on page 56.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an internal POR is the cause, and then all the other bits in the **RESC** register are cleared except for the POR indicator.

6.1.2.3 **RST** Pin Assertion

The external reset pin (\mathbb{RST}) resets the controller. This resets the core and all the peripherals except the JTAG TAP controller (see "JTAG Interface" on page 43). The external reset sequence is as follows:

- **1.** The external reset pin (\overline{RST}) is asserted and then de-asserted.
- The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution. A few clocks cycles from RST de-assertion to the start of the reset sequence is necessary for synchronization.


The external reset timing is shown in Figure 20-11 on page 452.

6.1.2.4 Power-On Reset (POR)

The Power-On Reset (POR) circuit monitors the power supply voltage (V_{DD}). The POR circuit generates a reset signal to the internal logic when the power supply ramp reaches a threshold value (V_{TH}). If the application only uses the POR circuit, the \overline{RST} input needs to be connected to the power supply (V_{DD}) through a pull-up resistor (1K to 10K Ω).

The device must be operating within the specified operating parameters at the point when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the device must reach 3.0 V within 10 msec of it crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset to hold the device in reset longer than the internal POR, the \overline{RST} input may be used with the circuit as shown in Figure 6-1 on page 55.

Figure 6-1. External Circuitry to Extend Reset

The R_1 and C_1 components define the power-on delay. The R_2 resistor mitigates any leakage from the \overline{RST} input. The diode (D₁) discharges C₁ rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

- **1.** The controller waits for the later of external reset (\overline{RST}) or internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing is shown in Figure 20-12 on page 452.

Note: The power-on reset also resets the JTAG controller. An external reset does not.

6.1.2.5 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (V_{DD}) drops below a brown-out threshold voltage (V_{BTH}) . If a brown-out condition is detected, the system may generate a controller interrupt or a system reset.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset is equivelent to an assertion of the external \overline{RST} input and the reset is held active until the proper V_{DD} level is restored. The **RESC** register can be examined in the reset interrupt handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 20-13 on page 452.

6.1.2.6 Software Reset

Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 59). Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- **3.** The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 20-14 on page 453.

6.1.2.7 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 20-15 on page 453.

6.1.3 Power Control

The Stellaris[®] microcontroller provides an integrated LDO regulator that may be used to provide power to the majority of the controller's internal logic. The LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V \pm 10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register.

Note: The use of the LDO is optional. The internal logic may be supplied by the on-chip LDO or by an external regulator. If the LDO is used, the LDO output pin is connected to the VDD25 pins on the printed circuit board. The LDO requires decoupling capacitors on the printed circuit board. If an external regulator is used, it is strongly recommended that the external regulator supply the controller only and not be shared with other devices on the printed circuit board.

6.1.4 Clock Control

System control determines the control of clocks in this part.

6.1.4.1 Fundamental Clock Sources

There are four clock sources for use in the device:

- Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%. Applications that do not depend on accurate clock sources may use this clock source to reduce system cost. The internal oscillator is the clock source the device uses during and following POR. If the main oscillator is required, software must enable the main oscillator following reset and allow the main oscillator to stabilize before changing the clock reference.
- Main Oscillator: The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. The crystal value allowed depends on whether the main oscillator is used as the clock reference source to the PLL. If so, the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in the XTAL bit in the RCC register (see page 70).
- Internal 30-kHz Oscillator: The internal 30-kHz oscillator is similar to the internal oscillator, except that it provides an operational frequency of 30 kHz ± 30%. It is intended for use during Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal switching and also allows the main oscillator to be powered down.
- External Real-Time Oscillator: The external real-time oscillator provides a low-frequency, accurate clock reference. It is intended to provide the system with a real-time clock source. The real-time oscillator is part of the Hibernation Module ("Hibernation Module" on page 112) and may also provide an accurate source of Deep-Sleep or Hibernate mode power savings.

The internal system clock (sysclk), is derived from any of the four sources plus two others: the output of the internal PLL, and the internal oscillator divided by four ($3 \text{ MHz} \pm 30\%$). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).

The **Run-Mode Clock Configuration (RCC)** and **Run-Mode Clock Configuration 2 (RCC2)** registers provide control for the system clock. The **RCC2** register is provided to extend fields that offer additional encodings over the **RCC** register. When used, the **RCC2** register field values are used by the logic over the corresponding field in the **RCC** register. In particular, **RCC2** provides for a larger assortment of clock configuration options.

6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise, the range of supported crystals is 1 to 8.192 MHz.

The XTAL bit in the **RCC** register (see page 70) describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

6.1.4.3 PLL Frequency Configuration

The PLL is disabled by default during power-on reset and is enabled later by software if required. Software configures the PLL input reference clock source, specifies the output divisor to set the system clock frequency, and enables the PLL to drive the output.

If the main oscillator provides the clock reference to the PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation (PLLCFG)** register (see page 74). The internal translation provides a translation within \pm 1% of the targeted PLL VCO frequency.

The XTAL bit in the **RCC** register (see page 70) describes the available crystal choices and default programming of the **PLLCFG** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

6.1.4.4 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC/RCC2 register fields (see page 70 and page 75).

6.1.4.5 PLL Operation

If the PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is T_{READY} (see Table 20-6 on page 442). During this time, the PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set

to 0x1200 (that is, ~600 μ s at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC/RCC2** register is switched to use the PLL.

6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively.

In Run mode, the processor executes code. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor is not clocked and therefore no longer executes code. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Each mode is described in more detail below.

There are four levels of operation for the device defined as:

- Run Mode. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

Deep-Sleep Mode. Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® Cortex™-M3 Technical Reference Manual for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC/RCC2** register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

Hibernate Mode. In this mode, the power supplies are turned off to the main part of the device and only the Hibernation module's circuitry is active. An external wake event or RTC event is required to bring the device back to Run mode. The Cortex-M3 processor and peripherals outside

of the Hibernation module see a normal "power on" sequence and the processor starts running code. It can determine that it has been restarted from Hibernate mode by inspecting the Hibernation module registers.

6.2 Initialization and Configuration

The PLL is configured using direct register writes to the **RCC/RCC2** register. If the **RCC2** register is being used, the USERCC2 bit must be set and the appropriate **RCC2** bit/field is used. The steps required to successfully change the PLL-based system clock are:

- 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the **RCC** register. This configures the system to run off a "raw" clock source (using the main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

6.3 Register Map

Table 6-1 on page 60 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or internal use by Luminary Micro, Inc. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
0x000	DID0	RO	-	Device Identification 0	62
0x004	DID1	RO	-	Device Identification 1	78
0x008	DC0	RO	0x007F.003F	Device Capabilities 0	80
0x010	DC1	RO	0x0000.30DF	Device Capabilities 1	81
0x014	DC2	RO	0x030F.5037	Device Capabilities 2	83
0x018	DC3	RO	0x3F00.0FC0	Device Capabilities 3	85
0x01C	DC4	RO	0x5000.00FF	Device Capabilities 4	87
0x030	PBORCTL	R/W	0x0000.7FFD	Brown-Out Reset Control	64
0x034	LDOPCTL	R/W	0x0000.0000	LDO Power Control	65

Table 6-1. System Control Register Map

www.datasheet4u.com

Offset	Name	Туре	Reset	Description	See page
0x040	SRCR0	R/W	0x00000000	Software Reset Control 0	107
0x044	SRCR1	R/W	0x00000000	Software Reset Control 1	108
0x048	SRCR2	R/W	0x00000000	Software Reset Control 2	110
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	66
0x054	IMC	R/W	0x0000.0000	Interrupt Mask Control	67
0x058	MISC	R/W1C	0x0000.0000	Masked Interrupt Status and Clear	68
0x05C	RESC	R/W	-	Reset Cause	69
0x060	RCC	R/W	0x07A0.3AD1	Run-Mode Clock Configuration	70
0x064	PLLCFG	RO	-	XTAL to PLL Translation	74
0x070	RCC2	R/W	0x0780.2800	Run-Mode Clock Configuration 2	75
0x100	RCGC0	R/W	0x00000040	Run Mode Clock Gating Control Register 0	89
0x104	RCGC1	R/W	0x0000000	Run Mode Clock Gating Control Register 1	92
0x108	RCGC2	R/W	0x0000000	Run Mode Clock Gating Control Register 2	101
0x110	SCGC0	R/W	0x00000040	Sleep Mode Clock Gating Control Register 0	90
0x114	SCGC1	R/W	0x0000000	Sleep Mode Clock Gating Control Register 1	95
0x118	SCGC2	R/W	0x00000000	Sleep Mode Clock Gating Control Register 2	103
0x120	DCGC0	R/W	0x00000040	Deep Sleep Mode Clock Gating Control Register 0	91
0x124	DCGC1	R/W	0x00000000	Deep Sleep Mode Clock Gating Control Register 1	98
0x128	DCGC2	R/W	0x00000000	Deep Sleep Mode Clock Gating Control Register 2	105
0x144	DSLPCLKCFG	R/W	0x0780.0000	Deep Sleep Clock Configuration	77

6.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

	400F.E000 :000		0 (DID0))												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved		VER			re	served	•			1	CLA	ASS			'
Туре	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1
Reset																
	15	14	13	12		10	9	8	7	6	5	4	3	2	1	0
Turne								DO								
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -
Bit/F 3			Name		Type RO		Reset 0	Descr		ild not re	alv on th	e value o	of a rese	rved hit	To prov	ide
5	1		Teserveu		RO		0	compa	atibility w	ith futur/	e produ	cts, the v fy-write o	alue of	a reserv	•	
30:	28		VER		RO		0x1	DID0	Version							
												ister forn ER field i				number
								Value	Descri	ption						
								0x1		evision o lass dev		D0 regist	er forma	at, for St	ellaris®	
27:	24		reserved		RO		0x0	compa	atibility w	/ith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv		
23:	:16		CLASS		RO		0x1	Devic	e Class							
								sets a field v (for ex fields	re gener alue is c ample, a require c	ated for hanged a remap differenti	all devic for new or shrink ation fro	s the inte es in a pa product l), or any m prior o other er	articular lines, for case wh devices.	product change ere the r The val	line. The s in fab MAJOR of ue of the	CLASS Drocess MINOR
								Value	Descri	ption						
								0x0	Stellar	is® San	dstorm-o	class dev	vices.			
								0x1	Stellar	is® Fury	-class d	evices.				

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
15:8	MAJOR	RO	-	Major Revision
				This field specifies the major revision number of the device. The major revision reflects changes to base layers of the design. The major revision number is indicated in the part number as a letter (A for first revision, B for second, and so on). This field is encoded as follows:
				Value Description
				0x0 Revision A (initial device)
				0x1 Revision B (first base layer revision)
				0x2 Revision C (second base layer revision)
				and so on.
7:0	MINOR	RO	-	Minor Revision
				This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows:
				Value Description
				0x0 Initial device, or a major revision update.
				0x1 First metal layer change.
				0x2 Second metal layer change.
				and so on.

and so on.

Base 0x400F.E000

Brown-Out Reset Control (PBORCTL)

Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030

This register is responsible for controlling reset conditions after initial power-on reset.

Offset 0x0 Type R/W)x0000.1	7FFD													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1 1 1		1	rese	rved		I	I	1	ſ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	1			rese	rved	· ·		1	1		1	BORIOR	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_			_								
Bit/F	ield		Name	2	Туре		Reset	Descr	iption							
31:	:2		reserve	ed	RO		0x0	compa		ith futur	e produ	cts, the v	value of	a reserv	. To prov ed bit sh	
1			BORIO	R	R/W		0	BOR I	Interrupt	or Rese	et					
									it contro is signale				-		ontroller.	lf set, a
0			reserve	ed	RO		0	compa		ith futur	e produ	cts, the v	value of	a reserv	. To prov red bit sh	

Register 3: LDO Power Control (LDOPCTL), offset 0x034

The <code>VADJ</code> field in this register adjusts the on-chip output voltage (V $_{OUT}$).

LDO Po Base 0x4			LDOPC	TL)												
Offset 0x0 Type R/W		×0000.00	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					і і		1	rese	rved	1		1			1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					reser	ved	1			•		1	VA	.DJ	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:6		reserved		RO		0	compa	atibility v	vith futur	e produ	cts, the v	of a rese value of operatio	a reserv		vide nould be
5:	0		VADJ		R/W		0x0	LDO (Output V	oltage						
									ield sets ADJ field				ge. The	program	nming va	lues for
								Value	e V	_{OUT} (V)						
								0x00	2	.50						
								0x01	2	.45						
								0x02	2	.40						
								0x03	2	.35						
								0x04	2	.30						
								0x05	2	.25						
								0x06-	-0x3F R	eserved						
								0x1B	2	.75						
								0x1C	2	.70						
								0x1D	2	.65						
								0x1E	2	.60						
								0x1F	2	.55						

Raw Interrupt Status (RIS)

Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Base 0x4 Offset 0x0 Type RO,	050		0													
, ,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1 1		1	rese	erved	Í				l .	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•		reserved					PLLLRIS		rese	erved	•	BORRIS	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/Fi	ield		Name		Туре		Reset	Descr	iption							
31:	7	ı	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	value of	a reserv		
6		F	PLLLRIS		RO		0			v Interrup when the			mer asse	erts.		
5:2	2	I	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	value of	a reserv	•	
1		I	BORRIS		RO		0	Browr	n-Out Re	eset Raw	Interru	ot Status	6			
								a brov from t	wn-out c he browi he IMC r	raw inter ondition i n-out dete register is	s currei	ntly activ rcuit. An	ve. This i interrup	s an un t is repo	registere rted if the	d signal BORIM
0		ı	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the	value of	a reserv	•	

Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

Interrupt Mask Control	(IMC)
------------------------	-------

Base 0x400F.E000 Offset 0x054

Type R/W,	reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
ſ		1	, ,		· ·		1	rese	rved	ı ı		1		1	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		1	1 1		reserved		1	•		PLLLIM		rese	rved	1	BORIM	reserved			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	R/W	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Bit/Fi	eld		Name		Туре		Reset	Descr	iption										
31:	7		reserved		RO		0	compa	atibility v	uld not re vith future oss a rea	e produ	cts, the v	alue of	a reserv					
6		PLLLIM		R/W	R/W 0			PLL Lock Interrupt Mask											
								contro	oller inte	ies whetł rrupt. If s se, an in	et, an ir	nterrupt i	s genera	ated if ℙ					
5:2	2		reserved		RO		0	compa	atibility v	uld not re vith future oss a rea	e produ	cts, the v	alue of	a reserv					
1			BORIM		R/W		0	Browr	n-Out Re	eset Inter	rupt Ma	sk							
								contro	Iler inte	ies wheth rrupt. If s interrupt	et, an ir	nterrupt i	s genera	•					
0			reserved		RO		0	compa	atibility v	uld not re vith future oss a rea	e produ	cts, the v	alue of	a reserv	•				

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

Central location for system control result of RIS AND IMC to generate an interrupt to the controller. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the **RIS** register (see page 66).

Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000

Offset 0x058 Type R/W1C, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1			і і		1	rese	rved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					reserved				1	PLLLMIS		rese	rved		BORMIS	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	RO 0
Reset	0	0	0	0	0	0	0	U	0	0	0	U	Ū	0	U	Ū
Bit/Fi	iold		Name		Туре		Reset	Descri	intion							
DIVI	iciu		Name		туре		110301	Desci	puon							
31:	7	r	reserved		RO		0			uld not rel					•	
								•		with future ross a rea	•				ed bit sh	ould be
								•					sperate			
6		F	PLLLMIS		R/W1C		0	PLL L	ock Ma	sked Inter	rupt St	atus				
										when the F		EADY time	r asserts	s. The in	terrupt is	cleared
								by wri	ting a 1	to this bit	-					
5:2	2	r	eserved		RO		0	Softwa	are sho	uld not rel	y on th	e value o	of a rese	erved bit	. To prov	ide
								•		with future	•				ed bit sh	ould be
								preser	ved aci	ross a rea	a-moai	ry-write o	operatio	n.		
1		E	BORMIS		R/W1C		0	BOR I	Masked	Interrupt	Status					
								The B	ORMISİ	s simply t	he BOR	RIS AND	Ded with	the mas	sk value,	BORIM.
~							0	0.4		ا فحمد أمان	الريمية ال	e velus :	f a a a a a a	المعربة	Ta	iala
0		r	eserved		RO		0			uld not rel with future					•	
										ross a rea						

Register 7: Reset Cause (RESC), offset 0x05C

This register is set with the reset cause after reset. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

Base 0x4 Offset 0x Type R/W	05C	00	- ,													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	I	· ·		1	rese	erved	1	1			1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	I	reser	ved	1	1		1	LDO	SW	WDT	BOR	POR	EXT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
Bit/F	ield		Name		Туре		Reset	Descr	ription							
31	:6		reserved		RO		0	comp	are shou atibility v rved acr	vith futur	e produ	cts, the	value of	a reserv		
5	5		LDO		R/W		-	LDO I	Reset							
									i set, indi ated a re			circuit ha	as lost re	gulation	and has	6
4	Ļ		SW		R/W		-	Softw	are Rese	et						
								When	i set, ind	icates a	software	e reset is	s the cau	ise of th	e reset e	event.
3	}		WDT		R/W		-	Watch	ndog Tim	ner Rese	et					
								When	set, ind	icates a	watchdo	og reset	is the ca	use of t	he reset	event.
2	2		BOR		R/W		-	Browr	n-Out Re	eset						
								When	i set, ind	icates a	brown-o	out reset	is the ca	ause of t	he reset	t event.
1			POR		R/W		-	Powe	r-On Re	set						
								When	i set, ind	icates a	power-c	n reset	is the ca	use of tl	ne reset	event.
0)		EXT		R/W		-	Exteri	nal Rese	et						
									i set, ind set ever		n externa	al reset	(RST as	sertion) i	s the ca	use of

Reset Cause (RESC)

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

Run-Mode Clock Configuration (RCC)
Base 0x400F.E000 Offset 0x060 Type R/W, reset 0x07A0.3AD1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved		1	ACG		SY	I SDIV	DIV USESYSDIV			reserved					
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
rese		rved PWRDN reserved		BYPASS	reserved		Т	TAL I	1	OSCSRC		reserved		IOSCDIS MOSCDIS		
Туре	RO	RO	R/W	RO	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Reset	0	0	1	1	1	0	1	0	1	1	0	1	0	0	0	1
Bit/Field		Name		Туре	e Reset Dese			iption								
31:28		reserved RO 0x0			0x0	compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
27		ACG			R/W 0		0	Auto Clock Gating								
								This bit specifies whether the system uses the Sleep-Mode Clock								

Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers are used when the controller enters a sleep mode.

The $\ensuremath{\textbf{RCGCn}}$ registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

Bit/Field	Name	Туре	Reset	Description				
26:23	SYSDIV	R/W	0xF	System Clock Divisor				
				Specifies which divisor is used to generate the system clock from the PLL output.				
				The PLL VCO frequency is 400 MHz.				
				Value Divisor (BYPASS=1) Frequency (BYPASS=0)				
				0x0 reserved reserved				
				0x1 /2 reserved				
				0x2 /3 reserved				
				0x3 /4 50 MHz				
				0x4 /5 40 MHz				
				0x5 /6 33.33 MHz				
				0x6 /7 28.57 MHz				
				0x7 /8 25 MHz				
				0x8 /9 22.22 MHz				
				0x9 /10 20 MHz				
				0xA /11 18.18 MHz				
				0xB /12 16.67 MHz				
				0xC /13 15.38 MHz				
				0xD /14 14.29 MHz				
				0xE /15 13.33 MHz				
				0xF /16 12.5 MHz (default)				
				When reading the Run-Mode Clock Configuration (RCC) register (see page 70), the SYSDIV value is MINSYSDIV if a lower divider was requested and the PLL is being used. This lower value is allowed to divide a non-PLL source.				
22	USESYSDIV	R/W	0	Enable System Clock Divider				
				Use the system clock divider as the source for the system clock. The system clock divider is forced to be used when the PLL is selected as the source.				
21:14	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.				
13	PWRDN	R/W	1	PLL Power Down				
				This bit connects to the PLL PWRDN input. The reset value of 1 powers down the PLL.				
12	reserved	RO	1	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.				
11	BYPASS	R/W	1	PLL Bypass				
				Chooses whether the system clock is derived from the PLL output or the OSC source. If set, the clock that drives the system is the OSC source. Otherwise, the clock that drives the system is the PLL output clock divided by the system divider.				

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description					
10	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.					
9:6	XTAL	R/W	0xB	Crystal Value					
				This field specifies the crystal value attached to the main oscillator. The encoding for this field is provided below.					
				Value	Crystal Frequency (MHz) Not Using the PLL	Crystal Frequency (MHz) Using the PLL			
				0x0	1.000	reserved			
				0x1	1.8432	reserved			
				0x2	2.000	reserved			
				0x3	2.4576	reserved			
				0x4	3.579	545 MHz			
				0x5	3.68	364 MHz			
				0x6	4	MHz			
				0x7	4.09	06 MHz			
				0x8	0x8 4.9152 MHz				
				0x9	0x9 5 MHz				
				0xA	5.12	2 MHz			
				0xB	6 MHz (r	reset value)			
				0xC	6.14	4 MHz			
				0xD	7.37	28 MHz			
				0xE	8	MHz			
				0xF	8.19	02 MHz			
5:4	OSCSRC	R/W	0x1	Oscillator S	ource				
				Picks among the four input sources for the OSC. The values are:					
				Value Input Source 0x0 Main oscillator (default) 0x1 Internal oscillator (default)					
				0x2 Inter	nal oscillator / 4 (this is nece	ssary if used as input to PLL)			
				0x3 rese	rved				
3:2	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.					
1	IOSCDIS	R/W	0	Internal Oscillator Disable					
				0: Internal oscillator (IOSC) is enabled.					
				1: Internal o	scillator is disabled.				

Bit/Field	Name	Туре	Reset	Description
0	MOSCDIS	R/W	1	Main Oscillator Disable
				0: Main oscillator is enabled.
				1: Main oscillator is disabled (default).

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 70).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * F / (R + 1)

XTAL to PLL Translation (PLLCFG)

Base 0x400F.E000

Offset 0x064 Type RO, reset -

гуре КО	, iesei -															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	rved					1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	c	D			г г 1		F	1						R		
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	16		reserved		RO		0x0	Softwa compa	are shou atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of a	a reserv		
15:	14		OD		RO		-)D Value		value s	upplied t	to the PI	L's OD	input	
									Descri Divide Divide Divide Reserv	ption by 1 by 2 by 4						
13	:5		F		RO		-		Value eld spec	ifies the	value s	upplied t	to the PL	_L's F inj	put.	
4:	0		R		RO		-		Value eld spec	ifies the	value s	upplied t	to the PL	_L's R in	put.	

Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070

This register overrides the RCC equivalent register fields when the USERCC2 bit is set. This allows RCC2 to be used to extend the capabilities, while also providing a means to be backward-compatible to previous parts. The fields within the RCC2 register occupy the same bit positions as they do within the RCC register as LSB-justified.

The SYSDIV2 field is wider so that additional larger divisors are possible. This allows a lower system clock frequency for improved Deep Sleep power consumption.

Offset 0x																
Type R/W	/, reset 0x0 31	30 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	USERCC2		erved	20	<u> </u>		SDIV2	1	23	22	1	1	reserved	10		
Туре	R/W	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reser	ved	PWRDN2	reserved	BYPASS2		rese	erved	1		OSCSRC2	2		rese	rved	
Type Reset	RO 0	RO 0	R/W 1	RO 0	R/W 1	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descri	iption							
31	1	ι	JSERCC	2	R/W		0	Use R	CC2							
								When	set, ove	errides th	ne RCC	register	fields.			
30::	29		reserved		RO		0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
28:	23		SYSDIV2	2	R/W		0x0F	x0F System Clock Divisor								
								Specif PLL o		h diviso	r is usec	to gene	erate the	system	clock fro	om the
								The P	LL VCO	frequer	ncy is 40	0 MHz.				
								additic much the RC	onal divis lower fre CC regis	sor value equencie ter sysi	es. This es during	permits Deep S oding of	r SYSDIV the syste Sleep mo 1111 pro provides	em clock de. For vides /1	to be ru example	un at , where
22:	14		reserved		RO		0x0	compa	atibility v	vith futur	e produ	cts, the v	of a rese value of a operatior	reserv	•	
13	3		PWRDN2	2	R/W		1	1 Power-Down PLL								
								When set, powers down the PLL.								
12	2		reserved		RO		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
11	1	I	BYPASS2	2	R/W		1	Bypas	s PLL							
							When set, bypasses the PLL for the clock source.									

Run-Mode Clock Configuration 2 (RCC2)

Bit/Field	Name	Туре	Reset	Description						
10:7	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.						
6:4	OSCSRC2	R/W	0x0	System Clock Source						
				Value Description						
				0x0 Main oscillator (MOSC)						
				0x1 Internal oscillator (IOSC)						
				0x2 Internal oscillator / 4						
				0x3 30 kHz internal oscillator						
				0x7 32 kHz external oscillator						
3:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.						

Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

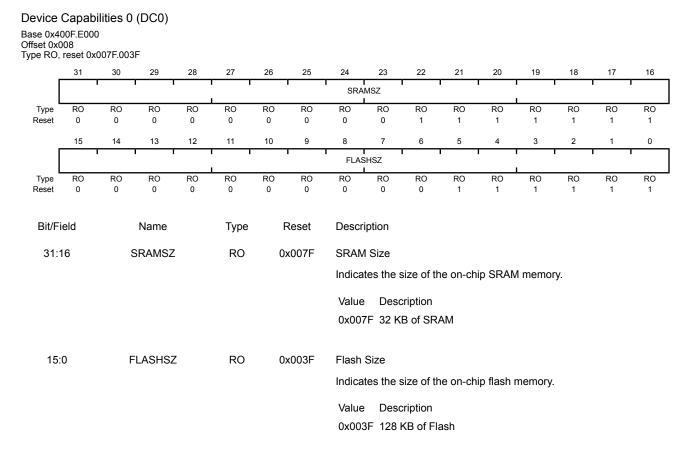
This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG)	
Base 0x400F.E000	

Offset 0x144 Type R/W, reset 0x0780.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		reserved	•			DSDI	/ORIDE				1	1	reserved		•	
Type Reset	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1	I	reserved		1	1		ſ	I DSOSCSR	I C		rese	rved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0
Bit/Fi	ield		Name		Туре	I	Reset	Descr	iption							
31:2	29	r	reserved	l	RO		0x0	compa	atibility v	vith futur	re produ	cts, the	of a rese value of operation	a reserv		
28:2	23	DS	DIVORI	DE	R/W		0x0F	Divide	r Field (Override						
								6-bit s runnin		ivider fie	eld to ove	erride wł	nen Deej	o-Sleep	occurs v	vith PLL
22:	7	r	reserved		RO		0x0	compa	atibility v	vith futur	re produ	cts, the v	of a rese value of operation	a reserv		
6:4	4	DS	SOSCSF	RC	R/W		0x0	Clock	Source							
								When	set, for	ces IOS	C to be o	clock sou	urce duri	ng Deep	Sleep i	node.
								Value	Name	De	escriptior	า				
								0x0	NOOR	IDE No	overrid	e to the	oscillator	clock s	ource is	done
								0x1	IOSC	Us	e interna	al 12 M⊢	lz oscilla	tor as se	ource	
								0x3	30kHz	Us	e 30 kH	z interna	al oscillat	or		
								0x7	32kHz	Us	e 32 kH	z externa	al oscilla	tor		
3:0)	r	reserved		RO		0x0	compa	atibility v	vith futur	re produ	cts, the	of a rese value of a operation	a reserv	•	

Register 12: Device Identification 1 (DID1), offset 0x004


This register identifies the device family, part number, temperature range, pin count, and package type.

Device Base 0x4 Offset 0x0 Type RO,	00F.E00	fication 1	I (DID1)												
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		VE	R	-		F.	ÂM	•				PAF				
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 1	RO 1	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PINCOUNT				reserved				TEMP		Р	kg I	ROHS	QI	JAL
Type Reset	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO -	RO -
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	28		VER		RO		0x1	DID1	Version							
								is nun	neric. Tl		of the V			sion. The sided as fol		
								Value	e Descr	iption						
								0x1		evision of class devi		D1 regis	ter form	at, indica	ting a S	Itellaris
27:	24		FAM		RO 0x0 Family											
								Lumin	nary Mic		ct portfo	lio. The		he device encoded		
								Value	Descr	iption						
								0x0		ris family al part nu				is, all dev I3S.	vices wi	ith
23:	16	F	PARTNO)	RO		0xE7	Part N	lumber							
														ice within gs are res		
								Value	e Descr	iption						
									LM3S							
15:	13	PI	NCOUN	IT	RO		0x2	Packa	age Pin	Count						
							This fi	eld spec	cifies the I				evice pacl reserved		he value	
								Value	e Descr	iption						
								0x2	100-р	in packag	je					

Bit/Field	Name	Туре	Reset	Description
12:8	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:5	TEMP	RO	0x1	Temperature Range
				This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x1 Industrial temperature range (-40°C to 85°C)
4:3	PKG	RO	0x1	Package Type
				This field specifies the package type. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x1 LQFP package
2	ROHS	RO	1	RoHS-Compliance
				This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.
1:0	QUAL	RO	-	Qualification Status
				This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Engineering Sample (unqualified)
				0x1 Pilot Production (unqualified)
				0x2 Fully Qualified

Register 13: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

Device Capabilities 1 (DC1)

Register 14: Device Capabilities 1 (DC1), offset 0x010

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: CANs, PWM, ADC, Watchdog timer, Hibernation module, and debug capabilities. This register also indicates the maximum clock frequency and maximum ADC sample rate. The format of this register is consistent with the **RCGC0**, **SCGC0**, and **DCGC0** clock control registers and the **SRCR0** software reset control register.

Base 0x400F.E000 Offset 0x010 Type RO, reset 0x0000.30DF 17 16 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MPU HIB PH WDT SWO SWD JTAG MINSYSDIV reserved reserved Туре RO 0 0 Reset 0 0 0 0 1 0 **Bit/Field** Description Name Туре Reset 31:16 RO 0 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:12 MINSYSDIV RO 0x3 System Clock Divider Minimum 4-bit divider value for system clock. The reset value is hardware-dependent. See the RCC register for how to change the system clock divisor using the SYSDIV bit. Value Description 0x3 Specifies a 50-MHz CPU clock with a PLL divider of 4. 11:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7 MPU RO 1 MPU Present When set, indicates that the Cortex-M3 Memory Protection Unit (MPU) module is present. See the ARM Cortex-M3 Technical Reference Manual for details on the MPU. HIR RO Hibernation Module Present 6 1 When set, indicates that the Hibernation module is present. 5 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 4 PLL RO 1 PLL Present When set, indicates that the on-chip Phase Locked Loop (PLL) is present.

Bit/Field	Name	Туре	Reset	Description
3	WDT	RO	1	Watchdog Timer Present When set, indicates that a watchdog timer is present.
2	SWO	RO	1	SWO Trace Port Present When set, indicates that the Serial Wire Output (SWO) trace port is present.
1	SWD	RO	1	SWD Present When set, indicates that the Serial Wire Debugger (SWD) is present.
0	JTAG	RO	1	JTAG Present When set, indicates that the JTAG debugger interface is present.

Device Capabilities 2 (DC2)

Base 0x400F.E000

Register 15: Device Capabilities 2 (DC2), offset 0x014

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register is consistent with the **RCGC1**, **SCGC1**, and **DCGC1** clock control registers and the **SRCR1** software reset control register.

Offset 0x	00F.E000 014 , reset 0x0		7																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	ľ		reser	rved	ľ		COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved	I2C1	reserved	I2C0			rese	rved	l		SSI1	SSI0	reserved	UART2	UART1	UART0			
Type Reset	RO 0	RO 1	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1	RO 1	RO 1			
Bit/F	ield		Name		Туре	I	Reset	Descri	ption										
31:	26	r	reserved		RO		0	compa	atibility w	vith futur	e produc	cts, the v	of a rese value of a operation	a reserv					
2	5		COMP1		RO		1	Analog	Analog Comparator 1 Present										
								When	When set, indicates that analog comparator 1 is present.										
24	4		COMP0		RO	RO 1			g Compa	arator 0	Present								
								When set, indicates that analog comparator 0 is present.											
23:	20	r	reserved		RO		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
19	9		TIMER3		RO		1	Timer	3 Prese	nt									
								When	set, indi	icates th	at Gene	ral-Purp	ose Tim	er modu	le 3 is p	resent.			
18	В		TIMER2		RO		1	Timer	2 Prese	nt									
								When	set, indi	icates th	at Gene	ral-Purp	ose Tim	er modu	le 2 is p	resent.			
17	7		TIMER1		RO		1	Timer	1 Prese	nt									
								When	set, indi	icates th	at Gene	ral-Purp	ose Tim	er modu	le 1 is p	resent.			
16	6		TIMER0		RO		1	Timer	0 Prese	nt									
								When	set, indi	icates th	at Gene	ral-Purp	ose Tim	er modu	le 0 is p	resent.			
1	5	r	reserved		RO		(atibility w	vith futur	e produc	cts, the v	of a rese value of a operation	a reserv	•				
14	4		I2C1		RO		1	I2C M	odule 1	Present									
								When	set, indi	icates th	at I2C m	nodule 1	is prese	nt.					

Bit/Field	Name	Туре	Reset	Description
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	RO	1	I2C Module 0 Present
				When set, indicates that I2C module 0 is present.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	RO	1	SSI1 Present
				When set, indicates that SSI module 1 is present.
4	SSI0	RO	1	SSI0 Present
				When set, indicates that SSI module 0 is present.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	UART2	RO	1	UART2 Present
				When set, indicates that UART module 2 is present.
1	UART1	RO	1	UART1 Present
				When set, indicates that UART module 1 is present.
0	UART0	RO	1	UART0 Present
				When set, indicates that UART module 0 is present.

Device Capabilities 3 (DC3)

Register 16: Device Capabilities 3 (DC3), offset 0x018

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.

23

RO

0

7

COPLUS

RO

1

22

RO

0

6

COMINUS

RO

1

21

RO

0

5

RO

0

20

RO

0

4

RO

0

reserved

19

RO

0

3

RO

0

18

RO

0

2

RO

0

reserved

17

RO

0

1

RO

0

16

RO

0

0

RO

0

24

CCP0

RO

1

8

C00

RO

1

Base 0x400F.E000 Offset 0x018 Type RO, reset 0x3F00.0FC0 31 30 29 28 27 26 25 reserved CCP5 CCP4 CCP3 CCP2 CCP1 RO RO RO RO RO Туре RO RO 0 0 Reset 1 1 1 1 1 11 10 9 15 14 13 12 reserved C10 C1PLUS C1MINUS Туре RO RO RO RO RO RO RO 0 Reset 0 0 0 1 1 1

Bit/Field	Name	Туре	Reset	Description
31:30	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
29	CCP5	RO	1	CCP5 Pin Present
				When set, indicates that Capture/Compare/PWM pin 5 is present.
28	CCP4	RO	1	CCP4 Pin Present
				When set, indicates that Capture/Compare/PWM pin 4 is present.
27	CCP3	RO	1	CCP3 Pin Present
				When set, indicates that Capture/Compare/PWM pin 3 is present.
26	CCP2	RO	1	CCP2 Pin Present
				When set, indicates that Capture/Compare/PWM pin 2 is present.
25	CCP1	RO	1	CCP1 Pin Present
				When set, indicates that Capture/Compare/PWM pin 1 is present.
24	CCP0	RO	1	CCP0 Pin Present
				When set, indicates that Capture/Compare/PWM pin 0 is present.
23:12	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
11	C10	RO	1	C1o Pin Present
				When set, indicates that the analog comparator 1 output pin is present.
10	C1PLUS	RO	1	C1+ Pin Present
				When set, indicates that the analog comparator 1 (+) input pin is present.

Bit/Field	Name	Туре	Reset	Description
9	C1MINUS	RO	1	C1- Pin Present When set, indicates that the analog comparator 1 (-) input pin is present.
8	C0O	RO	1	C0o Pin Present When set, indicates that the analog comparator 0 output pin is present.
7	COPLUS	RO	1	C0+ Pin Present When set, indicates that the analog comparator 0 (+) input pin is present.
6	COMINUS	RO	1	C0- Pin Present When set, indicates that the analog comparator 0 (-) input pin is present.
5:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 17: Device Capabilities 4 (DC4), offset 0x01C

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Ethernet MAC and PHY, GPIOs, and CCP I/Os. The format of this register is consistent with the **RCGC2**, **SCGC2**, and **DCGC2** clock control registers and the **SRCR2** software reset control register.

01C reset 0x	5000.00F	F															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
reserved	EPHY0	reserved	EMAC0						rese	rved							
RO 0	RO 1	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		•	reser	ved				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA		
RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1		
ield		Name		Туре		Reset	Descr	iption									
	I	reserved		RO		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
)		EPHY0		RO		1	Ether	net PHY	0 Preser	nt							
							When set, indicates that Ethernet PHY module 0 is present.										
)	I	reserved		RO		0	comp	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
3		EMAC0		RO		1	Ether	net MAC	0 Prese	nt							
							When set, indicates that Ethernet MAC module 0 is present.										
8	I	reserved		RO		0	comp	atibility v	vith futur	e produo	cts, the v	value of	a reserv				
		GPIOH		RO		1	GPIO	Port H F	Present								
							When	i set, ind	icates th	at GPIO	Port H	is presei	nt.				
		GPIOG		RO		1	GPIO	Port G F	Present								
							When set, indicates that GPIO Port G is present.										
		GPIOF		RO		1 GPIO Port F Present											
						When set, indicates that GP					Port F i	s preser	nt.				
		GPIOE		RO		1	GPIO	Port E F	Present								
						When set, indicate				at GPIO	Port E	is preser	nt.				
		GPIOD		RO		1	GPIO Port D Present										
							When	i set, ind	icates th	at GPIO	Port D	is presei	nt.				
	reserved RO 0 15 RO 0 eld	reserved 0x5000.00F 31 30 reserved EPHY0 RO RO 0 1 15 14 RO RO 0 0 eld	reset 0x5000.00FF 31 30 29 reserved EPHY0 reserved RO RO RO 0 15 14 13 RO RO 0 eld Name reserved 0 FPHY0 0 RO C 0 RO 0 0 RO	reset 0x5000.00FF 31 30 29 28 reserved EPHY0 reserved EMACO RO RO RO RO 1 15 14 13 12 reserved RO RO 0 RO RO 0 eld Name reserved PHY0 EPHY0 EMAC0 8 reserved 8 reserved 6 GPIOF GPIOE	reserved 0x5000.00FF 31 30 29 28 27 reserved EPHY0 reserved EMAC0 R0 RO RO RO RO RO RO 15 14 13 12 11 reserved RO RO RO RO RO RO 0 RO RO RO RO eld Name Type reserved RO RO o EPHY0 RO RO EPHY0 RO RO EPHY0 RO RO EPHY0 RO RO RO RO RO EPHY0 RO RO GPIOH RO RO GPIOF RO GPIOF RO RO GPIOE RO RO	resert 0x5000.00FF 31 30 29 28 27 26 reserved EPHY0 reserved EMAC0 KO RO RO	reset 0x5000.00FF 29 28 27 26 25 reserved EPHY0 reserved EMAC0 RO RO	reset 0x5000.00FF 31 30 29 28 27 26 25 24 RO RO <td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 RO RO<td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 reserved EPHY0 reserved EMACO 0 1 0 1 0 RO RO RO RO RO RO RO RO RO 15 14 13 12 11 10 9 8 7 6 reserved RO RO RO RO RO RO RO RO RO 0 RO RO RO RO RO RO RO RO RO RO 15 14 13 12 11 10 9 8 7 6 reserved RO RO RO RO RO RO RO RO RO 16 RO RO RO RO RO RO RO RO RO RO 17 RO RO RO RO RO RO RO RO RO RO 18 14 13 12 11 10 9 8 7 6 19 RO RO RO RO RO RO RO RO RO RO 19 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO br/>10 RO br/>10 RO /td><td>reserved EPHY0 reserved EPHY0 reserved EMAC0 28 27 26 25 24 23 22 21 R0 R0<td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 reserved EPHY0 reserved EMACO RO /td><td>reset Dx5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 reserved EPHY0 reserved EMAC0 RO RO</td><td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved PHY0 reserved PHY0 reserved PHY0 reserved PHY0 RO R</td><td>Name Type Reserved Description Image: Provide the served bit of the set indicates that CPIO Port H is preserved bit of preserved bit o</td></td></td>	reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 RO RO <td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 reserved EPHY0 reserved EMACO 0 1 0 1 0 RO RO RO RO RO RO RO RO RO 15 14 13 12 11 10 9 8 7 6 reserved RO RO RO RO RO RO RO RO RO 0 RO RO RO RO RO RO RO RO RO RO 15 14 13 12 11 10 9 8 7 6 reserved RO RO RO RO RO RO RO RO RO 16 RO RO RO RO RO RO RO RO RO RO 17 RO RO RO RO RO RO RO RO RO RO 18 14 13 12 11 10 9 8 7 6 19 RO RO RO RO RO RO RO RO RO RO 19 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO br/>10 RO br/>10 RO /td> <td>reserved EPHY0 reserved EPHY0 reserved EMAC0 28 27 26 25 24 23 22 21 R0 R0<td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 reserved EPHY0 reserved EMACO RO /td><td>reset Dx5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 reserved EPHY0 reserved EMAC0 RO RO</td><td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved PHY0 reserved PHY0 reserved PHY0 reserved PHY0 RO R</td><td>Name Type Reserved Description Image: Provide the served bit of the set indicates that CPIO Port H is preserved bit of preserved bit o</td></td>	reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 reserved EPHY0 reserved EMACO 0 1 0 1 0 RO RO RO RO RO RO RO RO RO 15 14 13 12 11 10 9 8 7 6 reserved RO RO RO RO RO RO RO RO RO 0 RO RO RO RO RO RO RO RO RO RO 15 14 13 12 11 10 9 8 7 6 reserved RO RO RO RO RO RO RO RO RO 16 RO RO RO RO RO RO RO RO RO RO 17 RO RO RO RO RO RO RO RO RO RO 18 14 13 12 11 10 9 8 7 6 19 RO RO RO RO RO RO RO RO RO RO 19 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO RO RO RO RO RO RO RO RO RO 10 RO br>10 RO br>10 RO	reserved EPHY0 reserved EPHY0 reserved EMAC0 28 27 26 25 24 23 22 21 R0 R0 <td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 reserved EPHY0 reserved EMACO RO /td> <td>reset Dx5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 reserved EPHY0 reserved EMAC0 RO RO</td> <td>reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved PHY0 reserved PHY0 reserved PHY0 reserved PHY0 RO R</td> <td>Name Type Reserved Description Image: Provide the served bit of the set indicates that CPIO Port H is preserved bit of preserved bit o</td>	reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 reserved EPHY0 reserved EMACO RO	reset Dx5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 reserved EPHY0 reserved EMAC0 RO RO	reset 0x5000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved PHY0 reserved PHY0 reserved PHY0 reserved PHY0 RO R	Name Type Reserved Description Image: Provide the served bit of the set indicates that CPIO Port H is preserved bit of preserved bit o		

Device Capabilities 4 (DC4) Base 0x400F.E000 Offset 0x01C Type RO, reset 0x5000.00FF

Bit/Field	Name	Туре	Reset	Description
2	GPIOC	RO	1	GPIO Port C Present When set, indicates that GPIO Port C is present.
1	GPIOB	RO	1	GPIO Port B Present When set, indicates that GPIO Port B is present.
0	GPIOA	RO	1	GPIO Port A Present When set, indicates that GPIO Port A is present.

Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base 0x4 Offset 0x Type R/W	100		40		0	· ·	,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•					1	rese	rved	'					'	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•			reserved		1	•		нів	rese	rved	WDT		reserved	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:7	ļ	reserved		RO		0	compa	atibility v	vith futur	e produ		alue of	a reserv	To prov ved bit sh	
6	6		HIB		R/W		0	HIB C	lock Gat	ting Con	trol					
									ceives a						odule. If is uncloc	
5:	4	ļ	reserved		RO		0	compa	atibility v	vith futur	e produ		alue of	a reserv	To prov ved bit sh	
3	3		WDT		R/W		0	WDT	Clock G	ating Co	ntrol					
								receiv	es a clo ed. If the	ck and f	unctions	. Otherw	ise, the	unit is u	If set, th inclocke unit ger	d and
2:	0	I	reserved		RO		0	compa	atibility v	vith futur	e produ		alue of	a reserv	To prov ved bit sh	

Run Mode Clock Gating Control Register 0 (RCGC0)

Base 0x400F.E000

Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

fset 0x1	110 /, reset 0		40													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1		· ·		1	rese	rved	1		1		1	1 1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•			reserved		•			нів	rese	erved	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
Bit/Fi	iold		Name		Turne		Deast	Decer	intion							
DIVE	leiu		name		Туре		Reset	Descr	ipuon							
31:	:7		reserved		RO		0	compa	atibility v	vith futur	e produ	cts, the		a reserv	t. To prov ved bit sh	
6	i		HIB		R/W		0	HIB C	lock Ga	ting Con	trol					
									ceives a		0	0			iodule. If is unclock	
5:4	4		reserved		RO		0	compa	atibility v	vith futur	e produ	cts, the		a reserv	t. To prov ved bit sh	
3	i		WDT		R/W		0	WDT	Clock G	ating Co	ntrol					
								receiv	es a clo ed. If the	ck and f	unctions	. Otherv	vise, the	unit is u	If set, the unclocked unit gen	and
2:0	0		reserved		RO		0	compa	atibility v	vith futur	e produ	cts, the		a reserv	t. To prov /ed bit sh	

Sleep Mode Clock Gating Control Register 0 (SCGC0)

Base 0x400F.E000

Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes.

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

Offset 0x Type R/V		x0000004	40													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	ı ı		т т		1	rese	rved	1				1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		reserved		1	1		HIB	rese	rved	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
Reser	0	Ū	Ū	0	0	U	Ū	0	0	0	0	0	0	0	Ū	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:7	I	reserved		RO		0	compa	atibility v		e produ	cts, the	value of	a reserv	t. To prov ved bit sh	
6	6		HIB		R/W		0	HIB C	lock Ga	ting Con	trol					
									ceives a		0	•			odule. If is uncloc	-
5:	4	I	reserved		RO		0	compa	atibility v		e produ	cts, the	value of	a reserv	t. To prov ved bit sh	
3	3		WDT		R/W		0	WDT	Clock G	ating Co	ntrol					
								receiv	es a clo ed. If th	ck and fi	unctions	. Otherv	vise, the	unit is u	If set, the unclocked unit gen	d and
2:	0	I	reserved		RO		0	compa	atibility v		e produ	cts, the	value of	a reserv	t. To prov ved bit sh	

Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base 0x4	00F.E000	k Gat	ing Coni	troi Reg	jister 1 ((RCG	J)									
Offset 0x Type R/W	104 /, reset 0x(000000	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			reser	ved			COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	I2C1	reserved	I2C0			rese	rved		_	SSI1	SSI0	reserved	UART2	UART1	UART0
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре		Reset	Descri	ption							
31::	26	I	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produo	cts, the v	alue of a	a reserv		
25	5		COMP1		R/W		0	Analo	g Compa	arator 1	Clock G	ating				
								receiv	es a clo ed. If the	Is the clo ck and fu e unit is u	unctions	. Otherw	ise, the	unit is u	nclocke	d and
24	1		COMP0		R/W		0	Analog	g Compa	arator 0	Clock G	ating				
								receiv	es a clo ed. If the	Is the clo ck and fu e unit is u	unctions	Otherw	ise, the	unit is u	nclocke	d and
23:	20	l	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produo	cts, the v	alue of a	a reserv		
19)		TIMER3		R/W		0	Timer	3 Clock	Gating	Control					
						This bit controls the clock gating for General-Purpose T If set, the unit receives a clock and functions. Otherwise unclocked and disabled. If the unit is unclocked, reads o unit will generate a bus fault.						e, the ui	nit is			

Run Mode Clock Gating Control Register 1 (RCGC1)

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	I2C1	R/W	0	I2C1 Clock Gating Control
				This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
2	UART2	R/W	0	UART2 Clock Gating Control
				This bit controls the clock gating for UART module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Base 0x400F.E000 Offset 0x114

Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Type R/W	/, reset 0x	0000000	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			reser	ved			COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	I2C1	reserved	I2C0			rese	rved			SSI1	SSI0	reserved	UART2	UART1	UART0
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре	I	Reset	Descri	ption							
31:	26	r	reserved		RO		0	compa	atibility v	uld not re with futur oss a rea	e produc	ts, the	value of a	a reserve	•	
2	5		COMP1		R/W		0	Analog	g Comp	arator 1	Clock G	ating				
								receiv	es a clo ed. If the	ols the clc ock and fu e unit is u	unctions	Otherv	vise, the	unit is u	nclocked	d and
24	4		COMP0		R/W		0	Analog	g Comp	arator 0	Clock G	ating				
								receiv	es a clo ed. If the	ols the clo ock and fu e unit is u	unctions	Otherv	vise, the	unit is u	nclocked	d and
23:	20	r	reserved		RO		0	compa	atibility v	uld not re with futur oss a rea	e produc	cts, the	value of a	a reserve		
19	9		TIMER3		R/W		0	Timer	3 Clock	Gating	Control					
								lf set, uncloc	the unit ked an	ols the clo receives d disable rate a bus	a clock d. If the	and fur	nctions. C	Otherwis	e, the ur	nit is

Sleep Mode Clock Gating Control Register 1 (SCGC1)

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	I2C1	R/W	0	I2C1 Clock Gating Control
				This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
2	UART2	R/W	0	UART2 Clock Gating Control
				This bit controls the clock gating for UART module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Base 0x400F.E000

Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		rese	rved	ſ		COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	I2C1	reserved	I2C0	'		rese	rved		•	SSI1	SSI0	reserved	UART2	UART1	UART
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	26	compatibility with future product preserved across a read-modify						cts, the v	value of	a reserv						
25	5		COMP1		R/W		0	Analo	g Comp	arator 1	Clock G	ating				
				This bit controls the clock gating for receives a clock and functions. Oth disabled. If the unit is unclocked, re a bus fault.					Otherv	vise, the	unit is u	nclocke	d and			
24	1		COMP0		R/W		0	Analo	g Comp	arator 0	Clock G	ating				
								receiv	es a clo ed. If the	ck and fi	unctions	Otherv	alog corr vise, the or writes	unit is u	nclocke	d and
23:	23:20 reserved RO 0 Software should not rely on the value of compatibility with future products, the value of preserved across a read-modify-write of the value o						value of	a reserv	•							
19	9		TIMER3		R/W		0	Timer	3 Clock	Gating	Control					
							lf set, uncloc	the unit ked and	receives	a clock d. If the	and fur	eneral-P nctions. (inclocke	Dtherwis	e, the u	nit is	

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	I2C1	R/W	0	I2C1 Clock Gating Control
				This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
2	UART2	R/W	0	UART2 Clock Gating Control
				This bit controls the clock gating for UART module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

						(1100	02)											
Base 0x4 Offset 0x Type R/W	108		00															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	reserved	EPHY0	reserved	EMAC0			ì		reserved									
Туре	RO	R/W	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				rese	rved		1	GPIOH GPIOG GPIOF GPIOE GPIOD							GPIOB	GPIOA		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0		
Bit/Field Name Type Reset Description																		
31 reserved RO 0 Software should not rely on the compatibility with future product preserved across a read-modify							cts, the v	alue of	a reserv	•								
30 EPHY0 R/W 0 PHY0 Clock Gating Control																		
This bit controls the receives a clock and disabled. If the unit i a bus fault.					ck and fi	unctions	. Otherw	ise, the	unit is u	nclocke	d and							
29	Э	I	reserved		RO		0	compa	atibility v		e produ	cts, the v	alue of	a reserv	To provide ed bit should be			
28	3		EMAC0		R/W		0	MACC) Clock (Gating C	ontrol							
								This bit controls the clock gating for Ethernet MAC unit 0. If a receives a clock and functions. Otherwise, the unit is uncloc disabled. If the unit is unclocked, reads or writes to the unit w a bus fault.							nclocke	d and		
27	:8	I	reserved		RO		0	0 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.						a reserv				
7			GPIOH		R/W		0 Port H Clock Gating Control											
								clock	and fund	ls the clo ctions. O ocked, re	therwise	e, the un	it is uncl	ocked a	nd disab	led. If		

Run Mode Clock Gating Control Register 2 (RCGC2)

Bit/Field	Name	Туре	Reset	Description
6	GPIOG	R/W	0	Port G Clock Gating Control
				This bit controls the clock gating for Port G. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
5	GPIOF	R/W	0	Port F Clock Gating Control
				This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	GPIOE	R/W	0	Port E Clock Gating Control
				This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If

the unit is unclocked, reads or writes to the unit will generate a bus fault.

Base 0x400F.E000 Offset 0x118

Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Type R/W		(0000000	00														
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	reserved	EPHY0	reserved	EMAC0			1			rese	rved						
Туре	RO	R/W	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				reser	ved				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Reset	U	0	0	0	U	U	0	0	U	0	0	0	U	0	0	0	
Bit/F	iold		Name		Tuno		Poost	Descr	intion								
DIVE	leiu		Name		Туре		Reset	Desci	ιριιοπ								
31	l	r	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv			
30)		EPHY0		R/W		0	PHY0	Clock G	Bating Co	ontrol						
	30 EPHTU							receiv	es a clo ed. If the	ls the clo ck and fu e unit is u	unctions	. Otherw	ise, the	unit is u	nclocked	d and	
29	9	r	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv			
28	3		EMAC0		R/W		0	MACO) Clock (Gating C	ontrol						
This bit controls the c receives a clock and disabled. If the unit is a bus fault.						unctions	Otherw	ise, the	unit is u	nclocked	d and						
27:	8	r	reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv			

Sleep Mode Clock Gating Control Register 2 (SCGC2)

Bit/Field	Name	Туре	Reset	Description
7	GPIOH	R/W	0	Port H Clock Gating Control
				This bit controls the clock gating for Port H. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
6	GPIOG	R/W	0	Port G Clock Gating Control
				This bit controls the clock gating for Port G. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
5	GPIOF	R/W	0	Port F Clock Gating Control
				This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	GPIOE	R/W	0	Port E Clock Gating Control
				This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If

the unit is unclocked, reads or writes to the unit will generate a bus fault.

Base 0x400F.E000

Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offset 0x	128 V, reset 0		00														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	reserved	EPHY0	reserved	EMAC0	ſ		1	I	1	rese	rved	1	r L				
Туре	RO 0	R/W 0	RO 0	R/W	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO	RO 0	RO 0	RO 0	RO	
Reset	U	0	0	0	0	0	0	U	U	0	0	0	U	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				rese	rved		•		GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Bit/F	ield		Name		Туре		Reset	Descr	iption								
3	31 reserved		RO		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
3	30 EPHY0 R/W					0	PHY0	Clock G	Bating C	ontrol							
	This bit controls the clo receives a clock and fu						the clock gating for Ethernet PHY unit 0. If set, the unit and functions. Otherwise, the unit is unclocked and nit is unclocked, reads or writes to the unit will generate										
2	29 reserved RO 0 Software should not re compatibility with future					not rely on the value of a reserved bit. To provide future products, the value of a reserved bit should be a read-modify-write operation.											
2	8		EMAC0		R/W		0	MACO) Clock (Gating C	ontrol						
		EMACO						receiv	it contro res a clo ed. If the fault.	ck and f	unctions	. Otherw	ise, the	unit is u	nclocke	d and	
27	:8		reserved		RO		0	compa	are shou atibility v rved acr	vith futur	e produ	cts, the v	alue of	a reserv			

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

Bit/Field	Name	Туре	Reset	Description
7	GPIOH	R/W	0	Port H Clock Gating Control
				This bit controls the clock gating for Port H. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
6	GPIOG	R/W	0	Port G Clock Gating Control
				This bit controls the clock gating for Port G. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
5	GPIOF	R/W	0	Port F Clock Gating Control
				This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	GPIOE	R/W	0	Port E Clock Gating Control
				This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If

the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 27: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

Software Reset Control 0 (SRCR0)
Base 0x400F.E000 Offset 0x040 Type R/W, reset 0x00000000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1				1	rese	rved			1	1	1	1	•
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1 1		reserved		1	1		HIB	rese	erved	WDT		reserved	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	R/W	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	7		reserved		RO 0 Software shou compatibility w preserved acre				vith futur	e produ	cts, the v	alue of	a reserv	•		
6			HIB		R/W 0			HIB R	eset Co	ntrol						
								Reset	control	for the H	libernati	on modu	ule.			
5:4	4		reserved RO 0				compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
3			WDT		R/W		0	WDT	Reset C	ontrol						
								Reset	control	for Watc	hdog ur	nit.				
2:0)	reserved RO 0				Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										

Register 28: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Software Reset Control 1 (SRCR1)
Base 0x400F.E000 Offset 0x044 Type R/W, reset 0x00000000

,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			reserv		1 1 1		COMP1	COMP0		reserved			TIMER3	TIMER2	TIMER1	TIMER0		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved		I2C1 reserved I2		1		rese	rved			SSI1	SSI0	reserved	UART2	UART1	UART0		
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0		
Bit/Field		Name			Туре	I	Reset	Descr	Description									
31:26		reserved			RO		0	compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
25			COMP1		R/W		0	Analo	Analog Comp 1 Reset Control									
								Reset	Reset control for analog comparator 1.									
24		COMP0			R/W		0	Analo	Analog Comp 0 Reset Control									
								Reset	Reset control for analog comparator 0.									
23:20		reserved			RO		0	compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
19			TIMER3		R/W	0		Timer	3 Reset	Control								
								Reset	Reset control for General-Purpose Timer module 3.									
18			TIMER2				0	Timer	Timer 2 Reset Control									
								Reset	Reset control for General-Purpose Timer module 2.									
17			TIMER1		R/W	0		Timer 1 Reset Control										
							Reset control for General-Purpose Timer module 1.											
16			TIMER0		R/W	0		Timer	Timer 0 Reset Control									
								Reset	Reset control for General-Purpose Timer module 0.									
15		reserved			RO		0	compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
14	Ļ		I2C1		R/W		0	12C1 F	I2C1 Reset Control									
								Reset	Reset control for I2C unit 1.									
13		reserved			RO		0	compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
12	I2C0	R/W	0	I2C0 Reset Control
				Reset control for I2C unit 0.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Reset Control
				Reset control for SSI unit 1.
4	SSI0	R/W	0	SSI0 Reset Control
				Reset control for SSI unit 0.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	UART2	R/W	0	UART2 Reset Control
				Reset control for UART unit 2.
1	UART1	R/W	0	UART1 Reset Control
				Reset control for UART unit 1.
0	UART0	R/W	0	UART0 Reset Control
				Reset control for UART unit 0.

Register 29: Software Reset Control 2 (SRCR2), offset 0x048

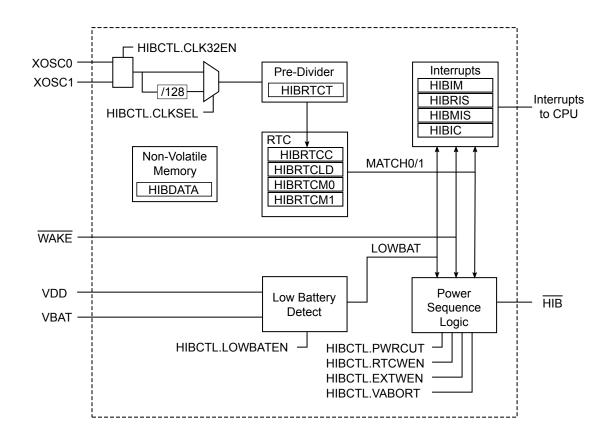
Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2) Base 0x400F.E000 Offset 0x048 Type R/W, reset 0x00000000

i ype i av	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	reserved	EPHY0	reserved	EMAC0	ľ		'	ì	r	rese	rved								
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
				rese	rved		1	1	GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			
Bit/F	ield		Name		Туре	I	Reset	Descr	iption										
3	1	I	reserved		RO		0	comp	atibility v	ild not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv					
30	D		EPHY0		R/W		0	PHY0	Reset C	Control									
								Reset	control	for Ethei	met PH	Y unit 0.							
29	9	I	reserved		RO		0	comp	atibility v	ild not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv	•				
28	8		EMAC0		R/W		0	MACO	Reset (Control									
								Reset	control	for Ethei	met MA	C unit 0.							
27	:8	I	reserved		RO 0				Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
7	,		GPIOH		R/W		0	Port H	Reset	Control									
								Reset	control	for GPIC	Port H								
6	;		GPIOG		R/W		0	Port C	Reset	Control									
								Reset	control	for GPIC) Port G								
5	;		GPIOF		R/W		0	Port F Reset Control											
								Reset	control	for GPIC) Port F.								
4	·		GPIOE		R/W		0	Port E Reset Control											
								Reset	control	for GPIC	Port E								
3	;		GPIOD		R/W		0	Port D	Reset	Control									
								Reset	control	for GPIC	Port D								
2	!		GPIOC		R/W		0	Port C	Reset	Control									
								Reset	control	for GPIC	Port C								

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
1	GPIOB	R/W	0	Port B Reset Control
				Reset control for GPIO Port B.
0	GPIOA	R/W	0	Port A Reset Control
				Reset control for GPIO Port A.


7 Hibernation Module

The Hibernation Module manages removal and restoration of power to the rest of the microcontroller to provide a means for reducing power consumption. When the processor and peripherals are idle, power can be completely removed with only the Hibernation Module remaining powered. Power can be restored based on an external signal, or at a certain time using the built-in real-time clock (RTC). The Hibernation module can be independently supplied from a battery or an auxillary power supply.

The Hibernation module has the following features:

- Power-switching logic to discrete external regulator
- Dedicated pin for waking from an external signal
- Low-battery detection, signalling, and interrupt generation
- 32-bit real-time counter (RTC)
- Two 32-bit RTC match registers for timed wake-up and interrupt generation
- Clock source from a 32.768-kHz external oscillator or a 4.194304-MHz crystal
- RTC predivider trim for making fine adjustments to the clock rate
- 64 32-bit words of non-volatile memory
- Programmable interrupts for RTC match, external wake, and low battery events

7.1 Block Diagram

Figure 7-1. Hibernation Module Block Diagram

7.2 Functional Description

The Hibernation module controls the power to the processor with an enable signal (HIB) that signals an external voltage regulator to turn off. The Hibernation module power is determined dynamically. The supply voltage of the Hibernation module is the larger of the main voltage source (VDD) or the battery/auxilliary voltage source (VBAT). A voting circuit indicates the larger and an internal power switch selects the appropriate voltage source. The Hibernation module also has a separate clock source to maintain a real-time clock (RTC). Once in hibernation, the module signals an external voltage regulator to turn back on the power when an external pin (WAKE) is asserted, or when the internal RTC reaches a certain value. The Hibernation module can also detect when the battery voltage is low, and optionally prevent hibernation when this occurs.

Power-up from a power cut to code execution is defined as the regulator turn-on time (specifed at t_{HIB} TO VDD maximum) plus the normal chip POR (see "Hibernation Module" on page 447).

7.2.1 Register Access Timing

Because the Hibernation module has an independent clocking domain, certain registers must be written only with a timing gap between accesses. The delay time is $t_{HIB_REG_WRITE}$, therefore software must guarantee that a delay of $t_{HIB_REG_WRITE}$ is inserted between back-to-back writes to certain Hibernation registers, or between a write followed by a read to those same registers. There is no

restriction on timing for back-to-back reads from the Hibernation module. Refer to "Register Descriptions" on page 118 for details about which registers are subject to this timing restriction.

7.2.2 Clock Source

The Hibernation module must be clocked by an external source, even if the RTC feature will not be used. An external oscillator or crystal can be used for this purpose. To use a crystal, a 4.194304-MHz crystal is connected to the xosco and xosc1 pins. This clock signal is divided by 128 internally to produce the 32.768-kHz clock reference. To use a more precise clock source, a 32.768-kHz oscillator can be connected to the xosc0 pin.

The clock source is enabled by setting the CLK32EN bit of the **HIBCTL** register. The type of clock source is selected by setting the CLKSEL bit to 0 for a 4.194304-MHz clock source, and to 1 for a 32.768-kHz clock source. If the bit is set to 0, the input clock is divided by 128, resulting in a 32.768-kHz clock source. If a crystal is used for the clock source, the software must leave a delay of t_{XOSC_SETTLE} after setting the CLK32EN bit and before any other accesses to the Hibernation module registers. The delay allows the crystal to power up and stabilize. If an oscillator is used for the clock source, no delay is needed.

7.2.3 Battery Management

The Hibernation module can be independently powered by a battery or an auxiliary power source. The module can monitor the voltage level of the battery and detect when the voltage becomes too low. When this happens, an interrupt can be generated. The module can also be configured so that it will not go into Hibernate mode if the battery voltage is too low.

Note that the Hibernation module draws power from whichever source (VBAT or VDD) has the higher voltage. Therefore, it is important to design the circuit to ensure that VDD is higher that VBAT under nominal conditions or else the Hibernation module draws power from the battery even when VDD is available.

The Hibernation module can be configured to detect a low battery condition by setting the LOWBATEN bit of the **HIBCTL** register. In this configuration, the LOWBAT bit of the **HIBRIS** register will be set when the battery level is low. If the VABORT bit is also set, then the module is prevented from entering Hibernation mode when a low battery is detected. The module can also be configured to generate an interrupt for the low-battery condition (see "Interrupts and Status" on page 115).

7.2.4 Real-Time Clock

The Hibernation module includes a 32-bit counter that increments once per second with a proper clock source and configuration (see "Clock Source" on page 114). The 32.768-kHz clock signal is fed into a predivider register which counts down the 32.768-kHz clock ticks to achieve a once per second clock rate for the RTC. The rate can be adjusted to compensate for inaccuracies in the clock source by using the predivider trim register. This register has a nominal value of 0x7FFF, and is used for one second out of every 64 seconds to divide the input clock. This allows the software to make fine corrections to the clock rate by adjusting the predivider trim register up or down from 0x7FFF. The predivider trim should be adjusted up from 0x7FFF in order to slow down the RTC rate, and down from 0x7FFF in order to speed up the RTC rate.

The Hibernation module includes two 32-bit match registers that are compared to the value of the RTC counter. The match registers can be used to wake the processor from hibernation mode, or to generate an interrupt to the processor if it is not in hibernation.

The RTC must be enabled with the RTCEN bit of the **HIBCTL** register. The value of the RTC can be set at any time by writing to the **HIBRTCLD** register. The predivider trim can be adjusted by reading and writing the **HIBRTCT** register. The predivider uses this register once every 64 seconds to adjust

the clock rate. The two match registers can be set by writing to the **HIBRTCM0** and **HIBRTCM1** registers. The RTC can be configured to generate interrupts by using the interrupt registers (see "Interrupts and Status" on page 115).

7.2.5 Non-Volatile Memory

The Hibernation module contains 64 32-bit words of memory which are retained during hibernation. This memory is powered from the battery or auxillary power supply during hibernation. The processor software can save state information in this memory prior to hibernation, and can then recover the state upon waking. The non-volatile memory can be accessed through the **HIBDATA** registers.

7.2.6 Power Control

The Hibernation module controls power to the processor through the use of the HIB pin, which is intended to be connected to the enable signal of the external regulator(s) providing 3.3 V and/or 2.5 V to the microcontroller. When the HIB signal is asserted by the Hibernation module, the external regulator is turned off and no longer powers the microcontroller. The Hibernation module remains powered from the VBAT supply, which could be a battery or an auxillary power source. Hibernation mode is initiated by the microcontroller setting the HIBREQ bit of the **HIBCTL** register. Prior to doing this, a wake-up condition must be configured, either from the external WAKE pin, or by using an RTC match.

The Hibernation module is configured to wake from the external \overline{WAKE} pin by setting the PINWEN bit of the **HIBCTL** register. It is configured to wake from RTC match by setting the RTCWEN bit. Either one or both of these bits can be set prior to going into hibernation. The \overline{WAKE} pin includes a weak internal pull-up. Note that both the \overline{HIB} and \overline{WAKE} pins use the Hibernation module's internal power supply as the logic 1 reference.

When the Hibernation module wakes, the microcontroller will see a normal power-on reset. It can detect that the power-on was due to a wake from hibernation by examining the raw interrupt status register (see "Interrupts and Status" on page 115) and by looking for state data in the non-volatile memory (see "Non-Volatile Memory" on page 115).

When the $\rm \overline{HIB}$ signal deasserts, enabling the external regulator, the external regulator must reach the operating voltage within t_{HIB TO VDD}.

7.2.7 Interrupts and Status

The Hibernation module can generate interrupts when the following conditions occur:

- Assertion of WAKE pin
- RTC match
- Low battery detected

All of the interrupts are ORed together before being sent to the interrupt controller, so the Hibernate module can only generate a single interrupt request to the controller at any given time. The software interrupt handler can service multiple interrupt events by reading the **HIBMIS** register. Software can also read the status of the Hibernation module at any time by reading the **HIBRIS** register which shows all of the pending events. This register can be used at power-on to see if a wake condition is pending, which indicates to the software that a hibernation wake occurred.

The events that can trigger an interrupt are configured by setting the appropriate bits in the **HIBIM** register. Pending interrupts can be cleared by writing the corresponding bit in the **HIBIC** register.

7.3 Initialization and Configuration

The Hibernation module can be configured in several different combinations. The following sections show the recommended programming sequence for various scenarios. The examples below assume that a 32.768-kHz oscillator is used, and thus always show bit 2 (CLKSEL) of the **HIBCTL** register set to 1. If a 4.194304-MHz crystal is used instead, then the CLKSEL bit remains cleared. Because the Hibernation module runs at 32 kHz and is asynchronous to the rest of the system, software must allow a delay of $t_{\text{HIB}_\text{REG}_\text{WRITE}}$ after writes to certain registers (see "Register Access Timing" on page 113). The registers that require a delay are denoted with a footnote in Table 7-1 on page 117.

7.3.1 Initialization

The clock source must be enabled first, even if the RTC will not be used. If a 4.194304-MHz crystal is used, perform the following steps:

- 1. Write 0x40 to the **HIBCTL** register at offset 0x10 to enable the crystal and select the divide-by-128 input path.
- 2. Wait for a time of t_{XOSC_SETTLE} for the crystal to power up and stabilize before performing any other operations with the Hibernation module.

If a 32.678-kHz oscillator is used, then perform the following steps:

- 1. Write 0x44 to the **HIBCTL** register at offset 0x10 to enable the oscillator input.
- 2. No delay is necessary.

The above is only necessary when the entire system is initialized for the first time. If the processor is powered due to a wake from hibernation, then the Hibernation module has already been powered up and the above steps are not necessary. The software can detect that the Hibernation module and clock are already powered by examining the CLK32EN bit of the **HIBCTL** register.

7.3.2 RTC Match Functionality (No Hibernation)

The following steps are needed to use the RTC match functionality of the Hibernation module:

- 1. Write the required RTC match value to one of the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Set the required RTC match interrupt mask in the RTCALT0 and RTCALT1 bits (bits 1:0) in the HIBIM register at offset 0x014.
- 4. Write 0x0000.0041 to the HIBCTL register at offset 0x010 to enable the RTC to begin counting.

7.3.3 RTC Match/Wake-Up from Hibernation

The following steps are needed to use the RTC match and wake-up functionality of the Hibernation module:

- 1. Write the required RTC match value to the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x12C.

4. Set the RTC Match Wake-Up and start the hibernation sequence by writing 0x0000.004F to the **HIBCTL** register at offset 0x010.

7.3.4 External Wake-Up from Hibernation

The following steps are needed to use the Hibernation module with the external \overline{WAKE} pin as the wake-up source for the microcontroller:

- 1. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x12C.
- 2. Enable the external wake and start the hibernation sequence by writing 0x0000.0056 to the **HIBCTL** register at offset 0x010.

7.3.5 RTC/External Wake-Up from Hibernation

- 1. Write the required RTC match value to the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x12C.
- 4. Set the RTC Match/External Wake-Up and start the hibernation sequence by writing 0x0000.005F to the **HIBCTL** register at offset 0x010.

7.4 Register Map

Table 7-1 on page 117 lists the Hibernation registers. All addresses given are relative to the Hibernation Module base address at 0x400F.C000.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 113.

Offset	Name	Туре	Reset	Description	See page
0x000	HIBRTCC	RO	0x0000.0000	Hibernation RTC Counter	119
0x004	HIBRTCM0	R/W	0xFFFF.FFFF	Hibernation RTC Match 0	120
0x008	HIBRTCM1	R/W	0xFFFF.FFFF	Hibernation RTC Match 1	121
0x00C	HIBRTCLD	R/W	0xFFFF.FFFF	Hibernation RTC Load	122
0x010	HIBCTL	R/W	0x0000.0000	Hibernation Control	123
0x014	НІВІМ	R/W	0x0000.0000	Hibernation Interrupt Mask	125
0x018	HIBRIS	RO	0x0000.0000	Hibernation Raw Interrupt Status	126
0x01C	HIBMIS	RO	0x0000.0000	Hibernation Masked Interrupt Status	127
0x020	HIBIC	R/W1C	0x0000.0000	Hibernation Interrupt Clear	128
0x024	HIBRTCT	R/W	0x0000.7FFF	Hibernation RTC Trim	129
0x030- 0x12C	HIBDATA	R/W	0x0000.0000	Hibernation Data	130

Table 7-1. Hibernation Module Register Map

7.5 Register Descriptions

The remainder of this section lists and describes the Hibernation module registers, in numerical order by address offset.

Register 1: Hibernation RTC Counter (HIBRTCC), offset 0x000

This register is the current 32-bit value of the RTC counter.

Hibernation RTC Counter (HIBRTCC) Base 0x400F.C000 Offset 0x000 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1		1		г г	RT								·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Fi	ield		Name		Туре	F	Reset		iption							
31:	0		RTCC		RO	0x00	000.000	RTC (Counter							
								A read	d returns	the 32-	bit count	ter value	. This re	aister is	read-or	ıly. To

A read returns the 32-bit counter value. This register is read-only. To change the value, use the **HIBRTCLD** register.

Hibernation RTC Match 0 (HIBRTCM0)

Register 2: Hibernation RTC Match 0 (HIBRTCM0), offset 0x004

This register is the 32-bit match 0 register for the RTC counter.

Base 0x4 Offset 0x0	00F.C00)											
Type R/W		xFFFF.FF	FF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1 1	ſ	г т 1		т т	RT	I I CM0 I		1	1	1		T	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	1 1		г т Г		т т	RT			1	1	1	ſ	T	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit/F	ield		Name		Туре		Reset	Desci	ription							
31	:0		RTCM0		R/W	0xF	FFF.FFFF	RTC	Match 0							
								A writ	e loads t	he value	e into the	e RTC m	natch reg	jister.		
								A rea	d returns	the cur	rent mat	ch value	Э.			

Hibernation RTC Match 1 (HIBRTCM1)

Register 3: Hibernation RTC Match 1 (HIBRTCM1), offset 0x008

This register is the 32-bit match 1 register for the RTC counter.

Base 0x4 Offset 0x Type R/W	00F.C00	C	FF	_	,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1		r r L		1	RT	I CM1 I				r I	r	1	1
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1		ı ı		1 1	RT	CM1	ſ	ſ	I	1	I	I	1
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1								
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31	:0		RTCM1		R/W	0xFF	FF.FFF	RTC	Match 1							
								A writ	e loads t	he value	e into the	e RTC m	atch reg	jister.		

A read returns the current match value.

Hibernation RTC Load (HIBRTCLD)

Register 4: Hibernation RTC Load (HIBRTCLD), offset 0x00C

This register is the 32-bit value loaded into the RTC counter.

Base 0x4 Offset 0x0 Type R/W	00C		FF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1	1	г <u>г</u>		· ·	RTC			1					
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•						RTC					1			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit/F	ield		Name		Туре	F	Reset	Descri	iption							
31:	:0		RTCLD		R/W	0xFF	FF.FFFF	RTC L	oad							
								A write	e loads t	he curre	nt value	into the	RTC co	ounter (R	tcc).	

A read returns the 32-bit load value.

Hibernation Control (HIBCTL)

Register 5: Hibernation Control (HIBCTL), offset 0x010

This register is the control register for the Hibernation module.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	erved	1	'	1		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r		res	erved		1	1	VABORT	CLK32EN	LOWBATEN	PINWEN	RTCWEN	CLKSEL	HIBREQ	RTC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/V 0
Bit/F	ield		Name		Туре		Reset	Desci	ription							
										برام ممغ م				فالمعالمة	T a	با م
31	8	I	reserved		RO		0x00	comp	atibility v	uld not re with futur ross a re	re produ	cts, the	value of	a reserv		
7		Ň	VABORT		R/W		0	Powe	er Cut Ab	ort Enal	ole					
								0: Po	wer cut	occurs d	uring a l	ow-batte	ery alert			
								1: Po	wer cut i	is aborte	d					
6		C	CLK32EN	I	R/W		0	32-k⊦	z Oscill	ator Ena	ble					
								0: Dis	abled							
								1: En	abled							
								used,	then so	be enab ftware sl ver up ar	hould wa	ait 20 ms				
5		10	OWBATE	N	R/W		0	Low F	Battery N	/lonitorin	a Enable	÷				
U							Ū		abled		9	-				
								1: En	abled							
								Wher	n set, lov	v battery	voltage	detectio	n is ena	bled.		
4			PINWEN		R/W		0	Exter	nal WART	🗄 Pin En	able					
							Ū		abled	_						
								1: En								
										external	l event o	n the wa	KE pin v	vill re-po	wer the	devid
		F	RTCWEN	I	R/W		0	RTC	Wake-ur	o Enable						
3							-		abled							
3																
3								1: En	abled							

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
2	CLKSEL	R/W	0	Hibernation Module Clock Select
				0: Use Divide by 128 output. Use this value for a 4-MHz crystal.
				1: Use raw output. Use this value for a 32-kHz oscillator.
1	HIBREQ	R/W	0	Hibernation Request
				0: Disabled
				1: Hibernation initiated
				After a wake-up event, this bit is cleared by hardware.
0	RTCEN	R/W	0	RTC Timer Enable
				0: Disabled
				1: Enabled

Register 6: Hibernation Interrupt Mask (HIBIM), offset 0x014

This register is the interrupt mask register for the Hibernation module interrupt sources.

fset 0x0	00F.C000 014 /, reset 0:		000																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		•	'	•	· ·			rese	rved	•	•	•		•		•			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		•		•	· ·	rese	erved					•	EXTW	LOWBAT	RTCALT1	RTCAL			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0			
Bit/F	ield		Name		Туре	I	Reset	Descr	iption										
31:	:4		reserved		RO	0x0	00.0000	O Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.											
3	\$		EXTW		R/W		0	0: Ma	sked	e-Up Inte	errupt M	ask							
2	<u>!</u>	I	LOWBAT	-	R/W		0	1: Unmasked Low Battery Voltage Interrupt Mask 0: Masked 1: Unmasked											
1		F	RTCALT	1	R/W		0	RTC Alert1 Interrupt Mask 0: Masked											
0	0 RTCALTO R/W 0					0	1: Unmasked RTC Alert0 Interrupt Mask 0: Masked 1: Unmasked												

Hibernation Interrupt Mask (HIBIM)

Register 7: Hibernation Raw Interrupt Status (HIBRIS), offset 0x018

This register is the raw interrupt status for the Hibernation module interrupt sources.

Hibernation Raw Interrupt Status (HIBR	lS)
--	-----

Base 0x400F.C000

Offset 0x018 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		l l			rese	rved	r		1		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		 	rese	rved			n n		T	EXTW	LOWBAT	RTCALT1	RTCALT0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field Name 31:4 reserved		l	Type RO		Reset 00.0000	compa	are shou atibility w	ith futur	e produ	e value o icts, the v ify-write o	alue of	a reserv	•			
3			EXTW		RO		0	External Wake-Up Raw Interrupt Status								
2		LOWBAT RO 0		0	Low B	attery Vo	oltage R	aw Inte	rrupt Sta	tus						
1			RTCALT	1	RO		0	RTC A	Alert1 Ra	w Interr	upt Sta	tus				
0			RTCALT	D	RO		0	RTC A	Alert0 Ra	w Interr	upt Sta	tus				

Register 8: Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C

This register is the masked interrupt status for the Hibernation module interrupt sources.

Hibernation Masked Interrupt Status (HIBMIS)

Base 0x400F.C000 Offset 0x01C

Type RO, reset	0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1				· · ·	rese	rved	r		1		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1				reserved EXTW LO								LOWBAT	RTCALT1	RTCALT0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/Field Name 31:4 reserved			Type RO		Reset 00.0000	Description Software should not rely on the value of a reserved bi compatibility with future products, the value of a reserv preserved across a read-modify-write operation.						a reserv	•		
3			EXTW		RO		0	Exterr	al Wake	-Up Mas	sked Inf	errupt St	atus			
2		LOWBAT RO 0		0	Low B	attery V	oltage M	asked I	nterrupt	Status						
1		I	RTCALT1	1	RO		0	RTC A	Nert1 Ma	asked Inf	errupt	Status				
0		I	RTCALT)	RO		0	RTC A	Nert0 Ma	asked Inf	errupt	Status				

Register 9: Hibernation Interrupt Clear (HIBIC), offset 0x020

This register is the interrupt write-one-to-clear register for the Hibernation module interrupt sources.

Hibernation Interrupt Clear (HIBIC)
Base 0x400F.C000 Offset 0x020 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	I	, ,		1 1	rese	rved	Î				i I			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[15	1	10	12	· · ·		rved	0	, ,		5		EXTW			RTCALT0	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C	R/W1C	R/W1C	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
					_			_									
Bit/F	ield		Name Type Reset				Description										
31:	:4	I	reserved		RO	0x0	00.000							erved bit.	•		
									atibility w		•	,		a reserv n.	ed bit sh	ould be	
0					DANAO		0										
3			EXTW		R/W1C	R/W1C 0			External Wake-Up Masked Interrupt Clear								
								Reads return an indeterminate value.									
2		l	OWBAT	-	R/W1C		0	Low B	attery V	oltage M	asked I	nterrupt	Clear				
								Reads	s return a	an indete	erminate	e value.					
1		F		1	R/W1C		0	RTC A	Alert1 Ma	asked In	terrupt (Clear					
		KICALIT IVWIC U				s return a		•									
		_		_													
0	0 RTCALTO R/W1C 0			0	RTC Alert0 Masked Interrupt Clear												
						Reads	s return a	an indete	erminate	e value.							

Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024

This register contains the value that is used to trim the RTC clock predivider. It represents the computed underflow value that is used during the trim cycle. It is represented as $0x7FFF \pm N$ clock cycles.

Hibernation RTC Trim (HIBRTCT)

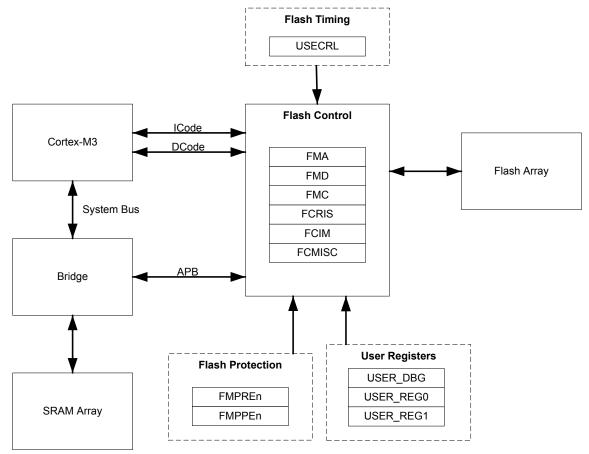
Base 0x400F.C000 Offset 0x024 Type R/W, reset 0x0000.7FFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1				1	rese	erved		1	1		1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
														'			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Bit/F	Bit/Field Name				Туре	F	Reset	Descr	iption								
31:	31:16 reserved			RO 0x0000			compa	are shou atibility w rved acre	/ith futur	e produ	cts, the v	alue of	a reserv	•			
15	:0		TRIM		R/W	0	x7FFF	RTC Trim Value									
									alue is lo ust the F			•					

This value is loaded into the RTC predivider every 64 seconds. It is used to adjust the RTC rate to account for drift and inaccuracy in the clock source. The compensation is made by software by adjusting the default value of 0x7FFF up or down.

Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C

This address space is implemented as a 64x32-bit memory (256 bytes). It can be loaded by the system processor in order to store any non-volatile state data and will not lose power during a power cut operation.


Hibernation Data (HIBDATA) Base 0x400F.C000 Offset 0x030-0x12C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 16 21 20 19 18 17 RTD R/W R/W R/W R/W R/W Туре R/W 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 9 8 7 6 2 0 14 13 12 11 10 5 3 1 4 RTD R/W Туре 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 Bit/Field Name Reset Description Туре 31:0 RTD R/W 0x0000.0000 Hibernation Module NV Registers[63:0]

8 Internal Memory

The LM3S6611 microcontroller comes with 32 KB of bit-banded SRAM and 128 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

8.1 Block Diagram

Figure 8-1. Flash Block Diagram

8.2 Functional Description

This section describes the functionality of both the flash and SRAM memories.

8.2.1 SRAM Memory

The internal SRAM of the Stellaris[®] devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

8.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also "Serial Flash Loader" on page 456 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

8.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

8.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two pairs of 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read by software or debuggers. If cleared, the block may only be executed. The contents of the memory block are prohibited from being accessed as data and traversing the DCode bus.

The policies may be combined as shown in Table 8-1 on page 133.

FMPPEn	FMPREn	Protection
0	0	Execute-only protection. The block may only be executed and may not be written or erased. This mode is used to protect code.
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.
0	1	Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

Table 8-1. Flash Protection Policy Combinations

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt may be optionally generated (by setting the AMASK bit in the **FIM** register) to alert software developers of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data filled with all 0s. A controller interrupt may be optionally generated to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. Details on programming these bits are discussed in "Nonvolatile Register Programming" on page 134.

8.3 Flash Memory Initialization and Configuration

8.3.1 Flash Programming

The Stellaris[®] devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

8.3.1.1 To program a 32-bit word

- 1. Write source data to the **FMD** register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
- 4. Poll the **FMC** register until the WRITE bit is cleared.

8.3.1.2 To perform an erase of a 1-KB page

- 1. Write the page address to the **FMA** register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the **FMC** register.
- 3. Poll the **FMC** register until the ERASE bit is cleared.

8.3.1.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the **FMC** register.
- 2. Poll the FMC register until the MERASE bit is cleared.

8.3.2 Nonvolatile Register Programming

This section discusses how to update registers that are resident within the flash memory itself. These registers exist in a separate space from the main flash array and are not affected by an ERASE or MASS ERASE operation. These nonvolatile registers are updated by using the COMT bit in the **FMC** register to activate a write operation. For the **USER_DBG** register, the data to be written must be loaded into the **FMD** register before it is "committed". All other registers are R/W and can have their operation tried before committing them to nonvolatile memory.

Important: These registers can only have bits changed from 1 to 0 by the user and there is no mechanism for the user to erase them back to a 1 value.

In addition, the **USER_REG0**, **USER_REG1**, and **USER_DBG** use bit 31 (NW) of their respective registers to indicate that they are available for user write. These three registers can only be written once whereas the flash protection registers may be written multiple times. Table 8-2 on page 134 provides the FMA address required for commitment of each of the registers and the source of the data to be written when the COMT bit of the **FMC** register is written with a value of 0xA442.0008. After writing the COMT bit, the user may poll the **FMC** register to wait for the commit operation to complete.

Register to be Committed	FMA Value	Data Source
FMPRE0	0x0000.0000	FMPRE0
FMPRE1	0x0000.0002	FMPRE1
FMPRE2	0x0000.0004	FMPRE2
FMPRE3	0x0000.0008	FMPRE3
FMPPE0	0x0000.0001	FMPPE0
FMPPE1	0x0000.0003	FMPPE1
FMPPE2	0x0000.0005	FMPPE2
FMPPE3	0x0000.0007	FMPPE3
USER_REG0	0x8000.0000	USER_REG0
USER_REG1	0x8000.0001	USER_REG1
USER_DBG	0x7510.0000	FMD

Table 8-2. Flash Resident Registers^a

a. Which FMPREn and FMPPEn registers are available depend on the flash size of your particular Stellaris® device.

8.4 Register Map

Table 8-3 on page 134 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** registers are relative to the Flash control base address of 0x400F.D000. The **FMPREn**, **FMPPEn**, **USECRL**, **USER_DBG**, and **USER_REGn** registers are relative to the System Control base address of 0x400F.E000.

Table	8-3.	Flash	Register	Мар
-------	------	-------	----------	-----

Offset	Name	Туре	e Reset Description									
Flash Control Offset												
0x000	FMA	R/W	0x0000.0000	Flash Memory Address	136							

Offset	Name	Туре	Reset	Description	See page
0x004	FMD	R/W	0x0000.0000	Flash Memory Data	137
0x008	FMC	R/W	0x0000.0000	Flash Memory Control	138
0x00C	FCRIS	RO	0x0000.0000	Flash Controller Raw Interrupt Status	140
0x010	FCIM	R/W	0x0000.0000	Flash Controller Interrupt Mask	141
0x014	FCMISC	R/W1C	0x0000.0000	Flash Controller Masked Interrupt Status and Clear	142
System C	ontrol Offset				
0x130	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	144
0x200	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	144
0x134	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	145
0x400	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	145
0x140	USECRL	R/W	0x31	USec Reload	143
0x1D0	USER_DBG	R/W	0xFFFF.FFFE	User Debug	146
0x1E0	USER_REG0	R/W	0xFFFF.FFFF	User Register 0	147
0x1E4	USER_REG1	R/W	0xFFFF.FFFF	User Register 1	148
0x204	FMPRE1	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 1	149
0x208	FMPRE2	R/W	0x0000.0000	Flash Memory Protection Read Enable 2	150
0x20C	FMPRE3	R/W	0x0000.0000	Flash Memory Protection Read Enable 3	151
0x404	FMPPE1	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 1	152
0x408	FMPPE2	R/W	0x0000.0000	Flash Memory Protection Program Enable 2	153
0x40C	FMPPE3	R/W	0x0000.0000	Flash Memory Protection Program Enable 3	154

8.5 Flash Register Descriptions (Flash Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.

Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

Flash Memory Address (FMA)

Base 0x400F.D000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			, ,		, , , , , , , , , , , , , , , , , , ,		1	reserved						1	1	OFFSET
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					, ,		1	OFF	SET			•		1	1	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	Bit/Field		Name		Type Reset		Descr	Description								
31:	17	l	reserved		RO		0x0	compa	atibility w	ith futur	e produ		alue of		•	vide hould be
16:	:0		OFFSET		R/W		0x0	Addre	ss Offse	t						
								Addre	ss offset	t in flash	where	operation	n is perf	ormed.	except f	or

Address offset in flash where operation is performed, except for nonvolatile registers (see "Nonvolatile Register Programming" on page 134 for details on values for this field).

Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

Flash M	/lemory	[,] Data (FMD)													
Base 0x4 Offset 0x0 Type R/W	004		00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DATA																
		1	1	1	, I			DA	TA		•			•	•	
Туре	R/W	R/W	R/W	R/W	I I R/W	R/W	R/W	DA R/W	TA R/W	R/W						
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			R/W 0						
	0					0		R/W	R/W 0							
Reset	o ïeld		0		0	0	0	R/W 0	R/W 0							

October 09, 2007

Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 136). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 137) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

Flash Memory Control (FMC) Base 0x400F.D000 Offset 0x008 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 17 16 19 18 WRKFY WO Туре 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 MERAS СОМТ FRASE WRITE reserved R/W R/W R/W R/W Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description WRKEY 31.16 WO 0x0 Flash Write Key This field contains a write key, which is used to minimize the incidence of accidental flash writes. The value 0xA442 must be written into this field for a write to occur. Writes to the FMC register without this WRKEY value are ignored. A read of this field returns the value 0. 15:4 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 3 COMT R/W 0 Commit Register Value Commit (write) of register value to nonvolatile storage. A write of 0 has no effect on the state of this bit. If read, the state of the previous commit access is provided. If the previous commit access is complete, a 0 is returned; otherwise, if the commit access is not complete, a 1 is returned. This can take up to 50 µs. 2 MERASE R/W 0 Mass Erase Flash Memory If this bit is set, the flash main memory of the device is all erased. A write of 0 has no effect on the state of this bit. If read, the state of the previous mass erase access is provided. If the previous mass erase access is complete, a 0 is returned; otherwise, if the previous mass erase access is not complete, a 1 is returned. This can take up to 250 ms.

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a Page of Flash Memory
				If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit.
				If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned.
				This can take up to 25 ms.
0	WRITE	R/W	0	Write a Word into Flash Memory
				If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit.
				If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.

This can take up to 50 µs.

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

Type ite,	10301 07	10000.000	00																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		1	1	r	r r		1	rese	rved	i i		1	1	Î	1	Ì			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		Î	1		i i		rese	i erved	1	1		ì	1	Î	PRIS	ARIS			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	31:2 reserved RO 0x00 S									Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
I			PRIS		RO		0	Programming Raw Interrupt Status This bit indicates the current state of the programming cy programming cycle completed; if cleared, the programmin not completed. Programming cycles are either write or er generated through the Flash Memory Control (FMC) reg page 138).								cle has ctions			
0			ARIS		RO		0	Acces	s Raw I	nterrupt	Status								
									This bit indicates if the flash was improperly accessed. If set, the program tried to access the flash counter to the policy as set in the Flash Memory Protection Read Enable (FMPREn) and Flash Memory Protection Program Enable (FMPPEn) registers. Otherwise, no access has tried										

to improperly access the flash.

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

Flash Controller Interrupt Mask (FCIM)
Base 0x400F.D000 Offset 0x010
Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	, ,		· ·		1	rese	rved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	т т		r r 1		rese	erved				1			PMASK	AMASK
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F 31: 1			Name reserved PMASK		Type RO R/W		Reset 0x00 0	Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. Programming Interrupt Mask This bit controls the reporting of the programming raw interrupt sta								
0			AMASK		R/W	to the controller. If set, a programming-generate to the controller. Otherwise, interrupts are recorded the controller. N 0 Access Interrupt Mask This bit controls the reporting of the access raw controller. If set, an access-generated interrupt is controller. Otherwise, interrupts are recorded bu controller.									upt status	s to the

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

Flash Controller Masked Interrupt Status and Clear (FCMISC) Base 0x400F.D000

Offset 0x014 Type R/W1C, reset 0x0000.0000

11	-,																			
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
					· ·		1	rese	rved	1	1	1		1						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
		1	1 1		1 1 1		rese	l erved		1	1	1		1	PMISC	AMISC				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0				
Bit/F	Bit/Field Name Type Reset Description																			
31	:2	CC					compa	atibility v	ould not rely on the value of a reserved bit. To provide y with future products, the value of a reserved bit should be cross a read-modify-write operation.											
1			PMISC		R/W1C		0	Programming Masked Interrupt Status and Clear												
						This bit indicates whether an interrupt was signaled because programming cycle completed and was not masked. This bit by writing a 1. The PRIS bit in the FCRIS register (see page 1 cleared when the PMISC bit is cleared.								his bit is	cleared					
C)		AMISC		R/W1C		0	Acces	s Mask	ed Interr	upt Stat	us and C	lear							
								acces a 1. Tl	s was at	tempted	and was	s not mas	sked. Th	is bit is c	ause an ir cleared by when the	y writing				

8.6 Flash Register Descriptions (System Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000.

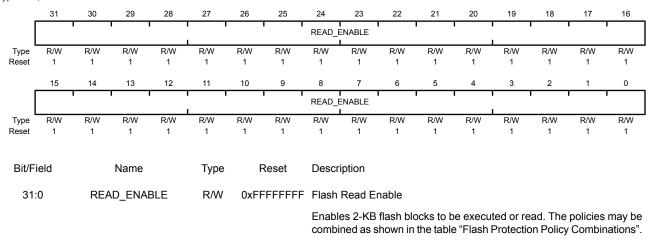
Register 7: USec Reload (USECRL), offset 0x140

Note: Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

USec R Base 0x4 Offset 0x Type R/W	00F.E00 140	0	RL)															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		reserved										Ì			Ì	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		1	Î	rese	rved		1	Î		Î		US	EC		Î			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 1		
Bit/F	ield		Name Type				Reset	Description										
31:8			reserved	ed RO 0x00 Software should not rely on the value of a rese compatibility with future products, the value of preserved across a read-modify-write operation						a reserv	•							
7:0	0		USEC		R/W		0x31	Micro	second l	Reload \	/alue							
									1 of the ammed.	controlle	er clock	when the	e flash is	s being e	erased o	r		
									USEC should be set to 0x31 (50 MHz) whenever the flash is being erased or programmed.									

Register 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200


Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

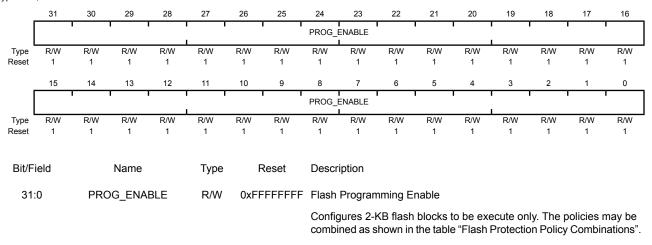
Flash Memory Protection Read Enable 0 (FMPRE0)

Base 0x400F.D000 Offset 0x130 and 0x200 Type R/W, reset 0xFFF.FFFF

Value Description

0xFFFFFFF Enables 128 KB of flash.

Register 9: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400


Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 0 (FMPPE0)

Base 0x400F.D000 Offset 0x134 and 0x400 Type R/W, reset 0xFFFF.FFFF

Value Description

0xFFFFFFF Enables 128 KB of flash.

Register 10: User Debug (USER_DBG), offset 0x1D0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0 disables any external debugger access to the device permanently, starting with the next power-up cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once.

User De Base 0x4 Offset 0x7 Type R/W	00F.E000 1D0)														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NW		1	1	r r I		і I		DATA						1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1			DAT	A		I	ļ	•			DBG1	DBG0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Bit/Fi	ield		Name		Туре	F	Reset	Descr	ription							
31	1		NW		R/W		1	User I	Debug N	ot Writte	en					
									fies that			hac no	t boon w	ritton		
								Opeci	nes that	1113 52-1		111111111111	t been w	muen.		
30:	2		DATA		R/W	0x1F	FFFFFF	User I	Data							
								Conta	ins the u	iser data	a value.	This field	d is initia	lized to	all 1s ar	nd can
								only b	e writter	once.						
1			DBG1		R/W		1	Debu	g Contro	11						
								The DBG1 bit must be 1 and DBG0 must be 0 for debug to be available.								
0			DBG0		R/W		0	Debu	g Contro	0						
Ū							-		•		1		4 h a 0 f -		4a h.a	
								i ne D	BG1 bit r	nust be	I and D	BGO mus	st de u fo	aepug	to be av	allable.

Register 11: User Register 0 (USER_REG0), offset 0x1E0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

User Register 0 (USER_REG0) Base 0x400F.E000 Offset 0x1E0 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 NW DATA R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 2 1 0 4 3 DATA Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bit/Field Name Reset Description Туре 31 R/W Not Written NW 1 Specifies that this 32-bit dword has not been written. 30:0 DATA R/W 0x7FFFFFFF User Data Contains the user data value. This field is initialized to all 1s and can only be written once.

User Register 1 (USER_REG1)

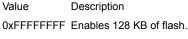
Register 12: User Register 1 (USER_REG1), offset 0x1E4

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

Base 0x400F.E000 Offset 0x1E4 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 NW DATA R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 2 1 0 4 3 DATA Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bit/Field Name Reset Description Туре 31 NW R/W Not Written 1 Specifies that this 32-bit dword has not been written. 30:0 DATA R/W 0x7FFFFFFF User Data Contains the user data value. This field is initialized to all 1s and can only be written once.

Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204


Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offset 0x204 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 20 16 21 19 18 17 READ ENABLE Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0 READ ENABLE R/W R/W R/W Type R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bit/Field Name Туре Reset Description 0xFFFFFFFF Flash Read Enable 31.0 READ_ENABLE R/W Enables 2-KB flash blocks to be executed or read. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Value

Flash Memory Protection Read Enable 1 (FMPRE1) Base 0x400F.E000

Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

31 30 29 28 27 26 25 24 23 22 20 21 19 18 17 READ ENABLE Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 READ ENABLE R/W R/W R/W R/W R/W R/W R/W R/W Type R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Туре Reset Description 0x00000000 Flash Read Enable 31.0 READ_ENABLE R/W Enables 2-KB flash blocks to be executed or read. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Flash Memory Protection Read Enable 2 (FMPRE2) Base 0x400F.E000

Offset 0x208

Type R/W, reset 0x0000.0000

Value Description

0x00000000 Enables 128 KB of flash.

16

0

0

0

Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offset 0x20C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 20 16 21 19 18 17 READ ENABLE Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 READ ENABLE R/W R/W R/W R/W R/W R/W Type R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Туре Reset Description Flash Read Enable 31.0 READ_ENABLE R/W 0x00000000 Enables 2-KB flash blocks to be executed or read. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Flash Memory Protection Read Enable 3 (FMPRE3)

Base 0x400F.E000

Value Description 0x00000000 Enables 128 KB of flash.

Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 1 (FMPPE1) Base 0x400F.E000 Offset 0x404 Type R/W, reset 0xFFF.FFFF

11	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		r r		1 1	PROG_	ENABLE		1		1	I		
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		г т 1		1 1	PROG_	ENABLE		1		1	1		
Type Reset	R/W	R/W	R/W	R/W	R/W 1	R/W	R/W	R/W	R/W							
Neset		'	I	I		,	1	'		I	1	I	I	I	I	I
Bit/F	ield		Name		Туре	F	Reset	Descr	ription							
31	:0	PRC	G_ENA	BLE	R/W	0xFF	FFFFFF	Flash	Program	nming E	nable					
								Configures 2-KB flash blocks to be execute only. The policies may a combined as shown in the table "Flash Protection Policy Combination								
										_ .						

Value Description 0xFFFFFFF Enables 128 KB of flash.

Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 2 (FMPPE2) Base 0x400F.E000 Offset 0x408

Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			г т		I I	PROG_I	ENABLE			1			I	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0							
100001	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[Î		I	<u>г</u>		<u> </u>	PROG_I	ENABLE						Í	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
31:	0	PRC	G_ENA	BLE	R/W	0x0	0000000	Flash	Flash Programming Enable							
								Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations".								

Value Description

0x00000000 Enables 128 KB of flash.

Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 3 (FMPPE3) Base 0x400F.E000 Offset 0x400 Type R/W, reset 0x0000.0000

	,																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	1	r r I			PROG_	I ENABLE				1	I	1		
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0								
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	1	1	г г 1			PROG_	I ENABLE			1	1	1	1		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
					_			_									
Bit/Fi	ield		Name		Туре	F	Reset	Descr	iption								
31:	0	PRC	G_ENA	BLE	R/W	0x0	0000000	00 Flash Programming Enable									
								Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations".									

Value Description

0x00000000 Enables 128 KB of flash.

9 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, and Port H). The GPIO module is FiRM-compliant and supports 10-46 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

- Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- 5-V-tolerant input/outputs
- Bit masking in both read and write operations through address lines
- Programmable control for GPIO pad configuration
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables

9.1 Functional Description

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block. The LM3S6611 microcontroller contains eight ports and thus eight of these physical GPIO blocks.

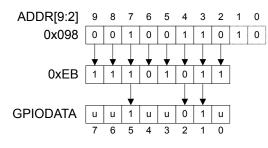
9.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

9.1.1.1 Data Direction Operation

The **GPIO Direction (GPIODIR)** register (see page 162) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data

direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.


9.1.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 161) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

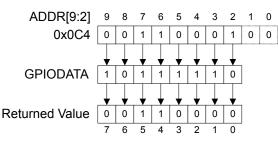

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 9-1 on page 156, where u is data unchanged by the write.

Figure 9-1. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 9-2 on page 156.

Figure 9-2. GPIODATA Read Example

9.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- **GPIO Interrupt Sense (GPIOIS)** register (see page 163)
- GPIO Interrupt Both Edges (GPIOIBE) register (see page 164)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 165)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 166).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 167 and page 168). As the name implies, the **GPIOMIS** register only shows interrupt conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

Interrupts are cleared by writing a 1 to the GPIO Interrupt Clear (GPIOICR) register (see page 169).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

9.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 170), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

9.1.4 Commit Control

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 170) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 180) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 181) have been set to 1.

9.1.5 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIOODR**, **GPIOPUR**, **GPIOPDR**, **GPIOSLR**, and **GPIODEN** registers.

9.1.6 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

9.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) are configured out of reset to be undriven (tristate): **GPIOAFSEL=**0, **GPIODEN=**0, **GPIOPDR=**0, and **GPIOPUR=**0. Table 9-1 on page 158 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 9-2 on page 158 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

Configuration	AFSEL DIR ODR DEN PUR PDR DR2R DR4R DR8R SLR									
	AFSEL	DIR	ODR	DEN	PUR	PDR	DR2R	DR4R	DR8R	SLR
Digital Input (GPIO)	0	0	0	1	?	?	Х	Х	X	Х
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?
Open Drain Input (GPIO)	0	0	1	1	X	X	X	X	X	X
Open Drain Output (GPIO)	0	1	1	1	X	X	?	?	?	?
Open Drain Input/Output (I ² C)	1	X	1	1	X	X	?	?	?	?
Digital Input (Timer CCP)	1	X	0	1	?	?	X	X	X	X
Digital Output (Timer PWM)	1	X	0	1	?	?	?	?	?	?
Digital Input/Output (SSI)	1	X	0	1	?	?	?	?	?	?
Digital Input/Output (UART)	1	X	0	1	?	?	?	?	?	?
Analog Input (Comparator)	0	0	0	0	0	0	X	X	X	X
Digital Output (Comparator)	1	X	0	1	?	?	?	?	?	?

Table 9-1. GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 9-2. GPIO Interrupt Configuration Example

	Desired												
	Interrupt Event Trigger	7	6	5	4	3	2	1	0				
GPIOIS	0=edge 1=level	X	X	X	x	X	0	X	Х				
GPIOIBE	0=single edge 1=both edges	X	X	X	X	X	0	X	Х				
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge		X	x	X	X	1	X	X				
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0				

a. X=Ignored (don't care bit)

9.3 Register Map

Table 9-3 on page 159 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

- GPIO Port A: 0x4000.4000
- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000
- GPIO Port F: 0x4002.5000
- GPIO Port G: 0x4002.6000
- GPIO Port H: 0x4002.7000
- Important: The GPIO registers in this chapter are duplicated in each GPIO block, however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect and reading those unconnected bits returns no meaningful data.
- Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

The default register type for the **GPIOCR** register is RO for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the **GPIOCR** register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the **GPIOCR** register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-commitable. Because of this, the default reset value of **GPIOCR** for GPIO Port B is 0x0000.007F while the default reset value of **GPIOCR** for Port C is 0x0000.00F0.

Offset	Name	Туре	Reset	Description	See page
0x000	GPIODATA	R/W	0x0000.0000	GPIO Data	161
0x400	GPIODIR	R/W	0x0000.0000	GPIO Direction	162
0x404	GPIOIS	R/W	0x0000.0000	GPIO Interrupt Sense	163
0x408	GPIOIBE	R/W	0x0000.0000	GPIO Interrupt Both Edges	164
0x40C	GPIOIEV	R/W	0x0000.0000	GPIO Interrupt Event	165

Table 9-3. GPIO Register Map

www.datasheet4u.com

Offset	Name	Туре	Reset	Description	See page
0x410	GPIOIM	R/W	0x0000.0000	GPIO Interrupt Mask	166
0x414	GPIORIS	RO	0x0000.0000	GPIO Raw Interrupt Status	167
0x418	GPIOMIS	RO	0x0000.0000	GPIO Masked Interrupt Status	168
0x41C	GPIOICR	W1C	0x0000.0000	GPIO Interrupt Clear	169
0x420	GPIOAFSEL	R/W	-	GPIO Alternate Function Select	170
0x500	GPIODR2R	R/W	0x0000.00FF	GPIO 2-mA Drive Select	172
0x504	GPIODR4R	R/W	0x0000.0000	GPIO 4-mA Drive Select	173
0x508	GPIODR8R	R/W	0x0000.0000	GPIO 8-mA Drive Select	174
0x50C	GPIOODR	R/W	0x0000.0000	GPIO Open Drain Select	175
0x510	GPIOPUR	R/W	-	GPIO Pull-Up Select	176
0x514	GPIOPDR	R/W	0x0000.0000	GPIO Pull-Down Select	177
0x518	GPIOSLR	R/W	0x0000.0000	GPIO Slew Rate Control Select	178
0x51C	GPIODEN	R/W	-	GPIO Digital Enable	179
0x520	GPIOLOCK	R/W	0x0000.0001	GPIO Lock	180
0x524	GPIOCR	-	-	GPIO Commit	181
0xFD0	GPIOPeriphID4	RO	0x0000.0000	GPIO Peripheral Identification 4	183
0xFD4	GPIOPeriphID5	RO	0x0000.0000	GPIO Peripheral Identification 5	184
0xFD8	GPIOPeriphID6	RO	0x0000.0000	GPIO Peripheral Identification 6	185
0xFDC	GPIOPeriphID7	RO	0x0000.0000	GPIO Peripheral Identification 7	186
0xFE0	GPIOPeriphID0	RO	0x0000.0061	GPIO Peripheral Identification 0	187
0xFE4	GPIOPeriphID1	RO	0x0000.0000	GPIO Peripheral Identification 1	188
0xFE8	GPIOPeriphID2	RO	0x0000.0018	GPIO Peripheral Identification 2	189
0xFEC	GPIOPeriphID3	RO	0x0000.0001	GPIO Peripheral Identification 3	190
0xFF0	GPIOPCellID0	RO	0x0000.000D	GPIO PrimeCell Identification 0	191
0xFF4	GPIOPCellID1	RO	0x0000.00F0	GPIO PrimeCell Identification 1	192
0xFF8	GPIOPCellID2	RO	0x0000.0005	GPIO PrimeCell Identification 2	193
0xFFC	GPIOPCellID3	RO	0x0000.00B1	GPIO PrimeCell Identification 3	194

9.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 162).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x000

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			, , , , , , , , , , , , , , , , , , ,		1	rese	rved					1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved		T	1			I	DA	TA	1	ſ	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31:	:8	I	reserved		RO		0x00	Software should not rely on the compatibility with future produce preserved across a read-modi				cts, the v	alue of	a reserv	•	
7:0	0		DATA		R/W		0x00	GPIO				14- 050		:- 41		
								i nis r	egister is	svinuali	у тарре	u io 256	locatio	is in the	address	space.

This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines *ipaddr*[9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by *ipaddr*[9:2] and are configured as outputs. See "Data Register Operation" on page 156 for examples of reads and writes.

Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x400 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1		rese	rved					1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	rese	rved							D	IR I			1
Type Reset	RO 0	R/W 0														

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	DIR	R/W	0x00	GPIO Data Direction

The DIR values are defined as follows:

- 0 Pins are inputs.
- 1 Pins are outputs.

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)

GPIO Port D base: 0x4000.7000	
GPIO Port E base: 0x4002.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x404 Type RW, reset 0x0000.0000	

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved				1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved							l I	I S I	I		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IS	R/W	0x00	GPIO Interrupt Sense
				The IS values are defined as follows:

Value Description

0 Edge on corresponding pin is detected (edge-sensitive).

1 Level on corresponding pin is detected (level-sensitive).

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 163) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 165). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x408 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		, , , , , , , , , , , , , , , , , , ,		1	rese	rved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved		1	1			I	IB	i E L	I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31	:8		reserved		RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	
7:	0		IBE		R/W		0x00	GPIO	Interrup	t Both E	dges					
								The I	BE value	es are de	efined as	s follows	:			

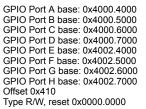
- 0 Interrupt generation is controlled by the **GPIO Interrupt Event** (**GPIOIEV**) register (see page 165).
- 1 Both edges on the corresponding pin trigger an interrupt.
 - Note: Single edge is determined by the corresponding bit in **GPIOIEV**.

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 163). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x40C Type R/W, reset 0x0000.0000


11	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1 1				1	rese	rved			1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved		1	1			Γ	I	V	1	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	t/Field Name 31:8 reserved				RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	
7:	0		IEV		R/W		0x00	GPIO	Interrup	t Event						
								The I	EV value	es are de	efined as	s follows	:			

- 0 Falling edge or Low levels on corresponding pins trigger interrupts.
- 1 Rising edge or High levels on corresponding pins trigger interrupts.

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	I				rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved							IN IN	E			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IME	R/W	0x00	GPIO Interrupt Mask Enable

The IME values are defined as follows:

- 0 Corresponding pin interrupt is masked.
- 1 Corresponding pin interrupt is not masked.

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 166). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x414 Type RO, reset 0x000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	15	14	1			10	1	1	,		i	I	1	1	· ·	<u> </u>
				rese	rvea L							R	IS I			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:8		reserved		RO		0x00	compa	atibility v	vith futur	e produ		alue of		•	vide nould be
7:0	0		RIS		RO		0x00	GPIO	Interrup	t Raw S	tatus					
								Reflec	ts the st	tatus of i	nterrupt	trigger o	conditior	n detecti	on on pi	ns (raw,

Value Description

The RIS values are defined as follows:

prior to masking).

- 0 Corresponding pin interrupt requirements not met.
- 1 Corresponding pin interrupt has met requirements.

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

GPIOMIS is the state of the interrupt after masking.

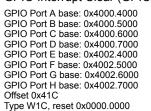
GPIO Masked Interrupt Status (GPIOMIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port C base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x418 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1		r	rese	rved					1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reser																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	1	rese	rved		1	1			I I	м	IS I	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Fi	ield		Name		Туре	F	Reset	Descr	iption							
31:	31:8 reserved				RO	I	0x00	compa	atibility w	vith futur		cts, the v	alue of	erved bit a reserv n.	•	
7:0	0		MIS		RO		0x00	GPIO	Masked	Interrup	ot Status	i				
								Maske	ed value	of interr	upt due	to corre	spondin	g pin.		

The MIS values are defined as follows:

Value Description


0 Corresponding GPIO line interrupt not active.

1 Corresponding GPIO line asserting interrupt.

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR)

7:0

IC

W1C

0x00

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		•	· ·		•	rese	rved						'	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
i veset																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved			•					C		•	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F			Name		Туре		Reset	Descr	•							
31	:8		reserved	I	RO		0x00	compa	atibility v	vith futur	e produo	e value o cts, the v fy-write o	alue of	a reserv		

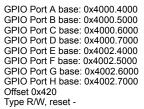
GPIO Interrupt Clear

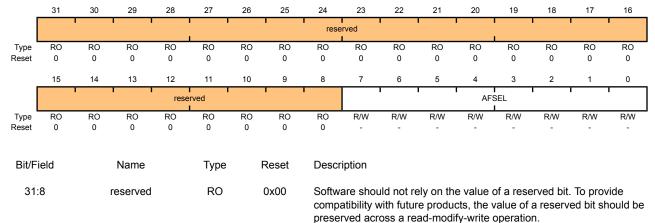
The ${\tt IC}$ values are defined as follows:

- 0 Corresponding interrupt is unaffected.
- 1 Corresponding interrupt is cleared.

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.


The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 170) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 180) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 181) have been set to 1.


Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part.

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)

Bit/Field	Name	Туре	Reset	Description
7:0	AFSEL	R/W	-	GPIO Alternate Function Select The AFSEL values are defined as follows:
				 Value Description 0 Software control of corresponding GPIO line (GPIO mode). 1 Hardware control of corresponding GPIO line (alternate hardware function).
				Note: The default reset value for the GPIOAFSEL , GPIOPUR , and GPIODEN registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value

for Port C is 0x0000.000F.

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.7000 Offset 0x500 Type R/W, reset 0x000.00FF

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•					1	rese	erved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reser															0	
I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 1	
				rese	rved							DR	2V2			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W	R/W 1	R/W	R/W	R/W 1	R/W	R/W
Reset	0	0	U	U	U	U	U	U	I	I	I	I	I	I	1	I
					-	-	. .	-								
Bit/F	ield		Name		Туре	ŀ	Reset	Descr	iption							
31:	:8		reserved		RO		0x00	Softw	are shou	ıld not re	ly on the	e value o	of a rese	erved bit	. To prov	ride
									-					a reserv	ed bit sh	ould be
								prese	rved acr	oss a rea	ad-modi ⁻	fy-write o	operatio	n.		
7:0	0		DRV2		R/W	(DxFF	Outpu	it Pad 2-	mA Driv	e Enable	е				
	7:0 DRV2							A writ	e of 1 to	either G	PIODR	4[n] or G	PIODR	8[n] clea	ars the	

A write of 1 to either **GPIODR4[n]** or **GPIODR8[n]** clears the corresponding 2-mA enable bit. The change is effective on the second clock cycle after the write.

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x504 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reser									-							
ı	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							DR	V4	•		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31:	8		reserved		RO		0x00		are shou atibility v							
								prese	rved acr	oss a re	ad-modi	fy-write	operatio	n.		
7:0	C		DRV4		R/W		0x00	Outpu	it Pad 4-	mA Driv	e Enable	е				
	7:0							A writ	e of 1 to	either G	PIODR	2[n] or G	PIODR	8[n] clea	ars the	

A write of 1 to either **GPIODR2[n]** or **GPIODR8[n]** clears the corresponding 4-mA enable bit. The change is effective on the second clock cycle after the write.

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x508 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		•			, , ,			rese	erved					1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Neset															Ū		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				rese	rved			DRV8									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/F	iald		Nama		Turne	r	Deast	Deser	intion								
DIVE	ieiu		Name		Туре	r	Reset	Descr	iption								
31:8		reserved			RO	RO 0x00		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.									
7:0	0		DRV8		R/W		0x00	Outpu	it Pad 8-	mA Driv	e Enable	е					
								A writ	e of 1 to	either G	PIODR	2[n] or G	PIODR	4[n] clea	ars the		

A write of 1 to either **GPIODR2[n]** or **GPIODR4[n]** clears the corresponding 8-mA enable bit. The change is effective on the second clock cycle after the write.

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 179). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open drain input if the corresponding bit in the **GPIODIR** register is set to 0; and as an open drain output when set to 1.

When using the I²C module, the **GPIO Alternate Function Select (GPIOAFSEL)** register bit for PB2 and PB3 should be set to 1 (see examples in "Initialization and Configuration" on page 157).

GPIO Open Drain Select (GPIOODR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x50C

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	1 1				1	rese	erved	_		9		1	9	<u>_</u>
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset												-				-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	erved		·					0	DE	•	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	Bit/Field		Name		Туре	Type Reset		Descr	iption							
31:8			reserved		RO	0x00		compa	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.							
7:0			ODE		R/W	0x00		Output Pad Open Drain Enable								

The ODE values are defined as follows:

- 0 Open drain configuration is disabled.
- 1 Open drain configuration is enabled.

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 177).

GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000

GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por Offset 0x5 Type R/W	rt C base: rt D base: rt E base: rt F base: rt G base: rt H base: 510	0x4000. 0x4000. 0x4002. 0x4002. 0x4002.	6000 7000 4000 5000 .6000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		r		1	rese	rved			1	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei			-			-	-	-		-			-	-	U	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved											Pl	JE JE	•	-	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Report	0	Ū	0	Ū	0	Ū	Ū	Ũ								
Bit/F	ield	Name		Туре	e Reset		Descri	Description								
31:8		reserved		RO 0x0		0x00	compa	Software should not rely on the value of a reserved b compatibility with future products, the value of a reserved across a read-modify-write operation.								
7:0	0		PUE		R/W		-	Pad W	/eak Pul	I-Up Ena	able					
													corresp e secon			

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 176).

GPIO Pull-Down Select (GPIOPDR)

GPIO Port A base: 0x4000.4000

GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por Offset 0x Type R/W	rt C base rt D base rt E base rt F base rt G base rt H base 514	e: 0x4000. e: 0x4000. e: 0x4002. e: 0x4002. e: 0x4002. e: 0x4002. e: 0x4002.	6000 7000 4000 5000 .6000 7000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1					•	rese	rved				1			•		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	i i i				rved		Ì	I				PI	PDE					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit/F	ield	Name			Туре		Reset	Descr	intion									
Biot	loid		Hamo		ijpo		100001	Description										
31:8		reserved			RO	RO 0x00		compa	atibility w	ith futur	e produo	cts, the v	of a rese value of operation	a reserv				
7:0	7:0		PDE		R/W	0x00		Pad V	/eak Pul	l-Down l	Enable							
								A write of 1 to GPIOPUR[n] clears the corresponding GPIOPDR[n] enables. The change is effective on the second clock cycle after the										

write.

October 09, 2007

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 174).

GPIO Slew Rate Control Select (GPIOSLR)

GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
GPIO Port F base: 0x4002.5000
GPIO Port G base: 0x4002.6000
GPIO Port H base: 0x4002.7000
Offset 0x518
Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1			rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			ſ	rese	rved				r – – – –		SF	RL	r	r		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	SRL	R/W	0x00	Slew Rate Limit Enable (8-mA drive only)

The SRL values are defined as follows:

- 0 Slew rate control disabled.
- 1 Slew rate control enabled.

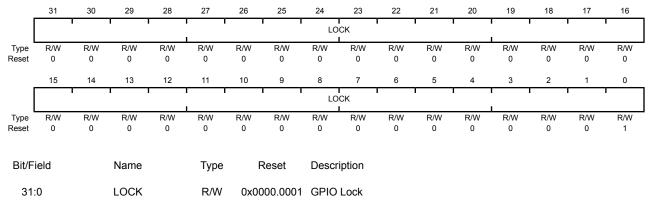
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

The **GPIODEN** register is the digital enable register. By default, with the exception of the GPIO signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven (tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or alternate function), the corresponding GPIODEN bit must be set.

GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x51C Type R/W, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
							•	rese	rved					1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	-		r r		rved	-	1	1				DE		1	r			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-		
Bit/F	ield		Name		Type Reset			Descr	iption									
31:	8	reserved			RO	RO 0x00			Software should not rely on the value of a reserved bit. To provi compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.									
7:0		DEN			R/W		-	0	Digital Enable The DEN values are defined as follows:									


- 0 Digital functions disabled.
- 1 Digital functions enabled.
 - Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 19: GPIO Lock (GPIOLOCK), offset 0x520

The **GPIOLOCK** register enables write access to the **GPIOCR** register (see page 181). Writing 0x1ACCE551 to the **GPIOLOCK** register will unlock the **GPIOCR** register. Writing any other value to the **GPIOLOCK** register re-enables the locked state. Reading the **GPIOLOCK** register returns the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses are disabled, or locked, reading the **GPIOLOCK** register returns 0x00000001. When write accesses are enabled, or unlocked, reading the **GPIOLOCK** register returns 0x00000000.

GPIO Lock (GPIOLOCK)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.7000 Offset 0x520 Type R/W, reset 0x000.0001

A write of the value 0x1ACCE551 unlocks the **GPIO Commit (GPIOCR)** register for write access. A write of any other value reapplies the lock, preventing any register updates. A read of this register returns the following values:

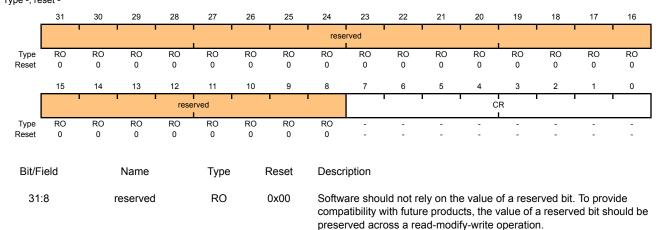
Value Description

0x0000.0001 locked

0x0000.0000 unlocked

Register 20: GPIO Commit (GPIOCR), offset 0x524

The **GPIOCR** register is the commit register. The value of the **GPIOCR** register determines which bits of the **GPIOAFSEL** register will be committed when a write to the **GPIOAFSEL** register is performed. If a bit in the **GPIOCR** register is a zero, the data being written to the corresponding bit in the **GPIOAFSEL** register will not be committed and will retain its previous value. If a bit in the **GPIOCR** register is a one, the data being written to the corresponding bit of the **GPIOAFSEL** register will be committed to the register and will reflect the new value.


The contents of the **GPIOCR** register can only be modified if the **GPIOLOCK** register is unlocked. Writes to the GPIOCR register will be ignored if the **GPIOLOCK** register is locked.

Important: This register is designed to prevent accidental programming of the **GPIOAFSEL** registers that control connectivity to the JTAG/SWD debug hardware. By initializing the bits of the **GPIOCR** register to 0 for PB7 and PC[3:0], the JTAG/SWD debug port can only be converted to GPIOs through a deliberate set of writes to the **GPIOLOCK**, **GPIOCR**, and **GPIOAFSEL** registers.

Because this protection is currently only implemented on the JTAG/SWD pins on PB7 and PC[3:0], all of the other bits in the **GPIOCR** registers cannot be written with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit new values to the **GPIOAFSEL** register bits of these other pins.

GPIO Commit (GPIOCR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x524 Type -, reset -

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
7:0	CR	-	-	GPIO Commit
				On a bit-wise basis, any bit set allows the corresponding GPIOAFSEL bit to be set to its alternate function.
				Note: The default register type for the GPIOCR register is RO for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the GPIOCR register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.
				The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-commitable. Because of this, the default reset value of GPIOCR for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0.

Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por Offset 0xf Type RO,	rt B base: rt C base: rt D base: rt E base: rt F base: rt G base: rt H base: FD0	0x4000. 0x4000. 0x4000. 0x4002. 0x4002. 0x4002. 0x4002.	5000 6000 7000 4000 5000 6000 7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1				1		1	rese	rved					r	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		1	1				PII	D4	I	ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Fi	ield		Name		Туре		Reset	Descr	iption							
31:	:8	r	reserved		RO		0x00	comp	are shou atibility v rved acr	vith futur	e produc	cts, the v	alue of	a reserv	•	
7:0	0		PID4		RO		0x00	GPIO	Periphe	ral ID Re	egister[7	:0]				

Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por Offset 0xF Type RO,	t A base t B base t C base t D base t E base t F base t G base t H base	: 0x4000. : 0x4000. : 0x4000. : 0x4000. : 0x4002. : 0x4002. : 0x4002. : 0x4002.	4000 5000 6000 7000 4000 5000 6000 7000				,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		Ì	r r		1	rese	rved		1	ì	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved		•					PI	D5	I	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei	U	U	U	0	0	U	0	0	U	0	0	0	0	0	U	0
Bit/Fi	ield		Name		Туре		Reset	Descr	iption							
31:	8	r	reserved		RO		0x00	compa	are shou atibility w rved acro	ith futur/	e produ	cts, the v	value of	a reserv	•	
7:0	0		PID5		RO		0x00	GPIO	Periphe	ral ID R	egister[1	5:8]				

Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por Offset 0xf Type RO,	rt B base: rt C base: rt D base: rt E base: rt F base: rt G base: rt H base: FD8	0x4000. 0x4000. 0x4000. 0x4002. 0x4002. 0x4002. 0x4002. 0x4002.	5000 6000 7000 4000 5000 6000 7000	·												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ				· · · · ·		1	rese	rved					1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			rese	rved		1	1			1 1	PI	D6	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Fi	ield		Name		Туре	I	Reset	Descr	iption							
31:	:8	I	reserved		RO		0x00	comp	are shou atibility v rved acr	vith futur	e produc	cts, the v	alue of	a reserv	•	
7:0	0		PID6		RO		0x00	GPIO	Periphe	ral ID Re	egister[2	3:16]				

Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIO Port A base: 0x4000.4000

GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por Offset 0xl Type RO,	rt C base t D base t E base t F base t G base t H base FDC	0x4000. 0x4000. 0x4002. 0x4002. 0x4002. 0x4002. 0x4002.	6000 7000 4000 5000 6000 7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		, , , , , , , , , , , , , , , , , , ,		1	rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		1		1			PI	D7	I	I	'
Trees	DO													50	50	RO
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	0	0 0	0	0
	0					0			0							
Reset	o ield	0	0	0	0	0	0	0 Descr Softwa compa	0	0 Id not re ith futur	0 ely on the re produc	0 e value o cts, the v	o of a rese value of a	0 erved bit. a reserv	o To prov	o vide

Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po Offset 0x Type RO	rt A base: rt B base: rt C base: rt C base: rt D base: rt E base: rt F base: rt G base: rt H base: FE0	: 0x4000. : 0x4000. : 0x4000. : 0x4000. : 0x4002. : 0x4002. : 0x4002. : 0x4002.	5000 6000 7000 4000 5000 .6000 7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		· · ·		1	rese	rved		1	1	1		1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												-	1		1	
			•	rese	rved			1		1	1	PI	D0	•		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	RO 0	RO 0	RO 0			RO 0	RO 0	RO 0	RO 0	RO 1	RO 1		1	RO 0	RO 0	RO 1
	0			RO	RO	0			0			RO	RO			
Reset	o Tield	0	0	RO 0	RO 0	0	0	0 Descr Softwa compa	0 iption are shou atibility v	1 uld not re vith futur	1 ely on th re produ	RO 0 e value cts, the	RO	0 erved bit a reserv	0 . To prov	1 vide
Reset Bit/F	o Field :8	0	0 Name	RO 0	RO 0 Type	0	0 Reset	0 Descr Softw comp prese	0 iption are shou atibility v	1 uld not re vith futur oss a re	1 ely on th re produ ad-modi	RO 0 cts, the v ify-write	RO 0 of a rese value of a	0 erved bit a reserv	0 . To prov	1 vide
Reset Bit/F 31	o Field :8	0	0 Name reserved	RO 0	RO 0 Type RO	0	0 Reset 0x00	0 Descr Softw compa prese GPIO	⁰ iption are shou atibility v rved acr Periphe	1 uld not re vith futur oss a re tral ID R	1 ely on th re produ ad-modi egister[7	RO 0 e value cts, the v ify-write 7:0]	RO 0 of a rese value of a	⁰ erved bit a reserv n.	0 . To prov red bit sh	1 vide nould be

Register 26: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIO Port A base: 0x4000.4000

GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por GPIO Por Offset 0xk Type RO,	rt C base: rt D base: rt E base: rt F base: rt G base: rt H base: FE4	0x4000.0 0x4000.0 0x4002.4 0x4002.5 0x4002.1 0x4002.1	5000 7000 4000 5000 6000 7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	ï	I		 		1	rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1	1				PII	D1	r	· · · · ·	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:8	r	eserved		RO		0x00	compa	are shou atibility w rved acro	ith futur/	e produc	cts, the v	alue of	a reserv	•	
7:0	0		PID1		RO		0x00	GPIO	Periphe	ral ID Re	egister[1	5:8]				
								Can b	e used b	y softwa	are to ide	entify the	e presen	ice of thi	s periph	eral.

Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po Offset 0x Type RO	rt B base rt C base rt D base rt E base rt F base rt G base rt H base FE8	: 0x4000. : 0x4000. : 0x4000. : 0x4002. : 0x4002. : 0x4002. : 0x4002. : 0x4002.	5000 6000 7000 4000 5000 .6000 7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1				1	rese	rved	1	1	I	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1	rese	rved		1	1		1	1	PI	I D2 I	1	1	
Туре	RO		50	RO	RO	DO				50	DO	RO	RO	RO	RO	RO
		RO	RO			RO	RO	RO	RO	RO	RO					
Reset	0	RO 0	0 0	0	0	0	0 RO	0 RO	0	0 0	0	1	1	0	0	0
	0					0			0							0
Reset	o Field	0	0		0	0	0	0 Descr Softwa compa	o iption are shou atibility v	0 uld not re vith futur	0 ely on th re produ	1 e value cts, the		0 erved bit a reserv	o . To prov	vide
Reset Bit/F	o Field :8	0	⁰ Name		o Type	0	0 Reset	0 Descr Softwa compa prese	o iption are shou atibility v rved acr	0 uld not re vith futur	0 ely on th re produ- ad-modi	1 e value cts, the fy-write	1 of a rese value of	0 erved bit a reserv	o . To prov	vide

Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

GPIO Poi GPIO Poi GPIO Poi GPIO Poi GPIO Poi GPIO Poi GPIO Poi Offset 0xl Type RO,	rt B base: rt C base: rt D base: rt E base: rt F base: rt G base rt H base: FEC	0x4000. 0x4000. 0x4000. 0x4002. 0x4002. 0x4002. 0x4002. 0x4002.	5000 6000 7000 4000 5000 6000 7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				I	, , ,		1	rese	I erved	r	1		1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1 1								1	1	1	
				rese	erved		•	1		I	•	PI	D3	•	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	RO 0	RO 0	RO 0			RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			RO 0	RO 0	RO 1
	0			RO	RO				0			RO	RO			
Reset	o Tield	0	0	RO 0	RO 0		0	0 Descr Softw comp	0 Tiption are shou atibility v	0 uld not re vith futur	0 ely on the re produc	RO 0 e value	RO	0 erved bit a reserv	0 . To prov	1 vide
Reset Bit/F	o Field :8	0	⁰ Name	RO 0	RO 0 Type		0 Reset	0 Descr Softw comp prese	0 ription are shou atibility v rved acr	0 uld not re vith futur oss a re	0 ely on the re produc	RO 0 e value cts, the fy-write	RO 0 of a rese value of	0 erved bit a reserv	0 . To prov	1 vide
Reset Bit/F 31	o Field :8	0	0 Name reserved	RO 0	RO 0 Type RO		0 Reset 0x00	0 Descr Softw comp prese GPIO	⁰ iption are shou atibility v rved acr Periphe	0 uld not re vith futur oss a re tral ID R	0 ely on the re produc ad-modi egister[3	RO 0 e value cts, the v fy-write 1:24]	RO 0 of a rese value of	⁰ erved bit a reserv n.	0 . To prov ed bit sh	1 ride nould be

Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0xFF0
Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	r r 1		1	rese	rved	1	1	1	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	•	rese	erved					1	1	CI	D0	1	I	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:8		reserve	d	RO		0x00	compa	atibility v	with futur	e produ	ne value o icts, the v ify-write o	value of	a reserv	•	vide hould be
7:0	0		CID0		RO		0x0D	GPIO	PrimeC	ell ID Re	egister[7	':0]				

Provides software a standard cross-peripheral identification system.

Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The GPIOPCeIIID0, GPIOPCeIIID1, GPIOPCeIIID2, and GPIOPCeIIID3 registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCelIID1)

GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
GPIO Port F base: 0x4002.5000
GPIO Port G base: 0x4002.6000
GPIO Port H base: 0x4002.7000
Offset 0xFF4
Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1	1	r r r		1	rese	rved	r	1			ſ	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1	1		r	1	CI	D1	ſ	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:8		reserve	d	RO		0x00	compa	atibility v	vith futur	e produ	ne value o ucts, the v lify-write o	alue of	a reserv	•	
7:0	0		CID1		RO		0xF0	GPIO	PrimeC	ell ID Re	egister[1	15:8]				

Provides software a standard cross-peripheral identification system.

Register 31: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000
GPIO Port H base: 0x4002.7000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	Ì	Î	1 1 1		ì	rese	rved	î	i -	1 I	1	Î	Î	Î
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	res	erved					I	1	CI	D2	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:8		reserve	d	RO		0x00	comp	atibility v	vith futur	e produ	ne value o ucts, the v lify-write o	alue of	a reserv		
7:	0		CID2		RO		0x05	GPIO	PrimeC	ell ID Re	egister[2	23:16]				

Provides software a standard cross-peripheral identification system.

Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

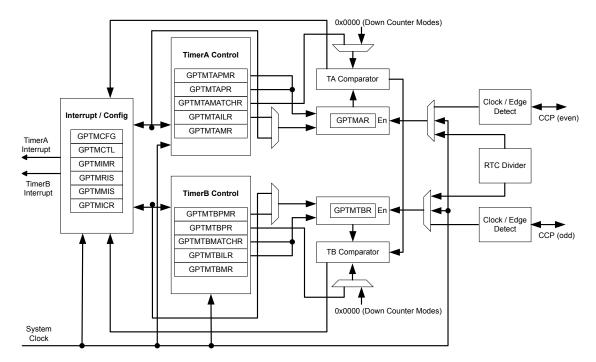
GPIO PrimeCell Identification 3 (GPIOPCelIID3)

GPIO PO GPIO PO GPIO PO GPIO PO GPIO PO GPIO PO GPIO PO Offset 0x	SPIO Port A base: 0x4000.4000 SPIO Port B base: 0x4000.5000 SPIO Port C base: 0x4000.6000 SPIO Port D base: 0x4000.7000 SPIO Port E base: 0x4002.4000 SPIO Port F base: 0x4002.5000 SPIO Port G base: 0x4002.6000 SPIO Port H base: 0x4002.7000 SPIO Port H base: 0x4002.7000 SPIO Port F base: 0x4002.7000 SPIO Port S base: 0x4002.7000 SPIO Port B base: 0x4002.7000 SPIO Port B base: 0x4002.7000 SPIO Port S base: 0x4002.7000 SPIO Port B base: 0x4002.7000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	ì		n n T		Î	rese	erved	Î	1	ì	1	î	1)
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1									1		·		
				rese	erved		1	I		I	1	CI	ID3	1	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	RO 0	RO 0	RO 0			RO 0	RO 0	RO 0	RO 1	RO 0	RO 1		1	RO 0	RO 0	RO 1
	0			RO	RO	0			1			RO	RO			
Reset	o Tield	0	0	RO 0	RO 0	0	0	0 Descr Softwa compa	1 iption are shou atibility v	0 uld not ro vith futu	1 ely on the re produc	RO 1 e value cts, the	RO	0 erved bit a reserv	o . To prov	1 vide
Reset Bit/F	o Field :8	0	⁰ Name	RO 0	RO 0 Type	0	0 Reset	0 Descr Softw comp prese	1 ription are shou atibility v rved acr	0 uld not re vith futur ross a re	1 ely on the re produc ad-modi	RO 1 e value cts, the fy-write	RO 0 of a rese value of a	0 erved bit a reserv	o . To prov	1 vide
Reset Bit/F 31	o Field :8	0	0 Name reserved	RO 0	RO 0 Type RO	0	0 Reset 0x00	0 Descr Softw compa prese GPIO	1 iption are shou atibility v rved acr PrimeC	0 uld not re with futur oss a re ell ID Re	1 re produc ad-modi egister[3	RO 1 e value cts, the v fy-write 1:24]	RO 0 of a rese value of a	⁰ erved bit a reserv n.	0 . To prov ed bit sh	1 vide nould be

10 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins. The Stellaris[®] General-Purpose Timer Module (GPTM) contains four GPTM blocks (Timer0, Timer1, Timer 2, and Timer 3). Each GPTM block provides two 16-bit timer/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

Note: Timer2 is an internal timer and can only be used to generate internal interrupts.


The General-Purpose Timer Module is one timing resource available on the Stellaris[®] microcontrollers. Other timer resources include the System Timer (SysTick) (see "System Timer (SysTick)" on page 36).

The following modes are supported:

- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock using 32.768-KHz input clock
 - Software-controlled event stalling (excluding RTC mode)
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - Software-controlled event stalling
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal

10.1 Block Diagram

10.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 207), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 208), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 210). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

10.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load** (**GPTMTAILR**) register (see page 221) and the **GPTM TimerB Interval Load** (**GPTMTBILR**) register (see page 222). The prescale counters are initialized to 0x00: the **GPTM TimerA Prescale** (**GPTMTAPR**) register (see page 225) and the **GPTM TimerB Prescale** (**GPTMTBPR**) register (see page 226).

10.2.2 32-Bit Timer Operating Modes

Note: Both the odd- and even-numbered CCP pins are used for 16-bit mode. Only the even-numbered CCP pins are used for 32-bit mode.

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- **GPTM TimerA Interval Load (GPTMTAILR)** register [15:0], see page 221
- **GPTM TimerB Interval Load (GPTMTBILR)** register [15:0], see page 222
- **GPTM TimerA (GPTMTAR)** register [15:0], see page 229
- **GPTM TimerB (GPTMTBR)** register [15:0], see page 230

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

10.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 208), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 212), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and output triggers when it reaches the 0x0000000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status (GPTMRIS) register (see page 217), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 219). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 215), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 218).

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000.0000 state, and deasserted on the following clock cycle. It is enabled by setting the TAOTE bit in **GPTMCTL**.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is asserted, the timer freezes counting until the signal is deasserted.

10.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is

loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 223) by the controller.

The input clock on the CCP0, CCP2, or CCP4 pins is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

10.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 207). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an *n* to reference both.

10.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and output triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt.

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000 state, and deasserted on the following clock cycle. It is enabled by setting the TnOTE bit in the **GPTMCTL** register, and can trigger SoC-level events.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

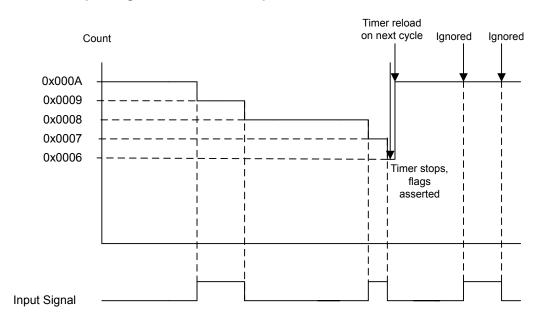
If the TRSTALL bit in the **GPTMCTL** register is enabled, the timer freezes counting until the signal is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).

Prescale	#Clock (T c) ^a	Max Time	Units
0000000	1	1.3107	mS
0000001	2	2.6214	mS
00000010	3	3.9321	mS
11111100	254	332.9229	mS
11111110	255	334.2336	mS
11111111	256	335.5443	mS

Table 10-1. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.


10.2.3.2 16-Bit Input Edge Count Mode

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

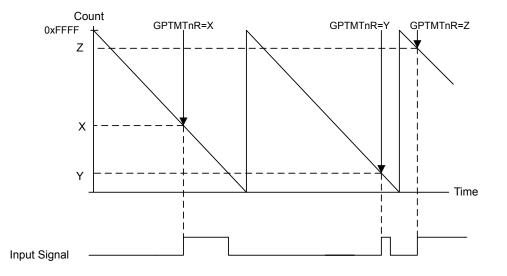
When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 10-2 on page 200 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR** =0x000A and the match value is set to **GPTMnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

10.2.3.3 16-Bit Input Edge Time Mode

Note: The prescaler is not available in 16-Bit Input Edge Time mode.


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of both rising and falling edges. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCnTL** register.

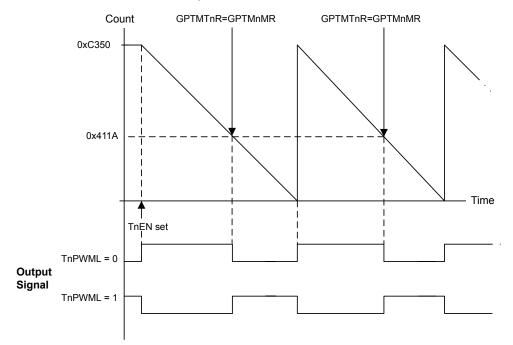
When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current **Tn** counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 10-3 on page 201 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

10.2.3.4 16-Bit PWM Mode


The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** (and **GPTMTNPR** if using a prescaler) and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 10-4 on page 202 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.

www.datasheet4u.com

Figure 10-4. 16-Bit PWM Mode Example

10.3 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, TIMER2, and TIMER3 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

10.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - a. Write a value of 0x1 for One-Shot mode.
 - b. Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 203. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

10.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4 pins. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

10.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - a. Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 203. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

10.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 204-step 9 on page 204.

10.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the **GPTM Configuration (GPTMCFG)** register with a value of 0x4.
- 3. In the **GPTM Timer Mode (GPTMTnMR)** register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TREN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the **GPTM**

Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

10.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. If a prescaler is going to be used, configure the GPTM Timern Prescale (GPTMTnPR) register and the GPTM Timern Prescale Match (GPTMTnPMR) register.
- 8. Set the TREN bit in the **GPTM Control (GPTMCTL)** register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

10.4 Register Map

Table 10-2 on page 205 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000
- Timer1: 0x4003.1000
- Timer2: 0x4003.2000
- Timer3: 0x4003.3000

Table 10-2. Timers Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	GPTMCFG	R/W	0x0000.0000	GPTM Configuration	207
0x004	GPTMTAMR	R/W	0x0000.0000	GPTM TimerA Mode	208

www.datasheet4u.com

Offset	Name	Туре	Reset	Description	See page
0x008	GPTMTBMR	R/W	0x0000.0000	GPTM TimerB Mode	210
0x00C	GPTMCTL	R/W	0x0000.0000	GPTM Control	212
0x018	GPTMIMR	R/W	0x0000.0000	GPTM Interrupt Mask	215
0x01C	GPTMRIS	RO	0x0000.0000	GPTM Raw Interrupt Status	217
0x020	GPTMMIS	RO	0x0000.0000	GPTM Masked Interrupt Status	218
0x024	GPTMICR	W1C	0x0000.0000	GPTM Interrupt Clear	219
0x028	GPTMTAILR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Interval Load	221
0x02C	GPTMTBILR	R/W	0x0000.FFFF	GPTM TimerB Interval Load	222
0x030	GPTMTAMATCHR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Match	223
0x034	GPTMTBMATCHR	R/W	0x0000.FFFF	GPTM TimerB Match	224
0x038	GPTMTAPR	R/W	0x0000.0000	GPTM TimerA Prescale	225
0x03C	GPTMTBPR	R/W	0x0000.0000	GPTM TimerB Prescale	226
0x040	GPTMTAPMR	R/W	0x0000.0000	GPTM TimerA Prescale Match	227
0x044	GPTMTBPMR	R/W	0x0000.0000	GPTM TimerB Prescale Match	228
0x048	GPTMTAR	RO	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA	229
0x04C	GPTMTBR	RO	0x0000.FFFF	GPTM TimerB	230

10.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			г г		1 1	reser	ved			1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		·					reserved								GPTMCFG	;
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	iold		Name		Tuno		Reset	Dooori	ntion							
DIVE	leiu		Name		Туре		Resel	Descri	puon							
31	:3	r	reserved		RO		0x00	compa	tibility v	uld not re with future ross a rea	e produ	cts, the v	value of	a reserv	•	
2:	0	G	PTMCF	G	R/W		0x0	GPTM	Config	uration						
								The GI	PTMCFO	s values a	are defir	ned as fo	ollows:			
								Value	e Des	cription						
								0x0	32-l	oit timer o	configur	ation.				
								0x1	32-1	oit real-tir	ne clocl	k (RTC)	counter	configur	ation.	

- 0x1 32-bit real-time clock (RTC) counter configuration.
- 0x2 Reserved.
- 0x3 Reserved.
- 0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of **GPTMTAMR** and **GPTMTBMR**.

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

GPTM TimerA Mode (GPTMTAMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x004 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			· ·		1	reser	ved							,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1			· ·	rese	erved	· ·					TAAMS	TACMR	TA	MR
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_											
Bit/F	ield		Name		Туре	I	Reset	Descri	ption							
31:	4		reserved		RO		0x00	compa	atibility v		e produ	cts, the	value of	erved bit. a reserve n.	•	
3			TAAMS		R/W		0	GPTM	TimerA	Alternat	te Mode	Select				
								The T	AAMS Va	lues are	defined	as follo	ws:			
								Value	Descri	ption						
								0	Captu	re mode	is enabl	ed.				
								1	PWM	mode is o	enabled					
									Note:				e, you m field to (ust also c 0x2.	clear the	TACMR
2			TACMR		R/W		0	GPTM	TimerA	Capture	e Mode					
								The T	ACMR Va	lues are	defined	as follo	WS:			
								Value	Descri	ption						
								0	Edge-	Count me	ode.					

1 Edge-Time mode.

Bit/Field	Name	Туре	Reset	Description
1:0	TAMR	R/W	0x0	GPTM TimerA Mode
				The TAMR values are defined as follows:
				Value Description
				0x0 Reserved.
				0x1 One-Shot Timer mode.
				0x2 Periodic Timer mode.
				0x3 Capture mode.
				The Timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register (16-or 32-bit).
				In 16-bit timer configuration, TAMR controls the 16-bit timer modes for TimerA.

In 32-bit timer configuration, this register controls the mode and the contents of **GPTMTBMR** are ignored.

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

GPTM TimerB Mode (GPTMTBMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x008 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	, ,		г т 1		1	rese	rved				1			·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		'			· ·	rese	erved	'				•	TBAMS	TBCMR	TE	BMR
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO 0	RO	RO 0	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D://E					-			_								
Bit/F	ield		Name		Туре	ł	Reset	Descri	ption							
31:	4	I	reserved		RO		0x00	compa	atibility v		e produ	cts, the	value of	erved bit. a reserve n.		
3			TBAMS		R/W		0	GPTM	l TimerE	Alternat	te Mode	Select				
								The T	BAMS Va	lues are	defined	l as follo	ws:			
								Value	Descri	ption						
								0	Captu	e mode	is enabl	ed.				
								1	PWM	mode is o	enabled					
									Note:				e, you m field to (ust also o 0x2.	clear the	TBCMR
2			TBCMR		R/W		0	GPTM	l TimerE	Capture	e Mode					
								The T	BCMR Va	lues are	defined	l as follo	ws:			
								Value	Descri	ption						
								0	Edge-	Count me	ode.					

1 Edge-Time mode.

Bit/Field	Name	Туре	Reset	Description
1:0	TBMR	R/W	0x0	GPTM TimerB Mode
				The TBMR values are defined as follows:
				Value Description
				0x0 Reserved.
				0x1 One-Shot Timer mode.
				0x2 Periodic Timer mode.
				0x3 Capture mode.
				The timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register.
				In 16-bit timer configuration, these bits control the 16-bit timer modes for TimerB.
				In 20 bit times and in water, this register's contents are imported and

In 32-bit timer configuration, this register's contents are ignored and **GPTMTAMR** is used.

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall and the output trigger.

GPTM Control (GPTMCTL)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x00C Type R/W, reset 0x0000.0000

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
reserved																	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved	TBPWML	TBOTE	reserved	TBEV	ENT	TBSTALL	TBEN	reserved	TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN	
Type Reset	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Bit/Field		Name		Туре		Reset	Description										
31:15		reserved			RO 0x00			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
14	Ļ	TBPWML			R/W		0	GPTM TimerB PWM Output Level									
								The TBPWML values are defined as follows:									
								Value	e Descri	ption							
								0		t is unaff	ected.						
								1	Output	t is inver	ted.						
13	3	ТВОТЕ		R/W 0		0	GPTM TimerB Output Trigger Enable										
								The TBOTE values are defined as follows:									
							Value Description										
								0 The output TimerB trigger is disabled.									
								1	The ou	utput Tim	erB trig	ger is en	abled.				
12	2	reserved		RO 0		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
11:	10	Т	BEVEN	т	R/W		0x0	GPTN	1 TimerE	B Event N	Node						
								The TBEVENT values are defined as follows:									
								Value	e Descri	ption							
								0x0	Positiv	e edge.							
								0x1	Negati	ve edge							
								0x2	Reserv	ved							
								0x3	Both e	dges.							

Bit/Field	Name	Туре	Reset	Description
9	TBSTALL	R/W	0	GPTM TimerB Stall Enable
				The TBSTALL values are defined as follows:
				Value Description
				0 TimerB stalling is disabled.
				1 TimerB stalling is enabled.
8	TBEN	R/W	0	GPTM TimerB Enable
				The TBEN values are defined as follows:
				Value Description
				0 TimerB is disabled.
				1 TimerB is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level
				The TAPWML values are defined as follows:
				Value Description
				0 Output is unaffected.
				1 Output is inverted.
5	TAOTE	R/W	0	GPTM TimerA Output Trigger Enable
				The TAOTE values are defined as follows:
				Value Description
				0 The output TimerA trigger is disabled.
				1 The output TimerA trigger is enabled.
4	RTCEN	R/W	0	GPTM RTC Enable
				The RTCEN values are defined as follows:
				Value Description
				0 RTC counting is disabled.
				1 RTC counting is enabled.

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
3:2	TAEVENT	R/W	0x0	GPTM TimerA Event Mode
				The TAEVENT values are defined as follows:
				Value Description
				0x0 Positive edge.
				0x1 Negative edge.
				0x2 Reserved
				0x3 Both edges.
1	TASTALL	R/W	0	GPTM TimerA Stall Enable
				The TASTALL values are defined as follows:
				Value Description
				0 TimerA stalling is disabled.
				1 TimerA stalling is enabled.
0	TAEN	R/W	0	GPTM TimerA Enable
Ū			Ū	The TAEN values are defined as follows:
				Value Description
				0 TimerA is disabled.
				1 TimerA is enabled and begins counting or the capture

1 TimerA is enabled and begins counting or the capture logic is enabled based on the **GPTMCFG** register.

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x018 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		•		reserved													
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[1	reserved			CBEIM	CBMIM	твтоім		rese	rved	r	RTCIM	CAEIM	CAMIM	ΤΑΤΟΙΜ	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	
Bit/Field		Name		Туре	Reset		Description										
31:11		reserved			RO	(0x00	compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
10		CBEIM			R/W		0	GPTN	GPTM CaptureB Event Interrupt Mask								
								The C	BEIM Va	lues are	defined	l as follo	ws:				
								Value 0 1		ption pt is disa pt is ena							
9		CBMIM		R/W		0		GPTM CaptureB Match Interrupt Mask									
									The CBMIM values are defined as follows:								
									Value Description								
									0 Interrupt is disabled.								
								1	Interru	pt is ena	abled.						
8			твтоім		R/W		0	GPTM	I TimerB	3 Time-O	out Interr	upt Mas	k				
								The TBTOIM values are defined as follows:									
								Value Description									
								0 Interrupt is disabled.									
								1	Interru	pt is ena	abled.						
7:4	7:4 reserved RO		0	compa	atibility v	vith futur	e produ		alue of	erved bit. a reserv n.							

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
3	RTCIM	R/W	0	 GPTM RTC Interrupt Mask The RTCIM values are defined as follows: Value Description Interrupt is disabled. Interrupt is enabled.
2	CAEIM	R/W	0	 GPTM CaptureA Event Interrupt Mask The CAEIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.
1	CAMIM	R/W	0	 GPTM CaptureA Match Interrupt Mask The CAMIM values are defined as follows: Value Description Interrupt is disabled. Interrupt is enabled.
0	ΤΑΤΟΙΜ	R/W	0	GPTM TimerA Time-Out Interrupt Mask The TATOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

GPTM Raw Interrupt Status (GPTMRIS)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I			1			rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		reserved			CBERIS	CBMRIS	TBTORIS		reser	ved		RTCRIS	CAERIS	CAMRIS	TATORIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/Fi	ield		Name		Туре	F	Reset	Descri	ption							
31:	11	I	reserved		RO	(0x00	compa	atibility v	uld not re vith future oss a rea	e produc	cts, the	value of	a reserv	•	
10)		CBERIS		RO		0	GPTM	l Captur	eB Event	t Raw Ir	nterrupt				
		This is the CaptureB Event interrupt status prior to masking.														
9		CBMRIS RO 0 GPTM CaptureB Match Raw Interrupt														
								This is	the Ca	ptureB M	latch int	errupt s	tatus prie	or to ma	sking.	
8		T	BTORIS		RO		0	GPTM	l TimerE	B Time-O	ut Raw	Interrup	t			
								This is	the Tin	nerB time	e-out inte	errupt si	atus pric	or to mas	sking.	
7:4	4	I	reserved		RO		0x0	compa	atibility v	uld not re vith future oss a rea	e produc	cts, the	value of	a reserv		
3			RTCRIS		RO		0	GPTM	RTC R	aw Interr	upt					
								This is	the RT	C Event	interrup	t status	prior to r	nasking		
2			CAERIS		RO		0	GPTM	l Captur	eA Event	t Raw Ir	nterrupt				
								This is	the Ca	ptureA E	vent inte	errupt st	atus pric	or to mas	sking.	
1		(CAMRIS		RO		0		•	eA Match		•				
								This is	the Ca	ptureA M	latch int	errupt s	tatus prie	or to ma	sking.	
0		٦	TATORIS		RO		0			Time-O		•				
								This th	ne Time	rA time-o	ut interr	upt stat	us prior f	to maski	ng.	

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

GPTM Masked Interrupt Status (GPTMMIS)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x020 Type RO, reset 0x0000.0000

, ,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ			і і				1 1	rese	rved	1 1				1 1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[reserved			CBEMIS	CBMMIS	TBTOMIS		reser	ved		RTCMIS	CAEMIS	CAMMIS	TATOMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/Fi	eld		Name		Туре	F	Reset	Descri	iption							
31:′	11	r	reserved		RO		0x00	compa	atibility v	uld not re with future ross a rea	e produc	ts, the v	alue of	a reserve		
10)	(CBEMIS		RO		0			eB Even ptureB e			•	er maskir	ıg.	
9		(CBMMIS		RO		0		•	reB Matcl ptureB m			•	er maski	ng.	
8		Т	BTOMIS		RO		0			3 Time-O nerB time			•	er maskii	ng.	
7:4	1	r	reserved		RO		0x0	compa	atibility v	uld not re vith future oss a rea	e produc	ts, the v	alue of	a reserve	•	
3		I	RTCMIS		RO		0			lasked In C event i		status	after ma	sking.		
2		(CAEMIS		RO		0		•	eA Even			•	er maskir	ıg.	
1		(CAMMIS		RO		0		•	eA Matcl			•	er maski	ng.	
0		Т	TATOMIS		RO		0	rupt atus afte	er maskir	ng.						

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

GPTM Interrupt Clear (GPTMICR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.2000 Offset 0x024 Type W1C, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			т т					rese	ved					1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[reserved		i	CBECINT		TBTOCINT			rved	r	1	CAECINT	r	TATOCINT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0
Bit/Fi	eld		Name		Туре	F	Reset	Descri	ption							
31:'	11		reserved		RO	(0x00	compa	atibility v	vith futur	e produ	cts, the		erved bit a reserv n.		
10)	(CBECINT		W1C		0	GPTM	Captur	eB Even	nt Interru	pt Clear	-			
								The CI	BECINT	values	are defir	ned as fo	ollows:			
		Value Description 0 The interrupt is unaffected. 1 The interrupt is cleared. CBMCINT W1C 0 GPTM CaptureB Match Interrupt Clear														
9		(CBMCINT		W1C		0	GPTM	Captur	eB Matc	h Interru	upt Clea	r			
								The CI	BMCINT	values	are defir	ned as fo	ollows:			
								Value	Descri	ption						
								0	The in	terrupt is	s unaffeo	cted.				
								1	The in	terrupt is	s cleared	1.				
8		т	BTOCIN	г	W1C		0	GPTM	TimerB	3 Time-O)ut Interr	upt Clea	ər			
										T values		•				
								Value	Descri	ption						
								0			s unaffeo	cted.				
								1	The in	terrupt is	cleared	l.				
7:4	1															

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
3	RTCCINT	W1C	0	GPTM RTC Interrupt Clear The RTCCINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.
2	CAECINT	W1C	0	 GPTM CaptureA Event Interrupt Clear The CAECINT values are defined as follows: Value Description The interrupt is unaffected. The interrupt is cleared.
1	CAMCINT	W1C	0	GPTM CaptureA Match Raw Interrupt This is the CaptureA match interrupt status after masking.
0	TATOCINT	W1C	0	GPTM TimerA Time-Out Raw Interrupt The TATOCINT values are defined as follows:
				Value Description 0 The interrupt is unaffected.

1 The interrupt is cleared.

GPTM TimerA Interval Load (GPTMTAILR)

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

Timer0 ba Timer1 ba Timer2 ba Timer3 ba Offset 0x0	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 028	003.0000 003.1000 003.2000 003.3000	FF (16-bi	,	,	F.FFFF (32-bit mod	e)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1	I			1 1	TAII	LRH			I			I	
Type Reset	R/W 0	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1	I			1 1	TAI	LRL			I				
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
31:	16		TAILRH		R/W	(32-ł 0x00	kFFFF bit mode) 00 (16-bit node)	When Timer	I TimerA configur B Interv A read r	red for 32 val Load	2-bit mo (GPTM	de via th I TBILR)	e GPTM register	loads th	is value	
									bit mode of GPTM	,	d reads	as 0 an	d does r	ot have	an effec	t on the
15	:0		TAILRL		R/W	0	kFFFF	GPTN	1 TimerA	Interval	Load R	egister l	Low			
									oth 16- a A. A read							ter for

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x02C Type R/W, reset 0x0000.FFFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1 1		r r I		r	rese	rved	r	1					·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		8			· ·			тві	LRL	1		•				'
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
Bit/F	Field Name Type Re						Reset	Descr	iption							
31:	16			RO	0	x0000	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•		
15	:0		TBILRL		R/W	0:	<pre>kFFFF</pre>	GPTM	1 TimerE	8 Interva	I Load R	legister				
											•	ured as a it mode,		-		

when the GPTM is not configured as a 32-bit timer, a write to this field updates **GPTMTBILR**. In 32-bit mode, writes are ignored, and reads return the current value of **GPTMTBILR**.

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

GPTM TimerA Match (GPTMTAMATCHR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x030

Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I						TAM	IRH					I	1	
Type Reset	R/W 0	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1 1		г <u>г</u>		і і	TAN	/IRL					I		
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
Bit/Fi	ield		Name		Туре	F	iption									
31:"	16		TAMRH		R/W	1 TimerA	Match I	Register	High							
						0x00	oit mode) 00 (16-bit node)	GPTN GPTN	ICFG re ITAR, to	gister, th determi	is value ne mato	is comp h events	ared to s.	RTC) mo	er half of	
										, this fie ITBMAT		as 0 an	d does r	ot have	an effec	t on the
15:	0		TAMRL		R/W	0:	ĸFFFF	GPTN	1 TimerA	Match I	Register	Low				
								GPTN	ICFG re	gister, th	is value	is comp	ared to	RTC) mo the lowe		
GPTMTAR, to determine match events. When configured for PWM mode, this value determines the duty cycle of the output PV													•	GPTMT	AILR,	
						determir	nes how	many ec	lge even	alue alor its are co value ir	ounted. T					

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

GPTM TimerB Match (GPTMTBMATCHR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x034 Type R/W, reset 0x0000.FFFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
							•	rese	rved									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		r	, , ,		г гг		1	I TBN	MRL		r	1		r	r			
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W	R/W 1	R/W	/ R/W R/W R/W R/W R/W R/W R/W R/W 1 1 1 1 1 1 1 1 1 1										
Resei	I	I	1	I			1	1 1 1 1 1 1 1 1 1										
Bit/F	ield		Name		Туре	F	Reset	Descr	iption									
31:	16		reserved		RO	0:	×0000	compa	are shou atibility w rved acre	/ith futur	e produ	cts, the v	alue of	a reserv	•			
15	:0		TBMRL		R/W	0>	<pre></pre>	GPTM TimerB Match Register Low										
								When configured for PWM mode, this value along with GPTM determines the duty cycle of the output PWM signal.										

When configured for Edge Count mode, this value along with **GPTMTBILR**, determines how many edge events are counted. The total number of edge events counted is equal to the value in **GPTMTBILR** minus this value.

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x038 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1 1		1		1	rese	rved		r			1	T	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		•	•			1	TAF	'SR	1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	Bit/Field Name				Туре	I	Reset	Descr	iption							
31:	1:8 reserved				RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v ify-write o	alue of	a reserv	•	
7:0	D		TAPSR		R/W		0x00	GPTM	1 TimerA	Presca	le					
									egister lo register		value o	n a write.	A read	returns t	the curre	nt value

Refer to Table 10-1 on page 199 for more details and an example.

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x03C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved		•			1 1		TBF	PSR I	1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	Bit/Field Name				Туре		Reset	Descr	iption							
31:					RO		0x00	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv		
7:0	0	TBPSR R/W 0x0				0x00	GPTM	1 TimerE	8 Prescal	е						
								egister lo register	ads this	value or	n a write.	A read	returns t	he curre	nt value	

Refer to Table 10-1 on page 199 for more details and an example.

Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x040 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	т т		1		1	rese	rved		r	1			1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	ved		1				I	TAP	SMR		I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bit/F	Field Name Type Res							Descr	iption							
31	8		reserved		RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	
7:	C		TAPSMR		R/W		0x00	GPTN	1 TimerA	Presca	le Match	ו				
										ised aloi ising a p	•	GPTMTA	МАТСН	R to def	ect time	r match

Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x044 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			r		1	rese	rved	1	1			1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		1	I		I	I	TBP	SMR	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	ield Name Type						Reset	Descr	iption							
31	8		reserved		RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	
7:	D	-	TBPSMR	1	R/W		0x00	GPTM	1 TimerB	8 Presca	le Match	ı				
									alue is u s while u		•	BPTMTB	MATCH	IR to det	ect time	r match

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

GPTM TimerA (GPTMTAR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x048

Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		1	1 1		г <u>г</u>		1 1	TA	I RH	1 1	I		1		1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	1	1	0	1	0	1	1	1	1	0	1	1	1	1	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		1	1 1		г т 1		1 1	TA	I IRL	1 1			1		1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO RO<											
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Bit/F	ield																		
31:	16		TARH		RO	0	ĸFFFF	GPTM	1 TimerA	Registe	r High								
						0x00	oit mode) 00 (16-bi node)	t If the		FG is in in a 16-t		-			ead. If th	ıe			
15	:0		TARL		RO	0:	ĸFFFF	GPTM	1 TimerA	Registe	r Low								
								excep		the curr t Edge C event.						•			

Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

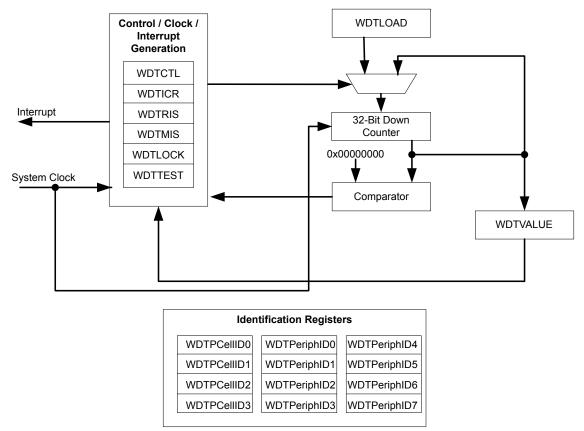
GPTM TimerB (GPTMTBR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x04C Type RO, reset 0x0000.FFFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		r	1 1		 		1	rese	rved	1 1				r	T	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		I	1				1	TB	I RL					I	1	'	
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	
Bit/F	ield		Name		Туре	F	Reset	Descr	iption								
31:	16		reserved		RO	0	x0000	compa	atibility v	uld not re with futur oss a rea	e produ	cts, the v	alue of	a reserv	•		
15	:0		TBRL		RO	0:	xFFFF	GPTM	1 TimerE	3							
								GPTM TimerB A read returns the current value of the GPTM TimerB Count Register except in Input Edge Count mode, when it returns the timestamp from									

the last edge event.

11 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

11.1 Block Diagram

11.2 Functional Description

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. Once the

Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

11.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the **WDTLOAD** register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

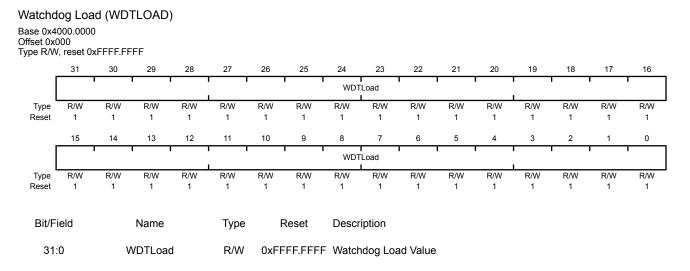
If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

11.4 Register Map

Table 11-1 on page 232 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

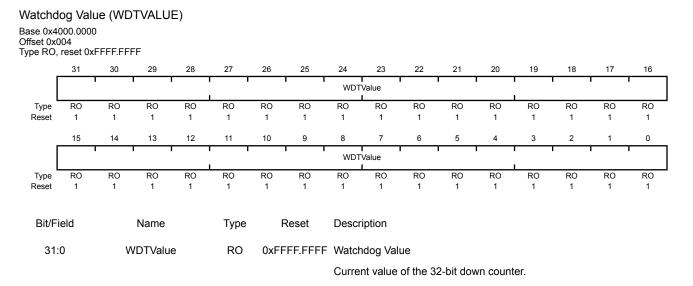
Offset	Name	Туре	Reset	Description	See page
0x000	WDTLOAD	R/W	0xFFFF.FFFF	Watchdog Load	234
0x004	WDTVALUE	RO	0xFFFF.FFFF	Watchdog Value	235
0x008	WDTCTL	R/W	0x0000.0000	Watchdog Control	236
0x00C	WDTICR	WO	-	Watchdog Interrupt Clear	237
0x010	WDTRIS	RO	0x0000.0000	Watchdog Raw Interrupt Status	238
0x014	WDTMIS	RO	0x0000.0000	Watchdog Masked Interrupt Status	239
0x418	WDTTEST	R/W	0x0000.0000	Watchdog Test	240
0xC00	WDTLOCK	R/W	0x0000.0000	Watchdog Lock	241

Table 11-1. Watchdog Timer Register Map


Offset	Name	Туре	Reset	Description	See page
0xFD0	WDTPeriphID4	RO	0x0000.0000	Watchdog Peripheral Identification 4	242
0xFD4	WDTPeriphID5	RO	0x0000.0000	Watchdog Peripheral Identification 5	243
0xFD8	WDTPeriphID6	RO	0x0000.0000	Watchdog Peripheral Identification 6	244
0xFDC	WDTPeriphID7	RO	0x0000.0000	Watchdog Peripheral Identification 7	245
0xFE0	WDTPeriphID0	RO	0x0000.0005	Watchdog Peripheral Identification 0	246
0xFE4	WDTPeriphID1	RO	0x0000.0018	Watchdog Peripheral Identification 1	247
0xFE8	WDTPeriphID2	RO	0x0000.0018	Watchdog Peripheral Identification 2	248
0xFEC	WDTPeriphID3	RO	0x0000.0001	Watchdog Peripheral Identification 3	249
0xFF0	WDTPCellID0	RO	0x0000.000D	Watchdog PrimeCell Identification 0	250
0xFF4	WDTPCellID1	RO	0x0000.00F0	Watchdog PrimeCell Identification 1	251
0xFF8	WDTPCellID2	RO	0x0000.0005	Watchdog PrimeCell Identification 2	252
0xFFC	WDTPCellID3	RO	0x0000.00B1	Watchdog PrimeCell Identification 3	253

11.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

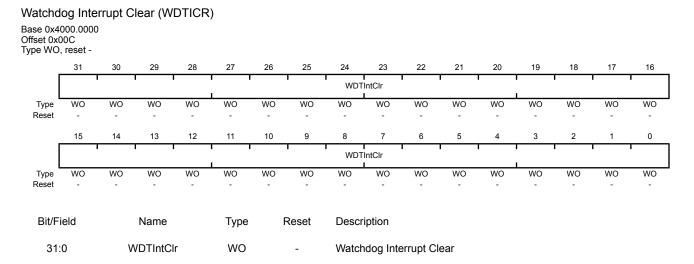

Register 1: Watchdog Load (WDTLOAD), offset 0x000

This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.

Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

Register 3: Watchdog Control (WDTCTL), offset 0x008


This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

Watchd	log Cor	ntrol (W	/DTCTL)												
Base 0x4 Offset 0x0 Type R/W	800		00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1		r		1		I I erved			1	ı – – – – –		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
iteset																
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							rese	rved							RESEN	INTEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
Reset	U	U	U	U	U	0	0	U	0	U	U	U	0	0	U	U
Bit/F	ield		Name		Туре		Reset	Desci	ription							
31:	Bit/Field Name Type Reset Description 31:2 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.															
1			RESEN		R/W		0	Watch	ndog Res	set Enab	le					
								The R	esen va	lues are	defined	l as follo	WS:			
								Value	e Descrij	otion						
								0	Disable	ed.						
								1	Enable	the Wa	tchdog r	module r	reset out	put.		
0	I		INTEN		R/W		0	Watch	ndog Inte	errupt En	able					
								The I	nten va	lues are	defined	l as follo	WS:			
								Value	e Descrij	otion						
								0		pt event d by a ha			this bit is	s set, it o	can only	be
								1	Interru	pt event	enabled	d. Once	enabled,	, all write	es are ig	nored.

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)

Base 0x4000.0000 Offset 0x010 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	· · ·			rese	rved	1				1	1	-
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
110301															0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•	•	· ·		•	reserved		•	•	' '		•		WDTRIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:1		reserved	I	RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	
0)		WDTRIS	;	RO		0	Watch	idog Ra	w Interru	ipt Statu	S				
								Gives	the raw	interrup	t state (orior to m	nasking)	of WD	TINTR.	

October 09, 2007 www.DataSheet4U.com

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

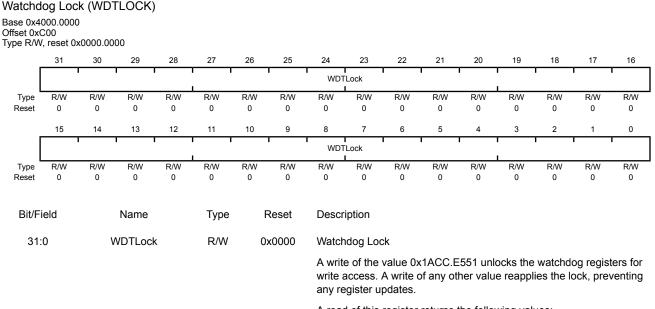
This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)

Base 0x4000.0000 Offset 0x014 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	, ,		г <u>г</u>		1	rese	rved	1				1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei									U						U	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•					1	reserved	, ,					•	•	WDTMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31	:1		reserved		RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	vide hould be
0)	,	WDTMIS		RO		0	Watch	ndog Ma	sked Inte	errupt St	tatus				
								Gives	the mas	sked inte	rrupt sta	ate (after	maskin	ig) of the		NTR

interrupt.


Register 7: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

Watchd Base 0x4 Offset 0x4 Type R/W	000.000 418	0	-													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1	rese	rved	1	1			1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	T	reserved			1	STALL		Ì	i	rese	rved	r	r	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:9		reserved	t	RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv		
8			STALL		R/W		0	Watch	idog Sta	II Enable	Э					
8 STALL R/W 0 Watchdog Stall Enabl When set to 1, if the S debugger, the watch is restarted, the watch											og timer	stops co	unting.	Once the		
7:	0		reserved	ł	RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

A read of this register returns the following values:

Value Description

0x0000.0001 Locked

0x0000.0000 Unlocked

Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					· ·		1	rese	erved			•		•	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	т т	rese	rved		1	1			ſ	I Pl	D4	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
					.) [-											
31:8 reserved RO 0x00 S						compa	are shou atibility v rved acr	vith futur	e produ	cts, the v	alue of	a reserv	•	ride Iould be		
7:0	7:0		PID4		RO		0x00	WDT	Periphe	al ID Re	egister[7	:0]				

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000

Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	, ,		, , , , , , , , , , , , , , , , , , ,		1	rese	erved				1	1	1	,
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		•	•				PI	D5	1	1	'
Туре	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	U	0	U	U	U	U	0	0	U	0	0	U	U	U	0	U
Bit/Fi	ield		Name		Туре		Reset	Descr	iption							
31:	:8	reserved RO 0x00 Software should not rely compatibility with future								e produ	cts, the v	alue of	a reserv	•		
7:0	0		PID5	preserved across a read-modify-wr							5:8]					

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1	rese	rved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1	rese	rved		,	1				PII	D6	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
Bit/Field Name Type Reset Description 31:8 reserved RO 0x00 Software sho compatibility preserved action							atibility v	vith futur	e produ	cts, the v	alue of	a reserv	•			
7:0	0		PID6		RO		0x00	WDT	Periphe	ral ID Re	gister[2	3:16]				

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000

Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	, ,		, , , , , , , , , , , , , , , , , , ,		1	rese	erved			1	1	1	1	,
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved		1	•				PI	I D7 I	1	1	1
Туре	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0
Bit/Fi	ield		Name		Туре		Reset	Descr	ription							
31:	:8	reserved RO 0x00 Software should not rely or compatibility with future pro								e produ	cts, the v	alue of	a reserv	•		
7:0	0		PID7	preserved across a read-mod							1:24]					

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000 Offset 0xFE0 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		r	1 I		r r		1	rese	rved	1 1		1		1	T				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved PID0																		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1			
Bit/F	Bit/Field		Name			Type Reset			iption										
31:	:8		reserved		RO		0x00	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv	•				
7:0	0		PID0		RO		0x05	Watch	ndog Per	ripheral I	D Regis	ster[7:0]							

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)

Base 0x4000.0000 Offset 0xFE4 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
		I	1 1		· · ·		1	rese	l erved			1		1	1	1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0					
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
															PID1						
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO					
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0					
Bit/Field			Name		Туре F		Reset	Descr	iption												
31:	31:8 reserved				RO 0x00			compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.												
7:0 PID1					RO		0x18	Watch	ndog Per	ipheral I	D Regis	ster[15:8]	l								

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		T	1		, , , , , , , , , , , , , , , , , , ,		1	rese	rved	1	1			1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1		rese	rved		1	-	PID2								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	
Bit/F	Bit/Field		Name				Reset	Descr	iption								
31:	8		reserved		RO		0x00	compa	atibility	uld not re with futur ross a re	re produ	cts, the v	alue of	a reserv	•		
7:0	C		PID2		RO		0x18	Watch	ndog Pe	ripheral	ID Regis	ster[23:16	6]				

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
					, , , , , , , , , , , , , , , , , , ,			rese	rved					1	1						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0					
Reset									-						0						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
														PID3							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1					
Bit/Fi	Bit/Field		Name			Type Reset			iption												
31:	31:8 reserved				RO 0x00			compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.												
7:0 PID3				RO		0x01	Watch	ndog Per	ripheral I	D Regi	ster[31:24	4]									

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1					1	rese	erved					I				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		1		rese	rved		ı	1				CI	D0	1	I			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1		
Bit/Field		Name			Туре		Reset	Descr	iption									
31:8 reserve			reserved		RO		0x00	compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.									
7:0	0		CID0		RO		0x0D	Watch	ndog Prii	neCell II	D Regist	ter[7:0]						

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)

Base 0x4000.0000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1						rese	erved					1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1	rese	rved	CID1										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
Bit/Field		Name			Туре		Reset	Descr	iption							
31:8 reserved				RO 0x00		0x00	compa	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.								
7:	0		CID1		RO		0xF0	Watch	ndog Prir	neCell II	D Regist	er[15:8]				

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 2 (WDTPCelIID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		•					1	rese	rved				1	•	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1		rese	rved		1										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
Bit/Field		Name			Type Reset			Descr	iption								
31:8		reserved			RO	RO 0x00		compa	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.								
7:0	0		CID2		RO		0x05	Watch	ndog Prir	neCell II	D Regist	ter[23:16	6]				

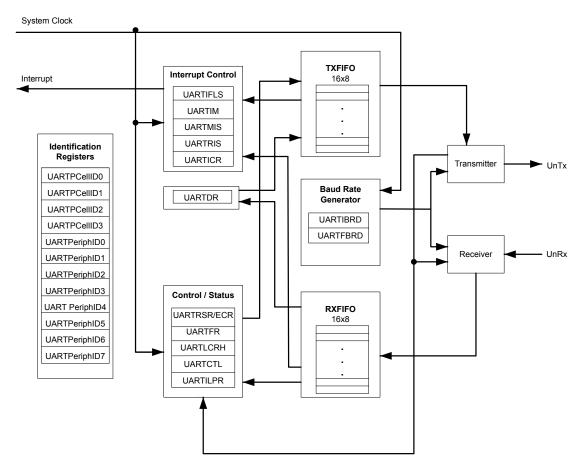
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)

Base 0x4000.0000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	I	т т т		1	rese	rved	1	1	ì		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	erved		1	1		1	T	CI	D3	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
Bit/Fi	ield		Name		Туре		Reset	Descr	iption							
31:	8		reserved	ł	RO		0x00	compa	atibility	with futu	re produ	ne value o icts, the v ify-write o	alue of	a reser	•	vide hould be
7:0	C		CID3		RO		0xB1	Watch	ndog Pr	imeCell I	D Regis	ster[31:24	4]			


12 Universal Asynchronous Receivers/Transmitters (UARTs)

The Stellaris[®] Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable, 16C550-type serial interface characteristics. The LM3S6611 controller is equipped with three UART modules.

Each UART has the following features:

- Separate transmit and receive FIFOs
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Programmable baud-rate generator allowing rates up to 3.125 Mbps
- Standard asynchronous communication bits for start, stop, and parity
- False start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics:
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation
- IrDA serial-IR (SIR) encoder/decoder providing:
 - Programmable use of IrDA Serial InfraRed (SIR) or UART input/output
 - Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex
 - Support of normal 3/16 and low-power (1.41-2.23 µs) bit durations
 - Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration

12.1 Block Diagram

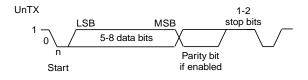
Figure 12-1. UART Module Block Diagram

12.2 Functional Description

Each Stellaris[®] UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 273). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed using the UARTCTL register.


12.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data

bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 12-2 on page 256 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

Figure 12-2. UART Character Frame

12.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 269) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 270). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.):

BRD = BRDI + BRDF = SysClk / (16 * Baud Rate)

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

```
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
```

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 271), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

12.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 266) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 255).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 264). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

12.2.4 Serial IR (SIR)

The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block provides functionality that converts between an asynchronous UART data stream, and half-duplex serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to provide a digital encoded output, and decoded input to the UART. The UART signal pins can be connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block has two modes of operation:

- In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the selected baud rate bit period on the output pin, while logic one levels are transmitted as a static LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light for each zero. On the reception side, the incoming light pulses energize the photo transistor base of the receiver, pulling its output LOW. This drives the UART input pin LOW.
- In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz frequency) by changing the appropriate bit in the UARTCR register.

Figure 12-3 on page 258 shows the UART transmit and receive signals, with and without IrDA modulation.

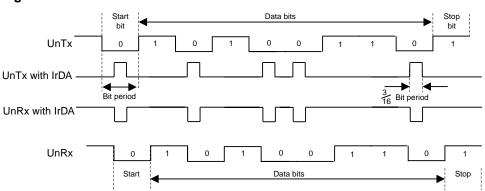


Figure 12-3. IrDA Data Modulation

In both normal and low-power IrDA modes:

- During transmission, the UART data bit is used as the base for encoding
- During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay between transmission and reception. This delay must be generated by software because it is not automatically supported by the UART. The delay is required because the infrared receiver electronics might become biased, or even saturated from the optical power coupled from the adjacent transmitter LED. This delay is known as latency, or receiver setup time.

12.2.5 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 262). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 271).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 266) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 275). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, and 7/8. For example, if the $\frac{1}{4}$ option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the $\frac{1}{2}$ mark.

12.2.6 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error

- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 280).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 277) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 279).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 281).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO becomes empty through reading all the data (or by reading the holding register), or when a 1 is written to the corresponding bit in the **UARTICR** register.

12.2.7 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 273). In loopback mode, data transmitted on UnTx is received on the UnRx input.

12.2.8 IrDA SIR block

The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same time. Transmission must be stopped before data can be received. The IrDA SIR physical layer specifies a minimum 10-ms delay between transmission and reception.

12.3 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0, UART1, or UART2 bits in the **RCGC1** register.

This section discusses the steps that are required for using a UART module. For this example, the system clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit

- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 256, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 269) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 270) is calculated by the equation:

```
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
```

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the UARTIBRD register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- Write the desired serial parameters to the UARTLCRH register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the **UARTCTL** register.

12.4 Register Map

Table 12-1 on page 260 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000
- UART2: 0x4000.E000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 273) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Table 12-1. UART Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	UARTDR	R/W	0x0000.0000	UART Data	262
0x004	UARTRSR/UARTECR	R/W	0x0000.0000	UART Receive Status/Error Clear	264
0x018	UARTFR	RO	0x0000.0090	UART Flag	266
0x020	UARTILPR	R/W	0x0000.0000	UART IrDA Low-Power Register	268

Offset	Name	Туре	Reset	Description	See page
0x024	UARTIBRD	R/W	0x0000.0000	UART Integer Baud-Rate Divisor	269
0x028	UARTFBRD	R/W	0x0000.0000	UART Fractional Baud-Rate Divisor	270
0x02C	UARTLCRH	R/W	0x0000.0000	UART Line Control	271
0x030	UARTCTL	R/W	0x0000.0300	UART Control	273
0x034	UARTIFLS	R/W	0x0000.0012	UART Interrupt FIFO Level Select	275
0x038	UARTIM	R/W	0x0000.0000	UART Interrupt Mask	277
0x03C	UARTRIS	RO	0x0000.000F	UART Raw Interrupt Status	279
0x040	UARTMIS	RO	0x0000.0000	UART Masked Interrupt Status	280
0x044	UARTICR	W1C	0x0000.0000	UART Interrupt Clear	281
0xFD0	UARTPeriphID4	RO	0x0000.0000	UART Peripheral Identification 4	283
0xFD4	UARTPeriphID5	RO	0x0000.0000	UART Peripheral Identification 5	284
0xFD8	UARTPeriphID6	RO	0x0000.0000	UART Peripheral Identification 6	285
0xFDC	UARTPeriphID7	RO	0x0000.0000	UART Peripheral Identification 7	286
0xFE0	UARTPeriphID0	RO	0x0000.0011	UART Peripheral Identification 0	287
0xFE4	UARTPeriphID1	RO	0x0000.0000	UART Peripheral Identification 1	288
0xFE8	UARTPeriphID2	RO	0x0000.0018	UART Peripheral Identification 2	289
0xFEC	UARTPeriphID3	RO	0x0000.0001	UART Peripheral Identification 3	290
0xFF0	UARTPCellID0	RO	0x0000.000D	UART PrimeCell Identification 0	291
0xFF4	UARTPCellID1	RO	0x0000.00F0	UART PrimeCell Identification 1	292
0xFF8	UARTPCellID2	RO	0x0000.0005	UART PrimeCell Identification 2	293
0xFFC	UARTPCellID3	RO	0x0000.00B1	UART PrimeCell Identification 3	294

12.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

Register 1: UART Data (UARTDR), offset 0x000

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

UART Data (UARTDR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ							Ì	rese	l erved	Î			1	1	i -	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	I RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		rese	rved		OE	BE	PE	FE		r	r 1	DA	I ATA	1	1	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Fi	eld		Name		Туре	I	Reset	Descr	iption							
31:1	12	r	reserved		RO		0	Softw	are shoi	uld not re	ely on the	e value	of a rese	erved bit	. To prov	ride
	compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.															
11 OE RO 0 UART Overrun Error																
								The O	E value:	s are def	ined as t	follows:				
								Value	e Descri	iption						
								0		has bee	n no dat	a loss d	ue to a F	FIFO ove	errun	
								1		lata was						na in
								I	data lo		leceived			was iui	i, resulti	ig in
10)		BE		RO		0	UART	Break	Error						
										to 1 whe						g that
										ata input time (def			0			
								In FIF	O mode	, this err	or is ass	ociated	with the	charact	er at the	top of
										en a brea						
										xt charac narking s						
goes to a 1 (marking state) and the next valid start bit is received.																

Bit/Field	Name	Туре	Reset	Description
9	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				In FIFO mode, this error is associated with the character at the top of the FIFO.
8	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	Data Transmitted or Received
				When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The **UARTRSR/UARTECR** register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

Read-Only Receive Status (UARTRSR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x004 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	rved	1 1						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1			rese	l erved	1		1 1			OE	BE	PE	FE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31	:4		reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv	•	
	The UARTRSR register cannot be written.															
3			OE		RO		0	UART	Overru	n Error						
										is set to ared to 0	-				is alrea	dy full.
								the FI	FO is fu	tents rer II, only th st now re	ne conte	nts of the	e shift re	gister a	re overw	
2			BE		RO		0	UART	Break	Error						
								the re	ceived o	to 1 whe lata inpu time (def	t was he	eld Low f	or longe	r than a	full-wore	•
								This b	it is clea	ared to 0	by a wr	ite to UA	RTECR	•		
								the FI FIFO.	FO. Wh The ne	e, this err en a brea xt charac narking s	ak occur ter is or	s, only o nly enabl	ne 0 cha ed after	aracter is the rece	loaded vive data	into the input

Bit/Field	Name	Туре	Reset	Description
1	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				This bit is cleared to 0 by a write to UARTECR .
0	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO.

Write-Only Error Clear (UARTECR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x004 Type WO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					ı	rese	rved	1	1	•		1	1	1
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1	1		I	I	DA	I MTA	1	I	\square
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
Bit/Fi	ield		Name		Туре	F	Reset	Descr	iption							
31:	8		reserved		WO		0	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	
7:0)		DATA		WO		0 Error Clear A write to this register of any data clears the fra									
7:0)		DATA		WO		0	Error	Clear						arity,	bre

A write to this register of any data clears the framing, parity, break, and overrun flags.

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

UART0 b UART1 b UART2 b Offset 0x	Flag (UA ase: 0x40 ase: 0x40 ase: 0x40 018 , reset 0x0	00.C000 00.D000 00.E000))													
<u> </u>	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ							rese	erved				1	I	· · ·	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	· · ·		•	reser	rved				TXFE	RXFF	TXFF	RXFE	BUSY		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:8		reserved		RO		0	compa		vith futur	e produ	cts, the v	alue of	a reserv	t. To provi ved bit sho	
7	,		TXFE		RO		1	UART	Transm	it FIFO	Empty					
									neaning LCRH r		t depen	ds on the	e state o	of the FI	EN bit in th	ie
									FIFO is c er is emp		(fen is (), this bi	t is set w	hen the	e transmit	holding
								If the is em		enabled	(fen is	1), this t	oit is set	when tł	ne transm	it FIFO
6	6		RXFF		RO		0	UART	Receive	e FIFO F	ull					
									neaning LCRH r		t depen	ds on the	e state o	of the FI	EN bit in th	Ie
								If the is full.		disabled	, this bit	is set w	hen the	receive	holding r	egister
If the FIFO is enable										enabled,	this bit	is set wł	nen the i	receive	FIFO is fu	ull.
5	5		TXFF		RO		0	UART	Transm	it FIFO	Full					
									neaning LCRH r		t depen	ds on the	e state o	of the FI	EN bit in th	ie
								If the is full.		disabled	, this bit	is set wl	hen the	transmi	t holding r	egister
								If the	FIFO is (enabled,	this bit	is set wł	nen the t	ransmi	t FIFO is f	ull.

Bit/Field	Name	Туре	Reset	Description
4	RXFE	RO	1	UART Receive FIFO Empty
				The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.
				If the FIFO is disabled, this bit is set when the receive holding register is empty.
				If the FIFO is enabled, this bit is set when the receive FIFO is empty.
3	BUSY	RO	0	UART Busy
				When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.
				This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020

The **UARTILPR** register is an 8-bit read/write register that stores the low-power counter divisor value used to generate the IrLPBaud16 signal by dividing down the system clock (SysClk). All the bits are cleared to 0 when reset.

The IrLPBaud16 internal signal is generated by dividing down the UARTCLK signal according to the low-power divisor value written to **UARTILPR**. The low-power divisor value is calculated as follows:

ILPDVSR = SysClk / F_{IrLPBaud16}

where $\mathtt{F}_{\tt IrLPBaud16}$ is nominally 1.8432 MHz.

IrLPBaud16 is an internal signal used for SIR pulse generation when low-power mode is used. You must choose the divisor so that $1.42 \text{ MHz} < F_{IrLPBaud16} < 2.12 \text{ MHz}$, which results in a low-power pulse duration of $1.41-2.11 \mu s$ (three times the period of IrLPBaud16). The minimum frequency of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that pulses greater than 1.4 μs are accepted as valid pulses.

Note: Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being generated.

UART IrDA Low-Power Register (UARTILPR)

UART1 ba UART2 ba Offset 0x0	UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x020 Type R/W, reset 0x0000.0000																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[1	i	1	1 1 1		1	rese	rved I	l I			r L	1	ï	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				rese	erved					•	•	ILPD	VSR	•	•	.	
Туре	Type RO RO RO RO RO RO							RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/Fi	ield		Name	2	Туре		Reset	Descr	iption								
31:	8		reserve	ed	RO		0	compa	atibility v		e produ	cts, the v	alue of	a reserv	To prov ved bit sh		
7:0	D		ILPDVS	ŝR	R/W		0x00	IrDA L	ow-Pov	er Divis	or						
								This is	s an 8-bi	t low-po	wer divis	sor value	Э.				

Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD=0**), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 256 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x024 Type R/W, reset 0x0000.0000

31 16 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved RO Туре 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 DIVINT Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Туре Reset Description 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DIVINT R/W 0x0000 Integer Baud-Rate Divisor

Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 256 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

UART0 base: 0x4000.C000

UART1 ba UART2 ba Offset 0x0 Type R/W	ase: 0x4 028	000.E000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		r r	ľ		1	rese				Ì	1 1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
reserved DIVFRAC																
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Fi	eld		Name		Туре		Reset	Descr	iption							
31:	6	r	reserved		RO		0x00	compa	atibility w	ith futur/	e produ	cts, the v	of a rese value of a operation	a reserv	•	
5:0)	D	IVFRAC	2	R/W		0x000	Fraction	onal Bau	id-Rate	Divisor					

Register 7: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x02C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								rese	rved								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		•		rese	rved				SPS	WL	EN	FEN	STP2	EPS	PEN	BRK	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/Fi	old		Name		Tuno		Reset	Descr	intion								
DIVE	eiu		Name		Туре		Resel	Desci	ιριιοπ								
31:	8	I	reserved		RO		0						of a rese				
													value of		ed bit sh	ould be	
								prese	rved acr	oss a re	aa-mooi	ry-write	operatio	n.			
7			SPS		R/W		0	UART	Stick P	arity Sel	ect						
							When bits 1, 2, and 7 of UARTLCRH are set, the parity bit is transm									smitted	
								and cl	necked a	as a 0. V	Vhen bit	s 1 and	7 are set				
								parity	bit is tra	nsmitteo	d and ch	ecked a	s a 1.				
								When	this bit	s cleare	d, stick	parity is	disabled	l.			
6:5	5		WLEN		R/W		0	UART	Word L	ength							
								The b	its indica	te the n	umber c	of data b	its transı	nitted or	receive	d in a	
								frame	as follo	WS:							
								Value	Descri	ption							
								0x3									
									7 bits								
								0x1									
								0x0	5 bits	default)							
4			FEN		R/W		0	UART	Enable	FIFOs							
								If this bit is set to 1, transmit and receive FIFO buffers are enabled (FIFO mode).									
											FOs are holding r		d (Chara	cter moo	de). The	FIFOs	

Bit/Field	Name	Туре	Reset	Description
3	STP2	R/W	0	UART Two Stop Bits Select
				If this bit is set to 1, two stop bits are transmitted at the end of a frame. The receive logic does not check for two stop bits being received.
2	EPS	R/W	0	UART Even Parity Select
				If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits.
				When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.
				This bit has no effect when parity is disabled by the ${\tt PEN}$ bit.
1	PEN	R/W	0	UART Parity Enable
				If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break
				If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be cleared to 0.

Register 8: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

UART (Control	(UART	CTL)													
UART0 b UART1 b UART2 b Offset 0x0 Type R/W	ase: 0x40 ase: 0x40 030	00.D000 00.E000														
,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	r	r r		1	rese	rved			1	1	1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	rved			RXE	TXE	LBE		rese	erved		SIRLP	SIREN	UARTEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W R/W RO RO RO RO R/W R/W R/W 1 0								
Bit/F	ield		Name		Туре	F	Reset Description									
31:	10	I	reserved		RO		0	compa	atibility v	vith futur	e produ	cts, the	of a rese value of operatio	a reserv		vide nould be
9			RXE		R/W		1	UART	Receive	e Enable	•					
								the UA	ART is di		n the mi		n of the l receive			d. When e current
								Note:	То е	enable re	eception	, the UAI	RTEN bit	must al	so be se	et.
8			TXE		R/W		1	UART	Transm	iit Enable	Э					
		If this bit is set to 1, the transmit section of the UART is enable the UART is disabled in the middle of a transmission, it comple current character before stopping.														
								Note:	То е	enable tr	ansmiss	ion, the	UARTEN	t bit mus	t also b	e set.
7			LBE		R/W		0	UART	Loop B	ack Ena	ble					
								If this	bit is set	t to 1, the	9 UnTX	path is f	ed throu	gh the ບ	nRX pat	h.
6:	3	I	reserved		RO 0 Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation.											

Bit/Field	Name	Туре	Reset	Description
2	SIRLP	R/W	0	UART SIR Low Power Mode
				This bit selects the IrDA encoding mode. If this bit is cleared to 0, low-level bits are transmitted as an active High pulse with a width of 3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted with a pulse width which is 3 times the period of the IrLPBaud16 input signal, regardless of the selected bit rate. Setting this bit uses less power, but might reduce transmission distances. See page 268 for more information.
1	SIREN	R/W	0	UART SIR Enable
				If this bit is set to 1, the IrDA SIR block is enabled, and the UART will transmit and receive data using SIR protocol.
0	UARTEN	R/W	0	UART Enable
				If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current

character before stopping.

October 09, 2007 www.DataSheet4U.com

Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

UART Interrupt FIFO Level Select (UARTIFLS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x034 Type R/W, reset 0x0000.0012

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		reser	ved	1					RXIFLSEL			I TXIFLSEL	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	I	0	0	1	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31					0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
5:	3	F	RXIFLSEI	-	R/W		0x2	UART	Receiv	e Interru	pt FIFO	Level Se	elect			
						The trigger points for the receive interrupt are as follows:										
								Valu	ie Des	cription						

0x1

0x4

0x5-0x7 Reserved

0x0 RX FIFO ≥ 1/8 full

0x3 RX FIFO ≥ ¾ full

RX FIFO ≥ ¼ full 0x2 RX FIFO ≥ ½ full (default)

RX FIFO ≥ 7/8 full

Bit/Field	Name	Туре	Reset	Description
2:0	TXIFLSEL	R/W	0x2	UART Transmit Interrupt FIFO Level Select
				The trigger points for the transmit interrupt are as follows:
				Value Description
				0x0 TX FIFO ≤ 1/8 full
				0x1 TX FIFO ≤ ¼ full
				0x2 TX FIFO ≤ ½ full (default)
				0x3 TX FIFO ≤ ¾ full
				0x4 TX FIFO ≤ 7/8 full
				0x5-0x7 Reserved

Register 10: UART Interrupt Mask (UARTIM), offset 0x038

The UARTIM register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

UART Interrupt Mask (UARTIM)

et 0x0	ase: 0x40		0														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
ſ			1 1		r r			rese	rved	r	1	1	1	r	1		
Type leset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			reserved			OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM		rese	erved		
Type leset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	
Bit/Fi	eld		Name		Туре	F	Reset	Descr	iption								
31:1	11		reserved		RO	(00x0	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	value of	a reserv			
10)		OEIM		R/W		0	UART	Overru	n Error I	nterrupt	Mask					
								On a	read, the	e current	mask fo	or the OF	IM inter	rupt is re	eturned.		
								Settin	g this bit	to 1 pror	notes th	е ОЕІМ і	nterrupt	to the int	errupt co	ontroll	
9			BEIM		R/W	V 0 UART Break Error Interrupt Mask											
								On a i	read, the	e current	mask fo	or the BE	IM inter	rupt is re	eturned.		
								Settin	g this bit	to 1 pror	notes th	е веімі	nterrupt	to the int	errupt co	ontroll	
8			PEIM		R/W		0	UART	Parity E	Error Inte	errupt Ma	ask					
								On a read, the current mask for the PEIM interrupt is returned.									
								Settin	g this bit	to 1 pror	notes th	е реімі	nterrupt	to the int	errupt co	ontroll	
7			FEIM		R/W		0	UART	Framin	g Error I	nterrupt	Mask					
								On a read, the current mask for the FEIM interrupt is returned.									
Setting this bit to 1 promotes the FEIM i								nterrupt	to the int	errupt co	ontroll						
6			RTIM		R/W		0	UART Receive Time-Out Interrupt Mask									
			IX I IIVI					On a read, the current mask for the RTIM interrupt is returned.									
								Settin	g this bit	to 1 pror	notes th	e rtim i	nterrupt	to the int	errupt co	ontroll	
5			TXIM		R/W		0	UART Transmit Interrupt Mask									
								On a read, the current mask for the $TXIM$ interrupt is returned.									
							Setting this bit to 1 promotes the TXIM interrupt to the interrupt controlle									ontroll	

Bit/Field	Name	Туре	Reset	Description
4	RXIM	R/W	0	UART Receive Interrupt Mask
				On a read, the current mask for the RXIM interrupt is returned.
				Setting this bit to 1 promotes the $\ensuremath{\mathtt{RXIM}}$ interrupt to the interrupt controller.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x03C Type RO, reset 0x0000.000F

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
						1	•	rese	rved										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
[Î		reserved			OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS	ĺ	rese	rved				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1			
Bit/Fi	eld		Name		Туре	F	Reset	Descr	iption										
31:'	11	I	reserved		RO	1	0x00	compa	atibility v	vith futur	e produo	e value o cts, the v fy-write o	alue of a	a reserv	•				
10)		OERIS		RO		0	UART	Overru	n Error F	Raw Inte	rrupt Sta	tus						
								Gives	the raw	interrup	t state (p	orior to m	nasking)	of this i	nterrupt.				
9			BERIS RO 0				UART	Break B	Error Rav	w Interru	ipt Statu	s							
									Gives the raw interrupt state (prior to masking) of this interrupt.										
8			PERIS		RO		0	UART Parity Error Raw Interrupt Status											
Ũ			I EI de		no		U	Gives the raw interrupt state (prior to masking) of this interrupt.											
7			FERIS		RO		0			•		rrupt Sta	0,						
,			I LNIS		ĸu		0			•		prior to m		of this i	nterrunt				
										•			0,	01 (113 1	nten upt.				
6			RTRIS		RO		0					Interrup		- f 41-1 1					
								Gives	the raw	Interrup	t state (p	prior to m	iasking)	of this i	nterrupt.				
5			TXRIS		RO		0	UART	Transm	iit Raw Ii	nterrupt	Status							
								Gives	the raw	interrup	t state (p	prior to m	nasking)	of this i	nterrupt.				
4			RXRIS	RIS RO 0			0	UART Receive Raw Interrupt Status											
						Gives the raw interrupt state (prior to masking) of this interrupt.													
3:0)	reserved RC			RO		0xF	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											

Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x040 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
								rese	rved											
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	Î		reserved			OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS	1	rese	rved					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
Bit/Fi	ield		Name		Туре	F	Reset	Descr	iption											
31:'	11	I	reserved		RO	(0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of a	a reserv						
10)		OEMIS		RO		0	UART Overrun Error Masked Interrupt Status												
								Gives the masked interrupt state of this interrupt.												
9			BEMIS		RO		0	UART	Break B	Error Ma	sked Int	errupt St	atus							
								Gives the masked interrupt state of this interrupt.												
8			PEMIS		RO		0	UART Parity Error Masked Interrupt Status												
								Gives the masked interrupt state of this interrupt.												
7			FEMIS		RO		0	UART	Framin	g Error N	lasked	Interrupt	Status							
								Gives	the mas	sked inte	rrupt sta	ate of this	s interrup	ot.						
6			RTMIS		RO		0	UART	Receiv	e Time-C	Dut Masl	ked Inter	rupt Stat	tus						
								Gives	the mas	sked inte	rrupt sta	ate of this	s interrup	ot.						
5			TXMIS		RO		0	UART	Transm	nit Maske	ed Interr	upt Statu	S							
								Gives	the mas	sked inte	rrupt sta	ate of this	s interrup	ot.						
4			RXMIS		RO		0	UART	Receiv	e Maske	d Interru	upt Status	S							
								Gives the masked interrupt state of this interrupt.												
3:0	:0 reserved			RO		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.													

Register 13: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UART0 ba UART1 ba UART2 ba Offset 0x0	ase: 0x40 ase: 0x40 ase: 0x40	00.C000 00.D000 00.E000)	CR)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	rese	rved						,	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC			erved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
31:11 reserved RO 0x00 Software should not rely on the vaccompatibility with future products, preserved across a read-modify-w								cts, the v	alue of a	a reserv						
10)		OEIC		W1C		0	Overr	un Error	Interrup	t Clear					
								The O	EIC valu	ues are o	defined a	as follow	S:			
								Value	Descri	ption						
								0	No effe	ect on th	e interru	pt.				
								1	Clears	interrup	t.					
9			BEIC		W1C		0	Break	Error In	terrupt (Clear					
								The B	EIC valu	ues are o	defined a	as follow	s:			
								Value	Descri	ption						
								0	No effe	ect on th	e interru	pt.				
								1	Clears	interrup	t.					
8			PEIC		W1C		0	Parity	Error In	terrupt C	Clear					
								The ₽	EIC valu	ues are o	defined a	as follow	s:			
								Value	Descri	ption						
								0	No effe	ect on th	e interru	pt.				
								1	Clears	interrup	t.					

Bit/Field	Name	Туре	Reset	Description
7	FEIC	W1C	0	Framing Error Interrupt Clear
				The FEIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
6	RTIC	W1C	0	Receive Time-Out Interrupt Clear
				The RTIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
5	TXIC	W1C	0	Transmit Interrupt Clear
				The TXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
4	RXIC	W1C	0	Receive Interrupt Clear
				The RXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1					•	rese	erved									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Reset									0			0			0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				rese	rved		•		PID4									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit/F	ield		Name		Type Res		Reset	Descr	Description									
31	:8	reserved			RO 0x00		compa	Software should not rely on the value of a reserved bit. To provi compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.										
7:	7:0 PID4			RO		0x0000 UAF		Periphe	eral ID R	egister[7	7:0]							
								Can b	e used b	by softwa	are to ide	entify the	e preser	ice of thi	is periph	eral.		

Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1					1	rese	erved					1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Neder																		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				rese	rved				PID5									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit/F	Bit/Field		Name		Type Reset		Descr	iption										
31	:8	reserved			RO 0x00		comp	Software should not rely on the value of a reserved bit. To provi compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.										
7:	0		PID5		RO	0	x0000	UART	Periphe	eral ID R	egister[1	15:8]						
								Can b	e used b	by softwa	are to ide	entify the	e preser	nce of thi	s periph	eral.		

Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1					•	rese	erved									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Resei															U			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		•		rese	rved		•	1	PID6									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit/F	ield		Name		Type Reset		Reset	Descr	Description									
31	:8	reserved			RO 0x00		compa	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.										
7:	7:0 PID6			RO		0x0000		Periphe	eral ID R	egister[2	23:16]							
								Can b	e used b	by softwa	are to ide	entify the	e preser	ice of thi	is periph	eral.		

Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFDC Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		1					1	rese	rved					1	1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Neset																			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
				rese	rved				PID7										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Bit/F	ield Name			Type Reset		Descr	iption												
31	:8	reserved			RO		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.											
7:	7:0 PID7				RO	0x0000		UART	Periphe	eral ID R	egister[3	31:24]							
								Can b	e used b	by softwa	are to ide	entify the	e preser	nce of thi	is periph	eral.			

Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFE0 Type RO, reset 0x0000.0011

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1						rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved			•		1						
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:8	reserved			RO 0x00		compa	Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.								
7:0	7:0 PID0			RO (0x11	UART	Periphe	eral ID R	egister[7	7:0]					
								Can b	e used b	by softwa	are to ide	entify the	e preser	nce of thi	is periph	eral.

Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1					1	rese	rved					1	1	•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Report	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	15	14	1.0		r r	10	1	1									
				rese	rved							PII	D1 L				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/F	ield		Name		Туре	ſ	Reset	Descr	intion								
Dioi			Name		Type Reset			Desci	iption								
31	:8		reserved		RO		0x00		are shou						•		
								•	atibility w		•	-			ed bit sh	ould be	
								prese				ly white t	operatio				
7:	7:0 PID1			RO		0x00 UART		Periphe	eral ID R	egister[1	15:8]						
								Can be used by software to identify the presence of this peripheral.									

Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Report	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	15	14	13		r r	10	9 1	•		0			1	1	1	
				rese									D2			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0
10000	Ū	Ū	Ū	°,	0	Ŭ	Ū	0	0	Ū	0			0	Ū	Ū
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
					51				•							
31	:8		reserved		RO		0x00								•	
31:8 reserved RO 0x00 Software should not rely compatibility with future preserved across a read											•	-			ed bit sh	iould be
7:	0		PID2		RO		0x18	UART	Periphe	eral ID R	egister[2	23:16]				
								Can b	e used b	by softwa	are to ide	entify the	e preser	nce of thi	is periph	eral.

Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Nesei															Ū	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		•					PII	D3	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bit/F	ield	0 0 0 0 0 0 0 Name Type Reset				Reset	Descr	iption								
31	31:8 reserved				RO		0x00	compa	are shou atibility w rved acro	/ith futur	e produc	cts, the v	alue of	a reserv	•	
7:	0		PID3		RO		0x01	UART	Periphe	eral ID R	egister[3	31:24]				
								Can b	e used b	by softwa	are to ide	entify the	e preser	nce of thi	is periph	eral.

Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 0 (UARTPCelIID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	rese	erved				1	•	•	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		î	î î	rese	rved		Î	ì				CI	D0	Î	Î	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1						
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:					RO		0x00	compa		vith futur	e produ	cts, the v	alue of	a reserv		
7:(0		CID0		RO		compatibility with future prod preserved across a read-mo 0x0D UART PrimeCell ID Register Provides software a standard						eripheral	identific	ation sy	stem.

Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	rese	rved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved		•					CI	D1	1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
					51											
31	31:8 reserved				RO		0x00	comp	are shou atibility w rved acro	vith futur	e produ	cts, the v	alue of	a reserv	•	
7:	0		CID1		RO		0xF0	UART	PrimeC	ell ID Re	egister[1	5:8]				
								Provid	des softw	vare a st	andard	cross-pe	ripheral	identific	ation sy	stem.

Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 2 (UARTPCellID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			· · ·		1	rese	erved						1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Neset															0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		•				CI	D2	1	8	'	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
Bit/F	ield		Name	o o o o o ame Type Reset					iption							
31:	1:8 reserved RO 0x00						compa	are shou atibility w rved acro	ith futur	e produ	cts, the v	alue of	a reserv			
7:	0		CID2		RO		0x05	UART	PrimeC	ell ID Re	egister[2	3:16]				
								Provid	des softw	vare a st	andard	cross-pe	ripheral	identific	ation sy	stem.

Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

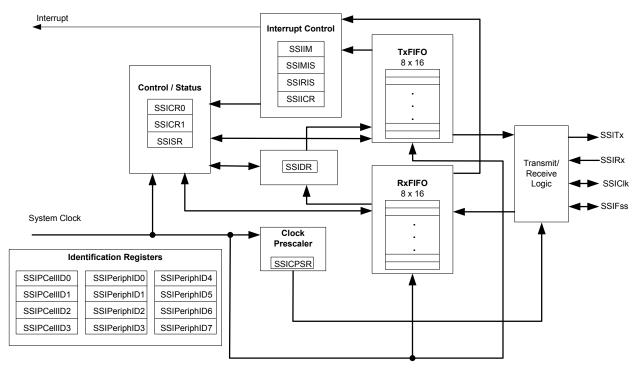
The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 3 (UARTPCellID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			, , , , , , , , , , , , , , , , , , ,		1	rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Report	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	14	1.0		r r	10	1	, I	<u>, </u>	0	- J			-	, 	
				rese	rved							CI	D3 L			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
Reset	0	0	0	0	0	0	0	0	1	0		1	0	0	0	I
Bit/F	ield		Name		Туре	ſ	Reset	Descr	intion							
Ditt			Nume		Type	'	10001	Deser	iption							
31	:8		reserved		RO		0x00	Softw	are shou	ld not re	ly on the	e value o	of a rese	erved bit.	To prov	ide
								•	atibility w		•	-			ed bit sh	ould be
												,				
7:	0		CID3		RO		0xB1	UART	PrimeC	ell ID Re	egister[3	1:24]				
								Provid	les softw	/are a st	andard o	cross-pe	ripheral	identific	ation sys	stem.

13 Synchronous Serial Interface (SSI)


The Stellaris[®] microcontroller includes two Synchronous Serial Interface (SSI) modules. Each SSI is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

Each Stellaris[®] SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

13.1 Block Diagram

Figure 13-1. SSI Module Block Diagram

13.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

13.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the 50-MHz input clock. The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale (SSICPSR)** register (see page 314). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0 (SSICR0)** register (see page 307).

The frequency of the output clock SSIClk is defined by:

FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))

Note that although the SSIClk transmit clock can theoretically be 25 MHz, the module may not be able to operate at that speed. For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 448 to view SSI timing parameters.

13.2.2 FIFO Operation

13.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 311), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

13.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

13.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each

of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask (SSIIM)** register (see page 315). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 317 and page 318, respectively).

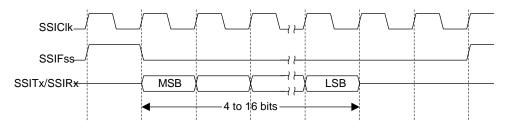
13.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

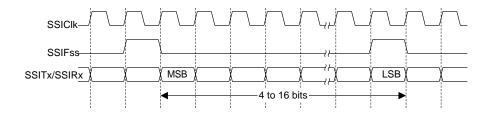

For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

13.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 13-2 on page 297 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.

Figure 13-2. TI Synchronous Serial Frame Format (Single Transfer)



In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIClk after the LSB has been latched.

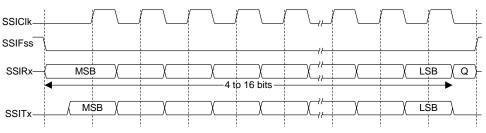
Figure 13-3 on page 298 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

Figure 13-3. TI Synchronous Serial Frame Format (Continuous Transfer)

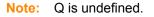
13.2.4.2 Freescale SPI Frame Format

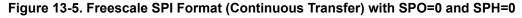
The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit


When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.

SPH Phase Control Bit


The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.


13.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

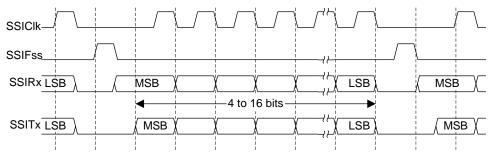

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 13-4 on page 299 and Figure 13-5 on page 299.

Figure 13-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFSS master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

13.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 13-6 on page 300, which covers both single and continuous transfers.

SSICIk —						
SSIRx —		X	χ) 4 to 16 bits—	X	<u> </u>
SSITx —	/ MSB /	χ	χ	X	X	LSB

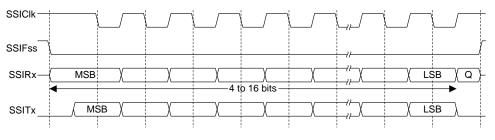
Figure 13-6. Freescale SPI Frame Format with SPO=0 and SPH=1

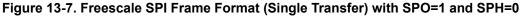
Note: Q is undefined.

In this configuration, during idle periods:

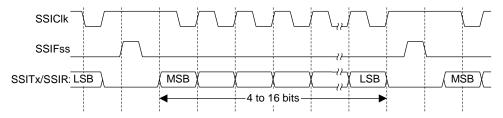
- SSICIk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIC1k pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.


Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.


In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.


13.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 13-7 on page 301 and Figure 13-8 on page 301.

Figure 13-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

Note: Q is undefined.

13.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 13-9 on page 302, which covers both single and continuous transfers.

SSICIk						
SSIFss						/
SSIRx—	(Q) <u>MSB</u> (◀	X	X	4 to 16 bits	X	<u></u>
SSITx	<u>MSB</u>	X	X	X	χ	(LSB)

Figure 13-9. Freescale SPI Frame Format with SPO=1 and SPH=1

Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.

After all bits have been transferred, in the case of a single word transmission, the SSIFss line is returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

13.2.4.7 MICROWIRE Frame Format

Figure 13-10 on page 303 shows the MICROWIRE frame format, again for a single frame. Figure 13-11 on page 304 shows the same format when back-to-back frames are transmitted.

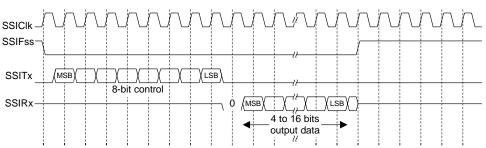


Figure 13-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIC1k, after the LSB of the frame has been latched into the SSI.

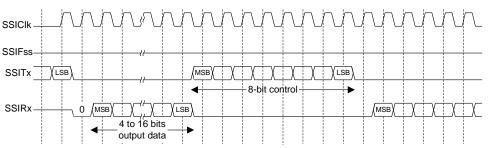
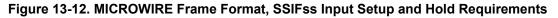



Figure 13-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 13-12 on page 304 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

13.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - a. For master operations, set the **SSICR1** register to 0x0000.0000.
 - b. For slave mode (output enabled), set the **SSICR1** register to 0x0000.0004.
 - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
- 3. Configure the clock prescale divisor by writing the **SSICPSR** register.

- 4. Write the **SSICR0** register with the following configuration:
 - Serial clock rate (SCR)
 - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
 - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
 - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled.
- 2. Write the **SSICR1** register with a value of 0x0000.0000.
- 3. Write the **SSICPSR** register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

13.4 Register Map

Table 13-1 on page 306 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

- SSI0: 0x4000.8000
- SSI1: 0x4000.9000
- Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control registers are reprogrammed.

www.datasheet4u.com

Table 13-1. SSI Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	SSICR0	R/W	0x0000.0000	SSI Control 0	307
0x004	SSICR1	R/W	0x0000.0000	SSI Control 1	309
0x008	SSIDR	R/W	0x0000.0000	SSI Data	311
0x00C	SSISR	RO	0x0000.0003	SSI Status	312
0x010	SSICPSR	R/W	0x0000.0000	SSI Clock Prescale	314
0x014	SSIIM	R/W	0x0000.0000	SSI Interrupt Mask	315
0x018	SSIRIS	RO	0x0000.0008	SSI Raw Interrupt Status	317
0x01C	SSIMIS	RO	0x0000.0000	SSI Masked Interrupt Status	318
0x020	SSIICR	W1C	0x0000.0000	SSI Interrupt Clear	319
0xFD0	SSIPeriphID4	RO	0x0000.0000	SSI Peripheral Identification 4	320
0xFD4	SSIPeriphID5	RO	0x0000.0000	SSI Peripheral Identification 5	321
0xFD8	SSIPeriphID6	RO	0x0000.0000	SSI Peripheral Identification 6	322
0xFDC	SSIPeriphID7	RO	0x0000.0000	SSI Peripheral Identification 7	323
0xFE0	SSIPeriphID0	RO	0x0000.0022	SSI Peripheral Identification 0	324
0xFE4	SSIPeriphID1	RO	0x0000.0000	SSI Peripheral Identification 1	325
0xFE8	SSIPeriphID2	RO	0x0000.0018	SSI Peripheral Identification 2	326
0xFEC	SSIPeriphID3	RO	0x0000.0001	SSI Peripheral Identification 3	327
0xFF0	SSIPCellID0	RO	0x0000.000D	SSI PrimeCell Identification 0	328
0xFF4	SSIPCelIID1	RO	0x0000.00F0	SSI PrimeCell Identification 1	329
0xFF8	SSIPCellID2	RO	0x0000.0005	SSI PrimeCell Identification 2	330
0xFFC	SSIPCellID3	RO	0x0000.00B1	SSI PrimeCell Identification 3	331

13.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI0 bas SSI1 bas Offset 0x0		0.8000 0.9000																	
Type R/W	/, reset 0: 31	x0000.00 30	100 29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		î.	г т		· · · ·		r	i rese	rved	ì	r	1	r	1	r	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		-	· · ·		CR			·	SPH	SPO		RF			SS	·			
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			
Bit/F	ield		Name		Туре	I	Reset	et Description											
31:	16		reserved		RO		0x00												
15:	:8		SCR		R/W	0	x0000	SSI S	erial Clo	ck Rate									
										R is used bit rate is	-	erate the	transmi	t and red	ceive bit	rate of			
								BR=F	SSIClk	/(CPSD	VSR *	(1 + S	CR))						
										SR is an ister, an			•	orogramr 255.	med in t	he			
7			SPH		R/W		0	SSI S	erial Clo	ck Phas	е								
								This b	it is only	/ applica	ble to th	e Frees	cale SPI	Format.					
								it to cl either	hange s	tate. It ha	as the m	iost impa	act on th	captures e first bit n before	t transm	itted by			
										-		•		rst clock ck edge	•				
6	i		SPO		R/W		0	SSI S	erial Clo	ock Polar	ity								
								This b	it is only	/ applica	ble to th	e Frees	cale SPI	Format.					
								SSIC	1k pin. l		1, a stea	ady state	High va	ate Low v alue is pl I.					

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
5:4	FRF	R/W	0x0	SSI Frame Format Select
				The FRF values are defined as follows:
				Value Frame Format
				0x0 Freescale SPI Frame Format
				0x1 Texas Intruments Synchronous Serial Frame Format
				0x2 MICROWIRE Frame Format
				0x3 Reserved
3:0	DSS	R/W	0x00	SSI Data Size Select
3.0	033	R/W	0,000	
				The DSS values are defined as follows:
				Value Data Size
				0x0-0x2 Reserved
				0x3 4-bit data
				0x4 5-bit data
				0x5 6-bit data
				0x6 7-bit data
				0x7 8-bit data
				0x8 9-bit data
				0x9 10-bit data
				0xA 11-bit data
				0xB 12-bit data
				0xC 13-bit data
				0xD 14-bit data
				0xE 15-bit data
				0xF 16-bit data

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

SSI Co	ntrol 1	(SSICF	R1)														
SSI0 base SSI1 base Offset 0x0 Type R/W	e: 0x400 004	0.9000	00														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1 1	1			1	rese	rved	1	1	1		1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				•	· ·	res	erved			•			SOD	MS	SSE	LBM	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	
Bit/F	ield		Name		Туре		Reset	Descr	iption								
31:4reservedRO0x00Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.3SODR/W0SSI Slave Mode Output Disable																	
3			SOD														
3 SOD R/W 0 SSI Slave Mode Output Disable This bit is relevant only in the Slave mode (MS=1). In multiple-slave systems, it is possible for the SSI master to broadcast a message to slaves in the system while ensuring that only one slave drives data o the serial output line. In such systems, the TXD lines from multiple slave could be tied together. To operate in such a system, the SOD bit can configured so that the SSI slave does not drive the SSITTx pin. The SOD values are defined as follows:													ge to all ata onto e slaves t can be				
								Volue	Deseri	ntion							
								value 0	e Descri		00TT	utout in	Slave O	utout m	odo		
								1					output in				
2			MS		R/W		0	SSI M	laster/SI	ave Sele	ect						
										s Maste d (SSE=		e mode	and can	be moo	lified onl	y when	
								The м	s values	s are def	fined as	follows:					
								Value	e Descri	ption							
								0	Device	e configu	ired as a	a master	:				
								1	Device	e configu	ired as a	a slave.					

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
1	SSE	R/W	0	SSI Synchronous Serial Port Enable
				Setting this bit enables SSI operation.
				The SSE values are defined as follows:
				Value Description
				0 SSI operation disabled.
				1 SSI operation enabled.
				Note: This bit must be set to 0 before any control registers are reprogrammed.
0	LBM	R/W	0	SSI Loopback Mode
				Setting this bit enables Loopback Test mode.
				The LBM values are defined as follows:
				Value Description
				0 Normal serial port operation enabled.

1 Output of the transmit serial shift register is connected internally

to the input of the receive serial shift register.

Register 3: SSI Data (SSIDR), offset 0x008

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR) SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x008 Trace DW street 0x0000 0000

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Î	Î	1 1	î î		Ì	rese	rved		i	1		Î	Î	Î
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	T		⊢ т		1		TA		r	1		1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descri	iption							
31:	16		reserved	t	RO	C	x0000	compa	atibility v	vith futur	e produ	ne value o icts, the v ify-write o	alue of	a reserv	•	
15	:0		DATA		R/W	0	x0000	SSI R	eceive/T	ransmit	Data					
								A read	l operati	on read	s the re	ceive FIF	O. A wr	ite oper	ation wri	tes the

transmit FIFO.

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI Sta	atus (SS	SISR)																		
SSI0 bas SSI1 bas Offset 0x0 Type RO,	e: 0x4000 e: 0x4000 00C).8000).9000	13																	
1300 110,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
			1 1		r r		1	rese	l erved			1		ı	1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
						reserved						BSY	RFF	RNE	TNF	TFE				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	 R0 1				
Reser	0	Ũ	Ŭ	0	Ū	Ū	0	Ŭ	Ũ	0	0	Ŭ	Ū	Ũ						
Bit/F	ield		Name		Туре	I	Reset													
31:	:5		reserved		RO		0x00	compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.												
4			BSY		RO		0	SSI B	usy Bit											
									SY value	es are de	fined as	s follows	:							
								Value	e Descri	ption										
								0	SSI is	idle.										
								1		currently iit FIFO i		itting an npty.	d/or reco	eiving a	frame, o	r the				
3			RFF		RO		0	SSI R	eceive F	IFO Ful										
								The R	FF value	es are de	fined as	s follows	:							
								Value	e Descri	ption										
								0	Receiv	e FIFO	s not fu	II.								
								1	Receiv	e FIFO	s full.									
2			RNE		RO		0	SSI R	eceive F	IFO Not	Empty									
									NE value			s follows	:							
								Value	e Descri	ption										
								0		e FIFO	s empty	ι.								
								1	Receiv	e FIFO	s not er	npty.								

Bit/Field	Name	Туре	Reset	Description
1	TNF	RO	1	SSI Transmit FIFO Not Full The TNF values are defined as follows:
				Value Description0 Transmit FIFO is full.1 Transmit FIFO is not full.
0	TFE	R0	1	SSI Transmit FIFO Empty The TFE values are defined as follows: Value Description 0 Transmit FIFO is not empty.

1

Transmit FIFO is empty.

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

SSI0 bas SSI1 bas Offset 0x	ock Pres e: 0x4000 e: 0x4000 010 /, reset 0x	.8000 .9000		R)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		i i	-	Ì		Ì	rese	rved	1		1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		r i	rese	rved		1	Ì		1		CPSE	DVSR		I	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:8 reserved RO							0x00	compa	atibility v	vith futur	e produ	e value o cts, the v ify-write o	alue of a	a reserv		
7:	0	C	PSDVSF	ર	R/W		0x00	SSI C	lock Pre	scale Di	visor					
												umber fro B always				on the

SSI Interrupt Mask (SSIIM)

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

SSI0 base SSI1 base Offset 0x0 Type R/W	e: 0x400 e: 0x400 014 /, reset 0	0.8000 0.9000 x0000.00	00	00	07	00	05	04	00	20	24	20	10	10	47	10
	31	30	29	28	27	26	25	24 I rese	23 rved	22	21	20	19 I	18	17	16
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Nesei	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[10	· · · ·	1 1		· · ·		erved	1	· · ·			· · ·	TXIM	RXIM	RTIM	RORIM
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:4	reservedRO0x00Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.TXIMR/W0SSI Transmit FIFO Interrupt Mask														
3	i															
								The T	хім valı	ues are o	defined a	as follow	/S:			
								Value	e Descri	ption						
								0	TX FIF	O half-f	ull or les	s conditi	ion inter	rupt is m	asked.	
								1	TX FIF	O half-f	ull or les	s conditi	ion inter	rupt is no	ot maske	ed.
2	!		RXIM		R/W		0	SSI R	eceive F	FIFO Inte	errupt Ma	ask				
								The T	FE value	es are de	efined as	s follows	:			
								Value	e Descri	ption						
								0	RX FIF	O half-f	ull or mo	ore cond	ition inte	rrupt is i	masked	
								1	RX FIF	O half-f	ull or mo	ore cond	ition inte	errupt is i	not mas	ked.
1			RTIM		R/W		0	SSI R	eceive T	Time-Out	Interrup	ot Mask				
								The R	TIM valu	ues are o	defined a	as follow	/S:			
								Value	e Descri	ption						
								0		O time-		•				
								1	RX FIF	O time-	out inter	rupt is n	ot mask	ed.		

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
0	RORIM	R/W	0	SSI Receive Overrun Interrupt Mask The RORIM values are defined as follows:
				Value Description

October 09, 2007 www.DataSheet4U.com

1

0 RX FIFO overrun interrupt is masked.

RX FIFO overrun interrupt is not masked.

316

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

SSI Raw Interrupt Status (SSIRIS)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x018 Type RO, reset 0x0000.0008

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1		і і		1	reser	ved			1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	i i		г г	res	erved	т т				ľ	TXRIS	RXRIS	RTRIS	RORRIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descri	ption							
31	:4		reserved		RO		0x00	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv		
3	3		TXRIS		RO		1			FIFO Ra		•		ess, whe	n set.	
2	2		RXRIS		RO		0			FIFO Rav		•		ore, whe	en set.	
1			RTRIS		RO		0			Time-Out		•		d, when	set.	
0)		RORRIS		RO		0			Overrun I the rece		•		l, when s	set.	

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The **SSIMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1				1	rese	rved	1 1						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		r r		erved	1 1		1 1	1		TXMIS	RXMIS	RTMIS	RORMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре	F	Reset	Descri	iption							
31	:4		reserved		RO		0	compa	atibility v	uld not re vith futur oss a rea	e produc	cts, the v	alue of	a reserv	•	
3			TXMIS		RO		0			FIFO Ma the trans		•		ess, whe	n set.	
2			RXMIS		RO		0			FIFO Mas		•		ore, whe	en set.	
1			RTMIS		RO		0			Time-Out			•		set.	
0			RORMIS		RO		0			Overrun I the rece		•		l, when s	set.	

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

SSI Inte SSI0 bas SSI1 bas Offset 0x Type W10	e: 0x400 e: 0x400 020	0.8000 0.9000	SSIICR)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	•				1	rese	rved				· ·			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•				rese	rved					· ·		RTIC	RORIC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0
React	0	0	0	0	Ū	0	0	Ū	0	Ū	U	U	Ū	U	0	0
Bit/F	ield	Name Type Reset Description reserved RO 0x00 Software should not rely on the second se														
31	:2		reserved		RO		0x00	compa	atibility v	vith futur	e produc	cts, the v	of a rese value of a operation	a reserv		
1			RTIC		W1C		0	SSI R	eceive T	ime-Out	t Interrup	ot Clear				
											defined a		/S:			
								Value	e Descri	ption						
								0	No effe	ect on in	terrupt.					
								1	Clears	interrup	ot.					
0)		RORIC		W1C		0	SSI R	eceive (Overrun	Interrupt	Clear				
								The R	ORIC Va	lues are	defined	as follo	ws:			
								Value	e Descri	ption						
								0	No effe	ect on in	terrupt.					
								1	Clears	interrup	ot.					

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1	rese	rved	1		, ,		T	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved		•	•				PI	D4	I	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:8						0x00	compa	atibility	uld not re with futur ross a rea	e produ	icts, the v	alue of	a reserv		
7:	0		PID4		RO		0x00	SSI P	eriphera	al ID Reg by softwa	ister[7:0)]			nis periph	neral.

October 09, 2007 www.DataSheet4U.com

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
									reserved										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	- 11	10	9	8	7	6	5	4	3	2	-	0			
	reserved								PID5										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Bit/Field		Name			Type Reset			Descr	iption										
31:8		reserved			RO		0x00	compa	vare should not rely on the value of a reserved bit. To provide atibility with future products, the value of a reserved bit should be erved across a read-modify-write operation.										
7:	0	PID5			RO		0x00	SSI Peripheral ID Register[15:8]											
								Can b	Can be used by software to identify the presence of this peripheral.										

October 09, 2007

Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
									reserved										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved									PID6									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Bit/Field		Name			Type Reset			Descr	iption										
31:8		reserved			RO	comp			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
7:0		PID6			RO 0x00				SSI Peripheral ID Register[23:16] Can be used by software to identify the presence of this peripheral.										

October 09, 2007 www.DataSheet4U.com

Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
									reserved										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved									PID7									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Bit/Field		Name			Type Reset			Descr	iption										
31:8		reserved			RO	comp			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
7:0		PID7			RO	0x00		SSI Peripheral ID Register[31:24] Can be used by software to identify the presence of this peripheral.											

October 09, 2007

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE0 Type RO, reset 0x0000.0022

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
									reserved										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved									PIDO									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 0			
Bit/Field		Name			Type Reset			Descr	iption										
31:8		reserved			RO		0	compa	Software should not rely on the value of a reserved bit. compatibility with future products, the value of a reserv preserved across a read-modify-write operation.										
7:0		PID0		RO		0x22		•	al ID Reg by softw		0] Jentify the	e presei	nce of th	nis peripl	neral.				

October 09, 2007 www.DataSheet4U.com

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		r I		1	rese	rved I	1	T	1	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		•	1		I	1	PI	D1	I	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:8		reserved		RO		0x00	compa	atibility	with futu	re produ	ne value o licts, the v ify-write o	alue of	a reser	•	vide hould be
7:0			PID1		RO		0x00		•	al ID Reg by softw		5:8] lentify the	e prese	nce of th	nis perip	heral.

October 09, 2007

Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Î	Ì		r r		Ì	rese	rved	Î	1	1	1	ì	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	rese	rved		1	1		I	1	PI	D2	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:8		reserved		RO		0x00	compa	atibility	with futu	re produ	ne value o ucts, the v lify-write o	alue of	a reser		
7:	0		PID2		RO		0x18		•	al ID Reg by softw		3:16] dentify the	e presei	nce of th	nis peripl	heral.

October 09, 2007 www.DataSheet4U.com

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	г г 1		1	rese	rved	, , ,		· · ·		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1	1				PI	53	1	T	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1
Bit/F	ield		Name	ne Type Reset [iption							
31	3it/Field Name 31:8 reserved			I	RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v ify-write o	alue of	a reserv		
7:	0		PID3		RO	preserved across a re RO 0x01 SSI Peripheral ID Re Can be used by softw						-	e preser	nce of th	nis periph	neral.

October 09, 2007

Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		, , , , , , , , , , , , , , , , , , ,		1	rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1	rese	rved		i	r				CII	D0	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
31:	:8		reserved		RO		0x00	compa	atibility v	vith futur	ely on the re produc ad-modif	cts, the v	alue of	a reserv		vide nould be
7:0	0		CID0		RO		0x0D			0	ister [7:0 tandard o	-	ripheral	identific	ation sy	stem.

October 09, 2007 www.DataSheet4U.com

Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCellID1)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		· · ·		T	rese	rved	· · · · ·				1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1			· · · · ·		CI	D1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31						0x00	compa	atibility w	ith futur	e produ	e value o cts, the v ify-write o	alue of	a reserv			
7:	0		CID1		RO		0xF0	SSI P	rimeCell	ID Regi	ster [15	:8]				
Provides								les softw	vare a st	andard	cross-pe	ripheral	identifie	cation sy	stem.	

Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1 1		, n		1	rese	rved	T	ı	ر ر		T	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	, ,	rese	rved		1	1		ï	1	CI	02	ſ	T	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:8		reserved		RO		0x00	compa	atibility	with futur	e produ	e value o cts, the v ify-write o	alue of	a reser	•	
7:0			CID2		RO		0x05			ll ID Regi ware a st	•	:16] cross-pe	riphera	identifi	cation sy	vstem.

Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

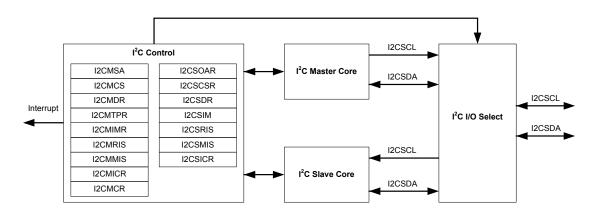
SSI PrimeCell Identification 3 (SSIPCelIID3)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFFC Type RO, reset 0x0000.00B1

21 20 ~~

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	т т				1	rese	erved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	· · ·	rese	rved		1	1				CII	D3	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
Reset	Ū	0	Ū	0	0	0	0	0		0	I	I	0	0	0	,
Bit/F	ield	eld Name Type Reset					Reset	Descr	iption							
31:	:8		reserved		RO		0x00	compa	are shou atibility w rved acro	/ith futur	e produc	cts, the v	alue of	a reserv	•	
7:	0		CID3		RO	(0xB1	SSI P	rimeCell	ID Regi	ster [31:	24]				
								Provid	des softw	vare a st	andard o	cross-pe	ripheral	identific	ation sy	stem.

October 09, 2007

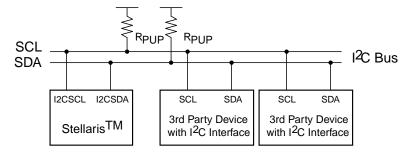

14 Inter-Integrated Circuit (I²C) Interface

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL), and interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture. The LM3S6611 microcontroller includes two I²C modules, providing the ability to interact (both send and receive) with other I²C devices on the bus.

Devices on the I²C bus can be designated as either a master or a slave. Each Stellaris[®] I²C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. There are a total of four I²C modes: Master Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris[®] I²C modules can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts; the I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error) and the I^2C slave generates interrupts when data has been sent or requested by a master.

14.1 Block Diagram

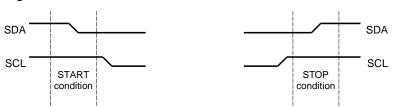

Figure 14-1. I²C Block Diagram

14.2 Functional Description

Each I²C module is comprised of both master and slave functions which are implemented as separate peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional open-drain pads. A typical I²C bus configuration is shown in Figure 14-2 on page 333.

See "I²C" on page 443 for I²C timing diagrams.

Figure 14-2. I²C Bus Configuration


14.2.1 I²C Bus Functional Overview

The I²C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris[®] microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line. The bus is considered idle when both lines are high.

Every transaction on the I²C bus is nine bits long, consisting of eight data bits and a single acknowledge bit. The number of bytes per transfer (defined as the time between a valid START and STOP condition, described in "START and STOP Conditions" on page 333) is unrestricted, but each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

14.2.1.1 START and STOP Conditions

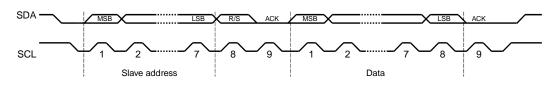
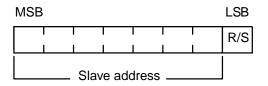

The protocol of the I^2C bus defines two states to begin and end a transaction: START and STOP. A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus is considered busy after a START condition and free after a STOP condition. See Figure 14-3 on page 333.

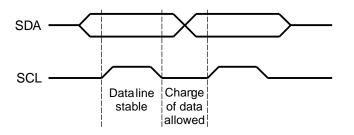
Figure 14-3. START and STOP Conditions


14.2.1.2 Data Format with 7-Bit Address

Data transfers follow the format shown in Figure 14-4 on page 334. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (\mathbb{R}/S bit in the **I2CMSA** register). A zero indicates a transmit operation (send), and a one indicates a request for data (receive). A data transfer is always terminated by a STOP condition generated by the master, however, a master can initiate communications with another device on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within a single transfer.

The first seven bits of the first byte make up the slave address (see Figure 14-5 on page 334). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) data to the selected slave, and a one in this position means that the master will receive data from the slave.

Figure 14-5. R/S Bit in First Byte



14.2.1.3 Data Validity

The data on the SDA line must be stable during the high period of the clock, and the data line can only change when SCL is low (see Figure 14-6 on page 334).

Figure 14-6. Data Validity During Bit Transfer on the I²C Bus

Figure 14-4. Complete Data Transfer with a 7-Bit Address

14.2.1.4 Acknowledge

All bus transactions have a required acknowledge clock cycle that is generated by the master. During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data validity requirements described in "Data Validity" on page 334.

When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave so that the master can generate a STOP condition and abort the current transfer. If the master device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer made by the slave. Since the master controls the number of bytes in the transfer, it signals the end of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a repeated START condition.

14.2.1.5 Arbitration

A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate a START condition within minimum hold time of the START condition. In these situations, an arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if both masters are trying to address the same device, arbitration continues on to the comparison of data bits.

14.2.2 Available Speed Modes

The I²C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

CLK_PRD is the system clock period

 SCL_LP is the low phase of SCL (fixed at 6)

SCL_HP is the high phase of SCL (fixed at 4)

TIMER_PRD is the programmed value in the I²C Master Timer Period (I2CMTPR) register (see page 352).

The I²C clock period is calculated as follows:

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

For example:

```
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
```

yields a SCL frequency of:

1/T = 333 Khz

Table 14-1 on page 335 gives examples of timer period, system clock, and speed mode (Standard or Fast).

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
4 Mhz	0x01	100 Kbps	-	-
6 Mhz	0x02	100 Kbps	-	-
12.5 Mhz	0x06	89 Kbps	0x01	312 Kbps
16.7 Mhz	0x08	93 Kbps	0x02	278 Kbps
20 Mhz	0x09	100 Kbps	0x02	333 Kbps
25 Mhz	0x0C	96.2 Kbps	0x03	312 Kbps
33Mhz	0x10	97.1 Kbps	0x04	330 Kbps
40Mhz	0x13	100 Kbps	0x04	400 Kbps

Table 14-1. Examples of I²C Master Timer Period versus Speed Mode

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
50Mhz	0x18	100 Kbps	0x06	357 Kbps

14.2.3 Interrupts

The I²C can generate interrupts when the following conditions are observed:

- Master transaction completed
- Master transaction error
- Slave transaction received
- Slave transaction requested

There is a separate interrupt signal for the I²C master and I²C modules. While both modules can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt controller.

14.2.3.1 I²C Master Interrupts

The I²C master module generates an interrupt when a transaction completes (either transmit or receive), or when an error occurs during a transaction. To enable the I²C master interrupt, software must write a '1' to the I²C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition is met, software must check the ERROR bit in the I²C Master Control/Status (I2CMCS) register to verify that an error didn't occur during the last transaction. An error condition is asserted if the last transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of the bus due to a lost arbitration round with another master. If an error is not detected, the application can proceed with the transfer. The interrupt is cleared by writing a '1' to the I²C Master Interrupt Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the **I²C Master Raw Interrupt Status (I2CMRIS)** register.

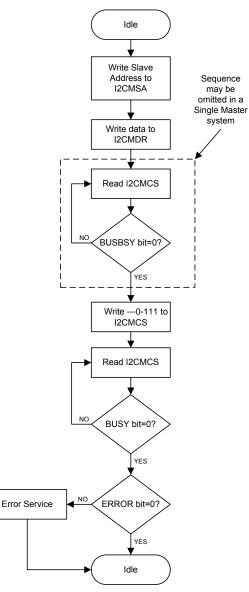
14.2.3.2 I²C Slave Interrupts

The slave module generates interrupts as it receives requests from an I²C master. To enable the I²C slave interrupt, write a '1' to the I²C Slave Interrupt Mask (I2CSIMR) register. Software determines whether the module should write (transmit) or read (receive) data from the I²C Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I²C Slave Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the I²C Slave Interrupt Clear (I2CSICR) register.

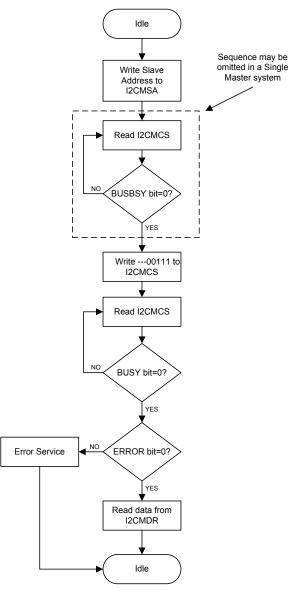
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I²C Slave Raw Interrupt Status (I2CSRIS) register.

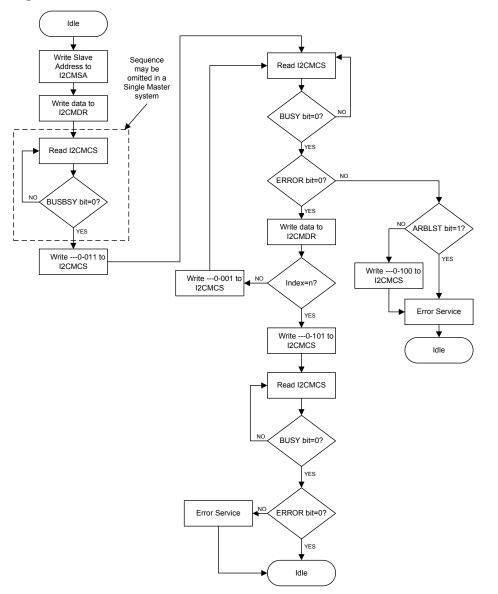
14.2.4 Loopback Operation

The I²C modules can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LPBK bit in the I²C Master Configuration (I2CMCR) register. In loopback mode, the SDA and SCL signals from the master and slave modules are tied together.


14.2.5 Command Sequence Flow Charts

This section details the steps required to perform the various I^2C transfer types in both master and slave mode.


14.2.5.1 I²C Master Command Sequences


The figures that follow show the command sequences available for the I^2C master.

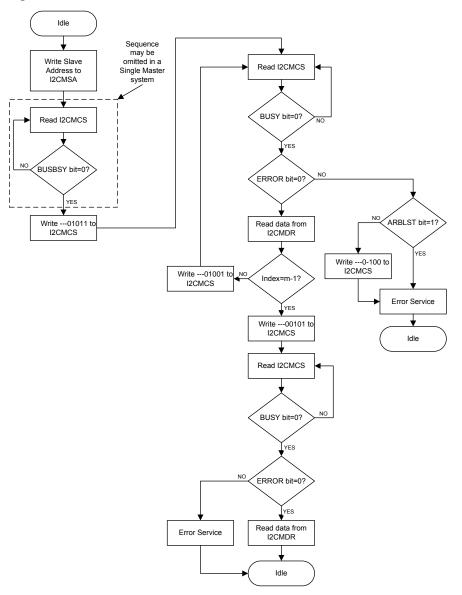


Figure 14-9. Master Burst SEND

Figure 14-10. Master Burst RECEIVE

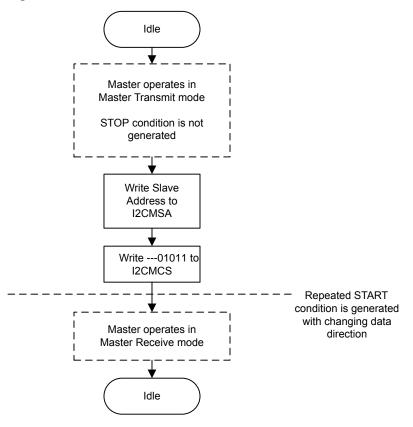
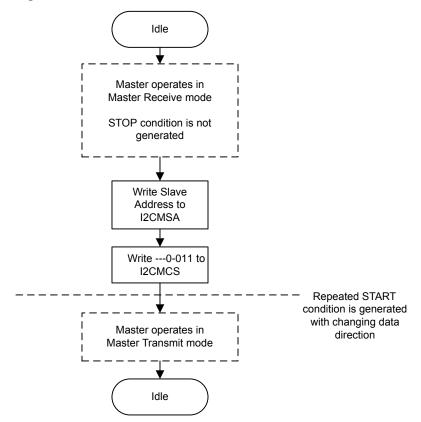
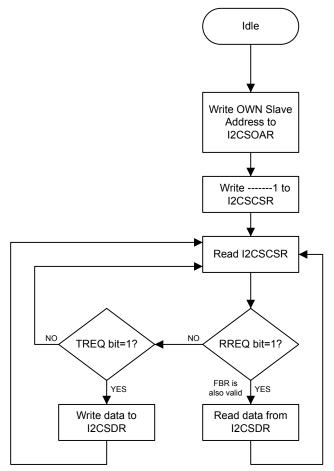



Figure 14-11. Master Burst RECEIVE after Burst SEND



14.2.5.2 I²C Slave Command Sequences

Figure 14-13 on page 343 presents the command sequence available for the I^2C slave.

14.3 Initialization and Configuration

The following example shows how to configure the I^2C module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I²C clock by writing a value of 0x0000.1000 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 4. Initialize the I²C Master by writing the I2CMCR register with a value of 0x0000.0020.
- 5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

```
TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;
TPR = 9
```

Write the I2CMTPR register with the value of 0x0000.0009.

- 6. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x0000.0076. This sets the slave address to 0x3B.
- 7. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- 8. Initiate a single byte send of the data from Master to Slave by writing the **I2CMCS** register with a value of 0x0000.0007 (STOP, START, RUN).
- 9. Wait until the transmission completes by polling the I2CMCS register's BUSBSY bit until it has been cleared.

14.4 I²C Register Map

Table 14-2 on page 344 lists the I^2C registers. All addresses given are relative to the I^2C base addresses for the master and slave:

- I²C Master 0: 0x4002.0000
- I²C Slave 0: 0x4002.0800
- I²C Master 1: 0x4002.1000
- I²C Slave 1: 0x4002.1800

Table 14-2. Inter-Integrated Circuit (I²C) Interface Register Map

Offset	Name	Туре	Reset	Description	See page
I ² C Maste	r			·	
0x000	I2CMSA	R/W	0x0000.0000	I2C Master Slave Address	346
0x004	I2CMCS	R/W	0x0000.0000	I2C Master Control/Status	347
0x008	I2CMDR	R/W	0x0000.0000	I2C Master Data	351
0x00C	I2CMTPR	R/W	0x0000.0001	I2C Master Timer Period	352
0x010	I2CMIMR	R/W	0x0000.0000	I2C Master Interrupt Mask	353
0x014	I2CMRIS	RO	0x0000.0000	I2C Master Raw Interrupt Status	354
0x018	I2CMMIS	RO	0x0000.0000	I2C Master Masked Interrupt Status	355
0x01C	I2CMICR	WO	0x0000.0000	I2C Master Interrupt Clear	356
0x020	I2CMCR	R/W	0x0000.0000	I2C Master Configuration	357
I ² C Slave					
0x000	I2CSOAR	R/W	0x0000.0000	I2C Slave Own Address	359

Offset	Name	Туре	Reset	Description	See page
0x004	I2CSCSR	RO	0x0000.0000	I2C Slave Control/Status	360
0x008	I2CSDR	R/W	0x0000.0000	I2C Slave Data	362
0x00C	I2CSIMR	R/W	0x0000.0000	I2C Slave Interrupt Mask	363
0x010	I2CSRIS	RO	0x0000.0000	I2C Slave Raw Interrupt Status	364
0x014	I2CSMIS	RO	0x0000.0000	I2C Slave Masked Interrupt Status	365
0x018	I2CSICR	WO	0x0000.0000	I2C Slave Interrupt Clear	366

14.5 Register Descriptions (I²C Master)

The remainder of this section lists and describes the I²C master registers, in numerical order by address offset. See also "Register Descriptions (I2C Slave)" on page 358.

Register 1: I²C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C Master Slave Address (I2CMSA)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x000

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1			· · ·		1	rese	rved	1				1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		Î	1 1	rese	rved		Ì	1		1		SA	1 I	I	T	R/S	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Bit/F	it/Field Name Type R							Descr	iption								
31:	it/Field Name Type Reset Description 31:8 reserved RO 0x00 Software s compatibili preserved								atibility v	vith futur	e produ	cts, the v	value of	a reserv			
7:	1		SA		R/W		0	I ² C SI	ave Add	ress							
								This fi	eld spec	cifies bits	s A6 thro	ough A0	of the sl	ave add	ress.		
0	0 R/S R/W 0				0	Recei	ve/Send										
								The ${\tt R}/{\tt S}$ bit specifies if the next operation is a Receive (High) or Send (Low).									
								0: Ser	nd								

1: Receive

Register 2: I²C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I²C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the I^2C Master Slave Address (I2CMSA) register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the I2CMDR register. When the I^2C module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the I^2C bus controller to send an acknowledge automatically after each byte. This bit must be reset when the I^2C bus controller requires no further data to be sent from the slave transmitter.

Read-Only Status Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x004 Type RO, reset 0x0000.0000

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		T	r r		, , ,		1	rese	rved	1 1		1	1	1	r			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		1			reserved		1			BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit/F			Name		Туре		Reset	Descri		uld not ro	ly on th	o voluo i	of a room	and bit	To prov	ido		
31	.7		reserved		RO		0x00	compa	atibility v	uld not re with futur ross a rea	e produ	cts, the	value of	a reserv	•			
6			BUSBSY		RO		0	Bus B	usy									
								otherv		fies the s e bus is ic ons.				,	,	,		
5			IDLE		RO		0	I ² C IdI	е									
										fies the I ² controlle			te. If set	, the con	troller is	idle;		
4			ARBLST		RO		0	Arbitration Lost										
									•	fies the re herwise,				-	controll	er lost		

Bit/Field	Name	Туре	Reset	Description
3	DATACK	RO	0	Acknowledge Data
				This bit specifies the result of the last data operation. If set, the transmitted data was not acknowledged; otherwise, the data was acknowledged.
2	ADRACK	RO	0	Acknowledge Address
				This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.
1	ERROR	RO	0	Error
				This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged, the transmit data not being acknowledged, or because the controller lost arbitration.
0	BUSY	RO	0	I ² C Busy
				This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.

Write-Only Control Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		r 1		1	rese	rved	1 1		1	1	1	1	
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	l I	res	erved	1 1		1		I	ACK	STOP	START	RUN
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	4		reserved	1	WO		0x00	compa	atibility v	uld not re with futur oss a rea	e produ	cts, the v	value of	a reserv	•	
3			ACK		WO		0	Data A	Acknow	ledge En	able					
									-	ises rece : See fiel				•		natically
2	2		STOP		WO		0	Gener	rate STO	OP						
									-	uses the able 14-3	•		e STOP	conditio	n. See f	ield

Bit/Field	Name	Туре	Reset	Description
1	START	WO	0	Generate START
				When set, causes the generation of a START or repeated START condition. See field decoding in Table 14-3 on page 349.
0	RUN	WO	0	I ² C Master Enable
				When set, allows the master to send or receive data. See field decoding in Table 14-3 on page 349.

Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

Current	I2CMSA[0]		I2CMC	S[3:0]		Description
State	R/S	ACK	STOP	START	RUN	
Idle	0	Xa	0	1	1	START condition followed by SEND (master goes to the Master Transmit state).
	0	х	1	1	1	START condition followed by a SEND and STOP condition (master remains in Idle state).
	1	0	0	1	1	START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state).
	1	0	1	1	1	START condition followed by RECEIVE and STOP condition (master remains in Idle state).
	1	1	0	1	1	START condition followed by RECEIVE (master goes to the Master Receive state).
	1	1	1	1	1	Illegal.
	All other co	mbination	s not listed	are non-op	perations.	NOP.
Master Transmit	х	х	0	0	1	SEND operation (master remains in Master Transmit state).
	Х	Х	1	0	0	STOP condition (master goes to Idle state).
	Х	х	1	0	1	SEND followed by STOP condition (master goes to Idle state).
	0	х	0	1	1	Repeated START condition followed by a SEND (master remains in Master Transmit state).
	0	х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).
	1	0	0	1	1	Repeated START condition followed by a RECEIVE operation with a negative ACK (master goes to Master Receive state).
	1	0	1	1	1	Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master goes to Master Receive state).
	1	1	1	1	1	Illegal.
	All other co	mbination	s not listed	are non-op	perations.	NOP.

Current	I2CMSA[0]		I2CMC	S[3:0]		Description
State	R/S	ACK	STOP	START	RUN	
Master Receive	х	0	0	0	1	RECEIVE operation with negative ACK (master remains in Master Receive state).
	Х	Х	1	0	0	STOP condition (master goes to Idle state). ^b
	Х	0	1	0	1	RECEIVE followed by STOP condition (master goes to Idle state).
	Х	1	0	0	1	RECEIVE operation (master remains in Master Receive state).
	Х	1	1	0	1	Illegal.
	1	0	0	1	1	Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state).
	1	0	1	1	1	Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master remains in Master Receive state).
	0	Х	0	1	1	Repeated START condition followed by SEND (master goes to Master Transmit state).
	0	Х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).
	All other co	mbination	s not listed	are non-op	perations.	NOP.

a. An X in a table cell indicates the bit can be 0 or 1.

b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.

Register 3: I²C Master Data (I2CMDR), offset 0x008

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

I2C Master Data (I2CMDR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x008 Type R/W, reset 0x0000.0000 30 28 27 26 25 24 22 20 17 16 31 29 23 21 19 18 reserved RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 12 10 6 0 15 14 11 9 8 2 7 5 4 3 1 DATA reserved Туре RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Reset Description Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 DATA R/W 0x00 Data Transferred Data transferred during transaction.

Register 4: I²C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock.

I2C Ma I2C Maste I2C Maste	er 0 base	e: 0x4002		MTPR)											
Offset 0x0 Type R/W	00C															
1900101	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1		і і		1	rese	rved		r	r		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	erved			•			1	TF	PR	1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 1
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:8	I	reserved		RO		0x00	compa		vith futur	e produ	cts, the v	value of	erved bit a reserv n.		
7:	0		TPR		R/W		0x1	SCL C	Clock Pe	riod						
								This fi	eld spec	ifies the	period	of the S0	CL clock	ί.		
								SCL_I	PRD = 2	2*(1 +	TPR)*	(SCL_L	P + SC	L_HP)*	CLK_PR	D
								where	:							
								SCL_I	PRD is th	ie SCL li	ne perio	d (I ² C c	lock).			
								tpr is	the Tim	ner Peric	d registe	er value	(range o	of 1 to 2	55).	
								SCL_I	LP is the	SCL Lo	w period	d (fixed a	at 6).			
								SCL_H	HP is the	SCL Hi	gh perio	d (fixed	at 4).			

Register 5: I²C Master Interrupt Mask (I2CMIMR), offset 0x010

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Mast I2C Mast Offset 0x	er 0 base er 1 base 010	: 0x4002. : 0x4002.	1000	2CMIMI	२)											
Type R/W	V, reset 0	×0000.00	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			, ,		· · ·		1	reser	rved	1 1		1	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		i i	1				1	reserved		1		i	1	i i	ì	IM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descri	ption							
31:1		r	reserved		RO		0x00	compa	atibility v	uld not re vith futur oss a rea	e produ	cts, the v	alue of	a reserv	•	
0)		IM		R/W		0	Interru	pt Masl	ĸ						
										ols wheth t, the inte			•			

otherwise, the interrupt is masked.

Register 6: I²C Master Raw Interrupt Status (I2CMRIS), offset 0x014

This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x014

Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	51	30	2.9	20	21	20	23	24	23	22	21	20	19	10	1/	
		•						rese	rved							
Tuno	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	0	0	0	к0 0	0	0	0	0	0	к0 0	0	0	0	0 RU	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		r r		1	reserved	1			1 1		1		RIS
					1			reactived	1				1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield					Reset	Descr	iption								
31:	1:1 reserved				RO		0x00	compa	atibility w	ith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv		
0			RIS		RO		0	Raw I	nterrupt	Status						
								This h	it snecifi	es the r	aw inter	runt state	- (nrior t	o maski	na) of th	

This bit specifies the raw interrupt state (prior to masking) of the l^2C master block. If set, an interrupt is pending; otherwise, an interrupt is not pending.

Register 7: I²C Master Masked Interrupt Status (I2CMMIS), offset 0x018

This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CMMIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x018

Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					•	rese	rved	l			1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														MIS		
Туре	RO															RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield						Reset	Descr	iption							
Bitt	loid		Hamo		ijpo			D 000.	iption							
31:	31:1		reserved		RO		0x00	compa	are shou atibility w rved acro	ith futur/	e produ	cts, the v	alue of	a reserv	•	
0			MIS		RO		0		ed Interro	•					0	
								Thio h	it an aifi	oo tha ra	ww.intorru	int atata	(offer m	ookina) a	sftha 120	montor

This bit specifies the raw interrupt state (after masking) of the I²C master block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

I2C Master Interrupt Clear (I2CMICR)

Register 8: I²C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

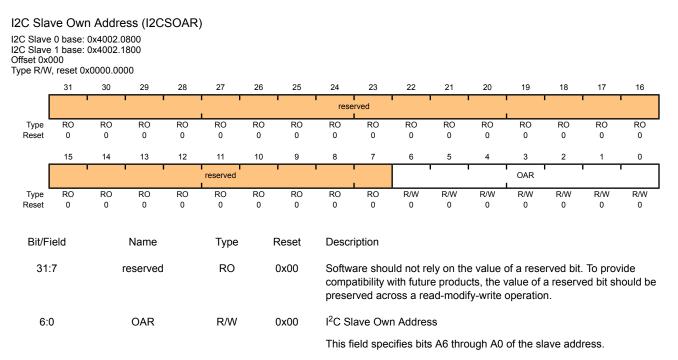
I2C Maste Offset 0x	er 1 base 01C	e: 0x4002 e: 0x4002 x0000.000	.1000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	Î		r r 1		1	reser	rved	r r		î.	1		1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	i I				1	reserved		r r		ı	1		1	IC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descri	ption							
31:	:1	I	reserved		RO		0x00	compa	atibility v	uld not re vith future oss a rea	e produ	cts, the	value of a	a reserv		
0	1		IC		WO		0	Interru	ipt Clea	r						
								Thio hi	it oontro	la tha ala	oring o	f the row	intorrun	+ A varit	o of 1 ol	ooro tho

This bit controls the clearing of the raw interrupt. A write of 1 clears the interrupt; otherwise, a write of 0 has no affect on the interrupt state. A read of this register returns no meaningful data.

Register 9: I²C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

I2C Maste I2C Maste I2C Maste Offset 0x0 Type R/W	er 0 base er 1 base 020	e: 0x4002 e: 0x4002	.1000	CMCR)												
i ypo i u ii	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	· · · ·		r r	-	1	l rese	r r		r	1	-	1 1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[15	14		12	resei		1		· · ·	0	SFE	4 MFE	3	reserved	1	LPBK
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:6	I	reserved		RO		0x00	compa	atibility w	ith futur	e produ		alue of	erved bit. a reserve on.	•	
5			SFE		R/W		0	I ² C SI	ave Fund	ction En	able					
									•					perate in s mode is d		
4			MFE		R/W		0	I ² C Ma	aster Fui	nction E	nable					
								set, M	•	ode is er	nabled; o	otherwise		perate in N er mode i		
3:	1	I	reserved		RO		0x00	compa	atibility w	ith futur	e produ		alue of	erved bit. a reserve on.		
0			LPBK		R/W		0	I ² C Lo	opback							
This bit s									ack moo	le. If set	, the de	vice is pu	ut in a t	rating norr est mode normally.		


October 09, 2007

14.6 Register Descriptions (I2C Slave)

The remainder of this section lists and describes the l^2C slave registers, in numerical order by address offset. See also "Register Descriptions (l^2C Master)" on page 345.

Register 10: I²C Slave Own Address (I2CSOAR), offset 0x000

This register consists of seven address bits that identify the Stellaris[®] I^2C device on the I^2C bus.

Register 11: I²C Slave Control/Status (I2CSCSR), offset 0x004

This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First Byte Received (FBR) bit is set only after the Stellaris[®] device detects its own slave address and receives the first data byte from the I²C master. The Receive Request (RREQ) bit indicates that the Stellaris[®] I²C device has received a data byte from an I²C master. Read one data byte from the I²C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit indicates that the Stellaris[®] I²C device is addressed as a Slave Transmitter. Write one data byte into the I²C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris[®] $I^{2}C$ slave operation.

Read-Only Status Register

I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x004 Type RO. reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		reserved															
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		•					reserved							FBR	TREQ	RREQ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/Field		Name		Туре	Type Reset		Description										
31:3		reserved			RO		0x00	compa	Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation.								
2		FBR			RO		0	First Byte Received									
								Indicates that the first byte following the slave's own address is received. This bit is only valid when the RREQ bit is set, and is automatically cleared when data has been read from the I2CSDR register.									
								Note:	This	s bit is no	t used f	or slave	transmi	it operati	ons.		
1		TREQ			RO	0	Transi	mit Req	uest								
								This bit specifies the state of the I^2C slave with regards to outstanding transmit requests. If set, the I^2C unit has been addressed as a slave transmitter and uses clock stretching to delay the master until data has been written to the I2CSDR register. Otherwise, there is no outstanding transmit request.									
0		RREQ			RO		0	Receive Request									
								This bit specifies the status of the I^2C slave with regards to outstanding receive requests. If set, the I^2C unit has outstanding receive data from the I^2C master and uses clock stretching to delay the master until the data has been read from the I2CSDR register. Otherwise, no receive data is outstanding.									

Write-Only Control Register

I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	erved				1 1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1					1	reserved						1	1	DA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	WO 0
Bit/F	ïeld		Name		Туре	I	Reset	Descr	iption							
31	:1		reserved		RO		0x00	compa	are shou atibility w rved acro	ith futur/	e produo	cts, the v	alue of	a reserv	•	
0)		DA		WO		0	Devic	e Active							
								1=Ena	ables the	e I ² C slav	ve opera	ation.				

0=Disables the I^2C slave operation.

Register 12: I²C Slave Data (I2CSDR), offset 0x008

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

I2C Slave Data (I2CSDR) I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x008 Type R/W, reset 0x0000.0000

31 28 27 26 25 24 22 20 18 17 16 30 29 23 21 19 reserved RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 12 10 6 0 15 14 11 9 8 2 7 5 4 3 1 DATA reserved Туре RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Reset Description Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 DATA R/W 0x0 Data for Transfer This field contains the data for transfer during a slave receive or transmit operation.

Register 13: I²C Slave Interrupt Mask (I2CSIMR), offset 0x00C

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Slave I2C Slave I2C Slave Offset 0x0 Type R/W	e 0 base e 1 base 00C	e: 0x4 e: 0x4	4002.08 4002.18	800 800	CSIMR)												
	31		30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	ľ		г т т	ĩ		ſ	reser	rved	1 1		1			1	
Type Reset	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	ľ		· · ·	1		1	reserved		1		1			1	ІМ
Туре	RO		RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset Bit/F	o ield		0	0 Name	0	о Туре	0	0 Reset	0 Descri	0 ption	0	0	0	0	0	0	0
31:	:1		r	eserved		RO		0x00	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv		
0				IM		R/W		0	Interru	ipt Masł	κ.						
													v interrup not mask	•			

otherwise, the interrupt is masked.

October 09, 2007

I2C Slave Raw Interrupt Status (I2CSRIS)

Register 14: I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x010

This register specifies whether an interrupt is pending.

120 010		w mich	upi Olai	us (120	0110)											
I2C Slave I2C Slave Offset 0x	e 1 base: 010	0x4002.1	1800													
Type RO	, reset 0>	(0000.000	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1		і і		1	rese	rved	, ,	r	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		·			· ·			reserved								RIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:1		reserved		RO		0x00	compa	atibility v	vith futur	e produ	ucts, the	of a rese value of operatio	a reserv	•	vide nould be
0 RIS RO 0 Raw Interrupt Stat			Status													
	Ŭ .							Thic b	it chooif	ios tho r	aw into	rrunt etai	to (prior t	lo mack	ing) of th	12°

This bit specifies the raw interrupt state (prior to masking) of the l^2C slave block. If set, an interrupt is pending; otherwise, an interrupt is not pending.

Register 15: I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x014

This register specifies whether an interrupt was signaled.

I2C Slave Masked Interrupt Status (I2CSMIS)

120 010		SKCU III	ionupi (Status (12001010	5)										
I2C Slave I2C Slave Offset 0x	e 1 base:															
Type RO,	, reset 0x	(0000.000	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	г <u>г</u>		1	rese	rved		1	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	· ·		1	reserved			1	1		1	1	MIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
04					DO		000	0 - 6							T	
31	:1		reserved		RO		0x00	compa	atibility w	ith futur	e produ	cts, the	of a rese value of operatio	a reserv	•	
0 MIS RO 0 Masked Inte			ed Interr	upt Stat	us											
				This bit an effect the environment state (effective solution) of the 1^2 O shows												

This bit specifies the raw interrupt state (after masking) of the I^2C slave block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

October 09, 2007

Register 16: I²C Slave Interrupt Clear (I2CSICR), offset 0x018

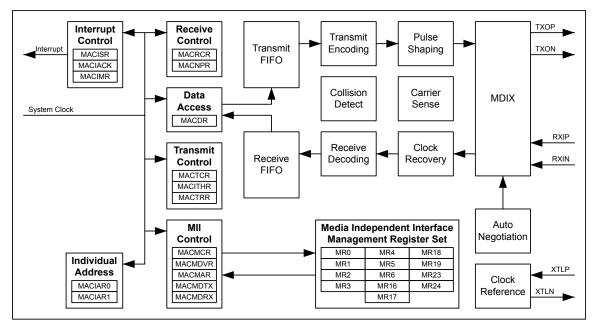
This register clears the raw interrupt.

I2C Slave I2C Slave Offset 0x	e 0 base: e 1 base: 018	0x4002.0	1800	CSICR))											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ï	1	1	r r r		1	rese	rved I	r	1	1		1	1	r
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1	1	r r I		1	reserved	1		1	1		I	1	IC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	WO 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:1	I	reserved	l	RO		0x00	compa	atibility v	vith futur	e produ	ne value o icts, the v ify-write o	alue of	a reserv		
0)		IC		WO		0	Clear	Interrup	t						
This bit controls the clearing of the r						of the raw	interrup	ot. A wri	te of 1 cl	ears the						

interrupt; otherwise a write of 0 has no affect on the interrupt state. A

read of this register returns no meaningful data.

October 09, 2007 www.DataSheet4U.com


15 Ethernet Controller

The Stellaris[®] Ethernet Controller consists of a fully integrated media access controller (MAC) and network physical (PHY) interface device. The Ethernet Controller conforms to *IEEE 802.3* specifications and fully supports 10BASE-T and 100BASE-TX standards.

The Ethernet Controller module has the following features:

- Conforms to the IEEE 802.3-2002 specification
 - 10BASE-T/100BASE-TX IEEE-802.3 compliant. Requires only a dual 1:1 isolation transformer interface to the line
 - 10BASE-T/100BASE-TX ENDEC, 100BASE-TX scrambler/descrambler
 - Full-featured auto-negotiation
- Multiple operational modes
 - Full- and half-duplex 100 Mbps
 - Full- and half-duplex 10 Mbps
 - Power-saving and power-down modes
- Highly configurable
 - Programmable MAC address
 - LED activity selection
 - Promiscuous mode support
 - CRC error-rejection control
 - User-configurable interrupts
- Physical media manipulation
 - Automatic MDI/MDI-X cross-over correction
 - Register-programmable transmit amplitude
 - Automatic polarity correction and 10BASE-T signal reception

15.1 Block Diagram

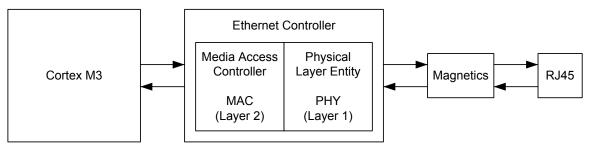


Figure 15-1. Ethernet Controller Block Diagram

15.2 Functional Description

As shown in Figure 15-2 on page 368, the Ethernet Controller is functionally divided into two layers or modules: the Media Access Controller (MAC) layer and the Network Physical (PHY) layer. These correspond to the OSI model layers 2 and 1. The primary interface to the Ethernet Controller is a simple bus interface to the MAC layer. The MAC layer provides transmit and receive processing for Ethernet frames. The MAC layer also provides the interface to the PHY module via an internal Media Independent Interface (MII).

Figure 15-2. Ethernet Controller

15.2.1 Internal MII Operation

For the MII management interface to function properly, the MDIO signal must be connected through a 10k Ω pull-up resistor to the +3.3 V supply. Failure to connect this pull-up resistor will prevent management transactions on this internal MII to function. Note that it is possible for data transmission across the MII to still function since the PHY layer will auto-negotiate the link parameters by default.

For the MII management interface to function properly, the internal clock must be divided down from the system clock to a frequency no greater than 2.5 MHz. The **MACMDV** register contains the divider used for scaling down the system clock. See page 388 for more details about the use of this register.

15.2.2 PHY Configuration/Operation

The Physical Layer (PHY) in the Ethernet Controller includes integrated ENDECs, scrambler/descrambler, dual-speed clock recovery, and full-featured auto-negotiation functions. The transmitter includes an on-chip pulse shaper and a low-power line driver. The receiver has an adaptive equalizer and a baseline restoration circuit required for accurate clock and data recovery. The transceiver interfaces to Category-5 unshielded twisted pair (Cat-5 UTP) cabling for 100BASE-TX applications, and Category-3 unshielded twisted pair (Cat-3 UTP) for 10BASE-T applications. The Ethernet Controller is connected to the line media via dual 1:1 isolation transformers. No external filter is required.

15.2.2.1 Clock Selection

The PHY has an on-chip crystal oscillator which can also be driven by an external oscillator. In this mode of operation, a 25-MHz crystal should be connected between the XTALPPHY and XTALNPHY pins. Alternatively, an external 25-MHz clock input can be connected to the XTALPPHY pin. In this mode of operation, a crystal is not required and the XTALNPHY pin must be tied to ground.

15.2.2.2 Auto-Negotiation

The PHY supports the auto-negotiation functions of Clause 28 of the *IEEE 802.3* standard for 10/100 Mbps operation over copper wiring. This function can be enabled via register settings. The auto-negotiation function defaults to On and the ANEGEN bit in the **MR0** register is High after reset. Software can disable the auto-negotiation function by writing to the ANEGEN bit. The contents of the **MR4** register are sent to the PHY's link partner during auto-negotiation via fast-link pulse coding.

Once auto-negotiation is complete, the DPLX and RATE bits in the **MR18** register reflect the actual speed and duplex that was chosen. If auto-negotiation fails to establish a link for any reason, the ANEGF bit in the **MR18** register reflects this and auto-negotiation restarts from the beginning. Writing a 1 to the RANEG bit in the **MR0** register also causes auto-negotiation to restart.

15.2.2.3 Polarity Correction

The PHY is capable of either automatic or manual polarity reversal for 10BASE-T and auto-negotiation functions. Bits 4 and 5 (RVSPOL and APOL) in the **MR16** register control this feature. The default is automatic mode, where APOL is Low and RVSPOL indicates if the detection circuitry has inverted the input signal. To enter manual mode, APOL should be set High and RVSPOL then controls the signal polarity.

15.2.2.4 MDI/MDI-X Configuration

The PHY supports the automatic MDI/MDI-X configuration as defined in *IEEE 802.3-2002 specification*. This eliminates the need for cross-over cables when connecting to another device, such as a hub. The algorithm is controlled via settings in the **MR24** register. Refer to page 410 for additional details about these settings.

15.2.2.5 LED Indicators

The PHY supports two LED signals that can be used to indicate various states of operation of the Ethernet Controller. These signals are mapped to the LED0 and LED1 pins. By default, these pins are configured as GPIO signals (PF3 and PF2). For the PHY layer to drive these signals, they must be reconfigured to their hardware function. See "General-Purpose Input/Outputs (GPIOs)" on page

155 for additional details. The function of these pins is programmable via the PHY layer **MR23** register. Refer to page 409 for additonal details on how to program these LED functions.

15.2.3 MAC Configuration/Operation

15.2.3.1 Ethernet Frame Format

Ethernet data is carried by Ethernet frames. The basic frame format is shown in Figure 15-3 on page 370.

Figure 15-3. Ethernet Frame

Preamble	SFD	Destination Address	Source Address	Length/ Type	Data	FCS
7	1	6	6	2	46 - 1500	4
Bytes	Byte	Bytes	Bytes	Bytes	Bytes	Bytes

The seven fields of the frame are transmitted from left to right. The bits within the frame are transmitted from least to most significant bit.

Preamble

The Preamble field is used by the physical layer signaling circuitry to synchronize with the received frame's timing. The preamble is 7 octets long.

Start Frame Delimiter (SFD)

The SFD field follows the preamble pattern and indicates the start of the frame. Its value is 1010.1011.

Destination Address (DA)

This field specifies destination addresses for which the frame is intended. The LSB of the DA determines whether the address is an individual (0), or group/multicast (1) address.

Source Address (SA)

The source address field identifies the station from which the frame was initiated.

Length/Type Field

The meaning of this field depends on its numeric value. The first of two octets is most significant. This field can be interpreted as length or type code. The maximum length of the data field is 1500 octets. If the value of the Length/Type field is less than or equal to 1500 decimal, it indicates the number of MAC client data octets. If the value of this field is greater than or equal to 1536 decimal, then it is type interpretation. The meaning of the Length/Type field when the value is between 1500 and 1536 decimal is unspecified by the standard. The MAC module assumes type interpretation if the value of the Length/Type field is greater than 1500 decimal.

Data

The data field is a sequence of 0 to 1500 octets. Full data transparency is provided so any values can appear in this field. A minimum frame size is required to properly meet the IEEE standard. If necessary, the data field is extended by appending extra bits (a pad). The pad field can have a size of 0 to 46 octets. The sum of the data and pad lengths must be a minimum of 46 octets. The MAC module automatically inserts pads if required, though it can be disabled by a register

write. For the MAC module core, data sent/received can be larger than 1500 bytes, and no Frame Too Long error is reported. Instead, a FIFO Overrun error is reported when the frame received is too large to fit into the Ethernet Controller's RAM.

Frame Check Sequence (FCS)

The frame check sequence carries the cyclic redundancy check (CRC) value. The value of this field is computed over destination address, source address, length/type, data, and pad fields using the CRC-32 algorithm. The MAC module computes the FCS value one nibble at a time. For transmitted frames, this field is automatically inserted by the MAC layer, unless disabled by the CRC bit in the **MACTCTL** register. For received frames, this field is automatically checked. If the FCS does not pass, the frame will not be placed in the RX FIFO, unless the FCS check is disabled by the BADCRC bit in the **MACRCTL** register.

15.2.3.2 MAC Layer FIFOs

For Ethernet frame transmission, a 2 KB TX FIFO is provided that can be used to store a single frame. While the *IEEE 802.3 specification* limits the size of an Ethernet frame's payload section to 1500 Bytes, the Ethernet Controller places no such limit. The full buffer can be used, for a payload of up to 2032 bytes.

For Ethernet frame reception, a 2-KB RX FIFO is provided that can be used to store multiple frames, up to a maximum of 31 frames. If a frame is received and there is insufficient space in the RX FIFO, an overflow error will be indicated.

For details regarding the TX and RX FIFO layout, refer to Table 15-1 on page 371. Please note the following difference between TX and RX FIFO layout. For the TX FIFO, the Data Length field in the first FIFO word refers to the Ethernet frame data payload, as shown in the 5th to nth FIFO positions. For the RX FIFO, the Frame Length field is the total length of the received Ethernet frame, including the FCS and Frame Length bytes. Also note that if FCS generation is disabled with the CRC bit in the **MACTCTL** register, the last word in the FIFO must be the FCS bytes for the frame that has been written to the FIFO.

Also note that if the length of the data payload section is not a multiple of 4, the FCS field will overlap words in the FIFO. However, for the RX FIFO, the beginning of the next frame will always be on a word boundary.

FIFO Word Read/Write Sequence	Word Bit Fields	TX FIFO (Write)	RX FIFO (Read)
1st	7:0	Data Length LSB	Frame Length LSB
	15:8	Data Length MSB	Frame Length MSB
	23:16	DA	oct 1
	31:24	DA	oct 2
2nd	7:0	DA	oct 3
	15:8	DA	oct 4
	23:16	DA	oct 5
	31:24	DA	oct 6
3rd	7:0	SA	oct 1
	15:8	SA	oct 2
	23:16	SA	oct 3
	31:24	SA	oct 4

Table 15-1. TX & RX FIFO Organization

FIFO Word Read/Write Sequence	Word Bit Fields	TX FIFO (Write)	RX FIFO (Read)
4th	7:0	5	SA oct 5
	15:8	S	SA oct 6
	23:16	Len	/Type MSB
	31:24	Len	/Type LSB
5th to nth	7:0	d	ata oct n
	15:8	dat	ta oct n+1
	23:16	dat	ta oct n+2
	31:24	dat	ta oct n+3
last	7:0	FCS 1 (if the CRC bit in MACCTL is 0)	FCS 1
	15:8	FCS 2 (if the CRC bit in MACCTL is 0)	FCS 2
	23:16	FCS 3 (if the CRC bit in MACCTL is 0)	FCS 3
	31:24	FCS 4 (if the CRC bit in MACCTL is 0)	FCS 4

15.2.3.3 Ethernet Transmission Options

The Ethernet Controller can automatically generate and insert the Frame Check Sequence (FCS) at the end of the transmit frame. This is controlled by the CRC bit in the **MACTCTL** register. For test purposes, in order to generate a frame with an invalid CRC, this feature can be disabled.

The *IEEE 802.3 specification* requires that the Ethernet frame payload section be a minimum of 46 bytes. The Ethernet Controller can be configured to automatically pad the data section if the payload data section loaded into the FIFO is less than the minimum 46 bytes. This feature is controlled by the PADEN bit in the **MACTCTL** register.

At the MAC layer, the transmitter can be configured for both full-duplex and half-duplex operation by using the DUPLEX bit in the **MACTCTL** register.

15.2.3.4 Ethernet Reception Options

Using the BADCRC bit in the **MACRCTL** register, the Ethernet Controller can be configured to reject incoming Ethernet frames with an invalid FCS field.

The Ethernet receiver can also be configured for Promiscuous and Multicast modes using the PRMS and AMUL fields in the **MACRCTL** register. If these modes are not enabled, only Ethernet frames with a broadcast address, or frames matching the MAC address programmed into the **MACIA0** and **MACIA1** register will be placed into the RX FIFO.

15.2.4 Interrupts

The Ethernet Controller can generate an interrupt for one or more of the following conditions:

- A frame has been received into an empty RX FIFO
- A frame transmission error has occurred
- A frame has been transmitted successfully
- A frame has been received with no room in the RX FIFO (overrun)

- A frame has been received with one or more error conditions (for example, FCS failed)
- An MII management transaction between the MAC and PHY layers has completed
- One or more of the following PHY layer conditions occurs:
 - Auto-Negotiate Complete
 - Remote Fault
 - Link Status Change
 - Link Partner Acknowledge
 - Parallel Detect Fault
 - Page Received
 - Receive Error
 - Jabber Event Detected

15.3 Initialization and Configuration

To use the Ethernet Controller, the peripheral must be enabled by setting the EPHY0 and EMAC0 bits in the **RCGC2** register. The following steps can then be used to configure the Ethernet Controller for basic operation.

- 1. Program the **MACDIV** register to obtain a 2.5 MHz clock (or less) on the internal MII. Assuming a 20-MHz system clock, the **MACDIV** value would be 4.
- 2. Program the MACIA0 and MACIA1 register for address filtering.
- **3.** Program the **MACTCTL** register for Auto CRC generation, padding, and full-duplex operation using a value of 0x16.
- 4. Program the **MACRCTL** register to reject frames with bad FCS using a value of 0x08.
- 5. Enable both the Transmitter and Receive by setting the LSB in both the **MACTCTL** and **MACRCTL** registers.
- 6. To transmit a frame, write the frame into the TX FIFO using the **MACDATA** register. Then set the NEWTX bit in the **MACTR** register to initiate the transmit process. When the NEWTX bit has been cleared, the TX FIFO will be available for the next transmit frame.
- 7. To receive a frame, wait for the NPR field in the MACNP register to be non-zero. Then begin reading the frame from the RX FIFO by using the MACDATA register. When the frame (including the FCS field) has been read, the NPR field should decrement by one. When there are no more frames in the RX FIFO, the NPR field will read 0.

15.4 Ethernet Register Map

Table 15-2 on page 374 lists the Ethernet MAC registers. All addresses given are relative to the Ethernet MAC base address of 0x4004.8000.

The *IEEE 802.3* standard specifies a register set for controlling and gathering status from the PHY. The registers are collectively known as the MII Management registers and are detailed in Section 22.2.4 of the *IEEE 802.3 specification*. Table 15-2 on page 374 also lists these MII Management registers. *All addresses given are absolute and are written directly to the REGADR field of the* **MACMCTL** register. The format of registers 0 to 15 are defined by the IEEE specification and are common to all PHY implementations. The only variance allowed is for features that may or may not be supported by a specific PHY. Registers 16 to 31 are vendor-specific registers, used to support features that are specific to a vendors PHY implementation. Vendor-specific registers not listed are reserved.

Table 15-2. Ethernet Register Map

Offset	Name	Туре	Reset	Description	See page
Ethernet	MAC			· · · · · · · · · · · · · · · · · · ·	
0x000	MACRIS	RO	0x0000.0000	Ethernet MAC Raw Interrupt Status	376
0x000	MACIACK	W1C	0x0000.0000	Ethernet MAC Interrupt Acknowledge	378
0x004	MACIM	R/W	0x0000.007F	Ethernet MAC Interrupt Mask	379
0x008	MACRCTL	R/W	0x0000.0008	Ethernet MAC Receive Control	380
0x00C	MACTCTL	R/W	0x0000.0000	Ethernet MAC Transmit Control	381
0x010	MACDATA	R/W	0x0000.0000	Ethernet MAC Data	382
0x014	MACIA0	R/W	0x0000.0000	Ethernet MAC Individual Address 0	384
0x018	MACIA1	R/W	0x0000.0000	Ethernet MAC Individual Address 1	385
0x01C	MACTHR	R/W	0x0000.003F	Ethernet MAC Threshold	386
0x020	MACMCTL	R/W	0x0000.0000	Ethernet MAC Management Control	387
0x024	MACMDV	R/W	0x0000.0080	Ethernet MAC Management Divider	388
0x02C	MACMTXD	R/W	0x0000.0000	Ethernet MAC Management Transmit Data	389
0x030	MACMRXD	R/W	0x0000.0000	Ethernet MAC Management Receive Data	390
0x034	MACNP	RO	0x0000.0000	Ethernet MAC Number of Packets	391
0x038	MACTR	R/W	0x0000.0000	Ethernet MAC Transmission Request	392
MII Manag	gement				
-	MR0	R/W	0x3100	Ethernet PHY Management Register 0 - Control	393
-	MR1	RO	0x7849	Ethernet PHY Management Register 1 – Status	395
-	MR2	RO	0x000E	Ethernet PHY Management Register 2 – PHY Identifier 1	397
-	MR3	RO	0x7237	Ethernet PHY Management Register 3 – PHY Identifier 2	398
-	MR4	R/W	0x01E1	Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement	399
-	MR5	RO	0x0000	Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability	401

Offset	Name	Туре	Reset	Description	See page
-	MR6	RO	0x0000	Ethernet PHY Management Register 6 – Auto-Negotiation Expansion	402
-	MR16	R/W	0x0140	Ethernet PHY Management Register 16 – Vendor-Specific	403
-	MR17	R/W	0x0000	Ethernet PHY Management Register 17 – Interrupt Control/Status	405
-	MR18	RO	0x0000	Ethernet PHY Management Register 18 – Diagnostic	407
-	MR19	R/W	0x4000	Ethernet PHY Management Register 19 – Transceiver Control	408
-	MR23	R/W	0x0010	Ethernet PHY Management Register 23 – LED Configuration	409
-	MR24	R/W	0x00C0	Ethernet PHY Management Register 24 –MDI/MDIX Control	410

15.5 Ethernet MAC Register Descriptions

The remainder of this section lists and describes the Ethernet MAC registers, in numerical order by address offset. Also see "MII Management Register Descriptions" on page 392.

Register 1: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000

The MACRIS register is the interrupt status register. On a read, this register gives the current status value of the corresponding interrupt prior to masking.

Ethernet MAC Raw Interrupt Status (MACRIS)

Base 0x4004.8000 Offset 0x000 Type RO, reset 0x0000.0000

iyperto,	Teset UX															
I	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	, it	1 1	12	reserved	10	1		, <u> </u>	PHYINT	MDINT	RXER	FOV	TXEMP	TXER	RXINT
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:7		reserved		RO		0x0	compa	atibility v	ith futur	e produ		alue of	erved bit. a reserve n.		
6			PHYINT		RO		0x0	PHY I	nterrupt							
						When set, indicates that an enabled interrupt in the PHY layer had occured. MR17 in the PHY must be read to determine the specific event that triggered this interrupt.										
5			MDINT		RO		0x0	MII Tr	ansactio	n Comp	lete					
						RO 0x0 MII Transaction Complete When set, indicates that a transaction (read or write) on the MII has completed successfully. Note: The matching of the MII has completed successfully.							the MII ii	nterface		
4			RXER		RO		0x0	Recei	ve Error							
														d on the to be se		r. The
									receive nly).	error oc	curs dur	ing the r	eceptior	n of a fra	me (100	Mb/s
									ne frame ignment		n intege	r numbei	r of byte	s (dribble	e bits) dı	ue to an
								TI	ne CRC	of the fra	ame doe	es not pa	iss the F	CS chec	ck.	
							 The CRC of the frame does not pass the FCS check. The length/type field is inconsistent with the frame data size wl interpreted as a length field. 							e when		
3			FOV		RO		0x0	0x0 FIFO Overrrun								
								When FIFO.	,	cates th	at an ov	errun wa	as encou	untered o	on the re	eceive
2			TXEMP		RO		0x0	Trans	mit FIFC	Empty						
								When set, indicates that the packet was transmitted and that the TX FIFO is empty.								

Bit/Field	Name	Туре	Reset	Description
1	TXER	RO	0x0	 Transmit Error When set, indicates that an error was encountered on the transmitter. The possible errors that can cause this interrupt bit to be set are: The data length field stored in the TX FIFO exceeds 2032. The frame is not sent when this error occurs. The retransmission attempts during the backoff process have
0	RXINT	RO	0x0	exceeded the maximum limit of 16. Packet Received When set, indicates that at least one packet has been received and is

stored in the receiver FIFO.

Register 2: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000

A write of a 1 to any bit position of this register clears the corresponding interrupt bit in the Ethernet MAC Raw Interrupt Status (MACRIS) register.

Ethernet MAC Interrupt Acknowledge (MACIACK)

Base 0x4004.8000 Offset 0x000 Type W1C, reset 0x0000.0000

Type Wite	, 10001	0.0000.0															
-	31	30	29	28	27	26	25		24	23	22	21	20	19	18	17	16
		1	1	I	т т т		I	T	rese	rved I	1				1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																	
1	15	14	13	12	11	10	9	Î	8	7	6	5	4	3	2	1	
					reserved					1	PHYINT	MDINT	RXER	FOV	TXEMP	TXER	RXINT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0
	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Bit/F	ield		Name		Туре		Reset		Descr	iption							
31:	7		reserved		RO		0x0		Softw	are sho	uld not re	ly on the	e value o	of a res	erved bit.	To prov	/ide
									compa	atibility	with futur	e produo	cts, the v	alue of	a reserv		
									prese	rved ac	ross a rea	ad-modi ⁻	ty-write o	operatio	on.		
6			PHYINT		W1C		0x0		Clear	PHY In	terrupt						
									A writ	e of a 1	clears th	е рнуті	v⊤ interr	upt rea	d from the	e MACF	พร
									regist								
5			MDINT		W1C		0x0		Clear	MII Tra	nsaction	Complet	te				
									A write	e of a 1	clears the	MDINT	interrupt	read fr	om the M	ACRIS	register.
4			RXER		W1C		0x0		Clear	Receiv	e Error						
									A write	e of a 1	clears the	e rxer i	interrupt	read fro	om the M	ACRIS	register.
3			FOV		W1C		0x0		Clear	FIFO O	verrun						
									A writ	e of a 1	clears th	e FOV ir	nterrupt r	ead fro	m the M	ACRIS r	egister.
2			TXEMP		W1C		0x0		Clear	Transm	iit FIFO E	mpty					
									A write	e of a 1	clears the	TXEMP	interrupt	read fr	om the M	ACRIS	register.
1			TXER		W1C		0x0		Clear	Transm	it Error						
											clears th e TX FIF			read fr	om the N	IACRIS	register
0			RXINT		W1C		0x0		Clear	Packet	Received	þ					
									A write	e of a 1	clears the	RXINT	interrupt	read fr	om the M	ACRIS	register.

Register 3: Ethernet MAC Interrupt Mask (MACIM), offset 0x004

This register allows software to enable/disable Ethernet MAC interrupts. Writing a 0 disables the interrupt, while writing a 1 enables it.

Ethernet MAC Interrupt Mask (MACIM)

Base 0x4004.8000 Offset 0x004 Type R/W, reset 0x0000.007F

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					· ·	l	1	rese	rved							•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r i	r r		reserved		1	l I		PHYINTM	MDINTM	RXERM	FOVM	TXEMPM	TXERM	RXINTM
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W 1	R/W	R/W 1	R/W	R/W 1	R/W 1
	-	-	-	-	-	-	-	-	-							·
Bit/Fi	ield		Name		Туре	F	Reset	Descr	iption							
31:	7	r	reserved		RO		0x0	compa	atibility v		e produc	cts, the v	alue of	erved bit. a reserve n.		
6		Р	HYINTM		R/W		1	Mask	PHY Int	errupt						
								This b assert		s the PHY	INT bit	in the M	ACRIS	register	from be	ing
5		Ν	MDINTM		R/W		1	Mask	MII Trar	saction	Complet	te				
								This b assert		s the MDI	INT bit ir	n the MA	CRIS re	egister fr	om bein	ıg
4		I	RXERM		R/W		1	Mask	Receive	Error						
								This b	it masks	the RXE	R bit in th	ne MACF	RIS regi	ster from	being a	sserted.
3			FOVM		R/W		1	Mask	FIFO O	verrrun						
								This b	it masks	the FOV	bit in th	e MACR	IS regis	ster from	being a	sserted.
2		Т	XEMPM		R/W		1	Mask	Transm	t FIFO E	mpty					
								This b assert		s the TXE	™P bit ir	n the MA	CRIS re	egister fr	om bein	ıg
1			TXERM		R/W		1	Mask	Transm	it Error						
								This b	it masks	the TXE	R bit in th	ne MACF	RIS regi	ster from	being a	sserted.
0		F	RXINTM		R/W		1	Mask	Packet	Received	ł					
								This b assert		s the RXI	INT bit ir	n the MA	CRIS re	egister fr	om bein	ıg

Base 0x4004.8000

Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x008

This register enables software to configure the receive module and control the types of frames that are received from the physical medium. It is important to note that when the receive module is enabled, all valid frames with a broadcast address of FF-FF-FF-FF-FF-FF in the Destination Address field will be received and stored in the RX FIFO, even if the AMUL bit is not set.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1	1	1			1	rese	rved			1			1	1
Type eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1				reserved	1	I	1			RSTFIFO	BADCRC	PRMS	AMUL	RXE
Type eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 0
Bit/Fi	eld		Name	•	Туре	I	Reset	Descr	iption							
31:	5		reserve	ed	RO		0x0	comp	atibility v	vith futur	e produ	icts, the	of a rese value of a operatior	a reserv		
4 RSTFIFO R/W 0x0									Receive	FIFO						
									set, clea zation is			FIFO. Th	is should	be don	e when s	oftwa
									set initia				e disable sequenc	•		
3			BADCR	C	R/W		0x1	Enabl	e Reject	Bad CF	RC					
									ADCRC I		es the r	ejection	of frames	s with a	n incorre	ctly
2			PRMS	6	R/W		0x0	Enabl	e Promis	scuous N	Node					
The PRMS bit en regardless of th														accepts	s all valid	frame
1			AMUL	-	R/W		0x0	Enabl	e Multica	ast Fram	ies					
								The A mediu		nables t	he rece	ption of r	nulticast f	rames f	rom the	physio
0			RXEN	I	R/W		0x0	Enabl	e Receiv	/er						
													eiver. W		bit is Lo ium are i	,

Ethernet MAC Receive Control (MACRCTL)

Register 5: Ethernet MAC Transmit Control (MACTCTL), offset 0x00C

This register enables software to configure the transmit module, and control frames are placed onto the physical medium.

Ethernet MAC Transmit Control (MACTCTL)

Base 0x4004.8000 Offset 0x00C Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•						rese	rved					l		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1 1		r 1	reserved	r	1 1		· · · · ·	1	DUPLEX	reserved	CRC	PADEN	TXEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0
Bit/Fi	ield		Name		Туре	I	Reset	Descr	iption							
31:	5		reserved		RO		0x0	compa	atibility v	vith futur	e produ	e value o cts, the v ify-write o	alue of a	a reserv	•	
4		I	DUPLEX		R/W		0x0	Enable	e Duple:	k Mode						
									set, ena		plex mo	ode, allov	ving simu	ultaneou	ıs transn	nission
3			reserved		RO		0x0	compa	atibility v	vith futur	e produ	e value o cts, the v ify-write o	alue of a	a reserv	•	
2			CRC		R/W		0x0	Enable	e CRC (Generatio	on					
								placer	ment at t	he end o	f the pa	atic gene cket. If thi actly as t	is bit is no	ot set, th	e frames	placed
1			PADEN		R/W		0x0	Enable	e Packe	t Paddin	g					
										ables the frame siz		atic padd	ling of pa	ickets th	nat do no	t meet
0			TXEN		R/W		0x0	Enable	e Transr	nitter						
								When disabl		ables the	e transm	iitter. Wh	en this b	it is 0, tl	ne transr	nitter is

Register 6: Ethernet MAC Data (MACDATA), offset 0x010

This register enables software to access the TX and RX FIFOs.

Reads from this register return the data stored in the RX FIFO from the location indicated by the read pointer.

Writes to this register store the data in the TX FIFO at the location indicated by the write pointer. The write pointer is then auto-incremented to the next TX FIFO location.

There is no mechanism for randomly accessing bytes in either the RX or TX FIFOs. Data must be read from the RX FIFO sequentially and stored in a buffer for further processing. Once a read has been performed, the data in the FIFO cannot be re-read. Data must be written to the TX FIFO sequentially. If an error is made in placing the frame into the TX FIFO, the write pointer can be reset to the start of the TX FIFO by writing the TXER bit of the **MACIACK** register and then the data re-written.

Read-Only Register

Ethernet MAC Data (MACDATA)

Base 0x4004.8000 Offset 0x010 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ı			г <u>г</u>		1	RXD	ATA		1		1	ı	1 1	·]
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1			г г 1		1	RXD	ATA		1			I	1 1	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
31:	0	I	RXDATA		RO		0x0	Receiv	ve FIFO	Data						
31:0 RXDATA RO 0x0 Receive FIFO Data The RXDATA bits represent the next four bytes of data stored in th FIFO.													the RX			

Write-Only Register

Ethernet MAC Data (MACDATA)

Base 0x4004.8000 Offset 0x010 Type WO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	Γ	1	1	ſ	1	TXE	DATA	ſ	ſ	I		I	I	
Type Reset	WO 0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1				TXE	DATA		1			1	8	'
Type Reset	WO 0															

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
31:0	TXDATA	WO	0x0	Transmit FIFO Data
				The $\tt TXDATA$ bits represent the next four bytes of data to place in the TX FIFO for transmission.

Register 7: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014

This register enables software to program the first four bytes of the hardware MAC address of the Network Interface Card (NIC). (The last two bytes are in **MACIA1**). The 6-byte IAR is compared against the incoming Destination Address fields to determine whether the frame should be received.

Ethernet MAC Individual Address 0 (MACIA0)

Base 0x4004.8000 Offset 0x014 Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I		MAC	OCT4		1	1				MAC	OCT3	I		
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0								
Reset															0	
I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-			OCT2		-	-			-	MAC	1		-	-
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0								
Reset	0	U	0	0	0	0	0	0	Ū	Ū	0	0	0	Ū	0	Ū
Bit/F	iold		Name		Туре	,	Reset	Descr	intion							
DIVI	iciu		Name		туре		10301	Desci	ιριισπ							
31:	24	Ν	IACOCT	4	R/W		0x0	MAC	Address	Octet 4						
								The м	ACOCT4	bits rep	resent tl	ne fourth	octet of	f the MA	C addre	ss used
								to unio	quely ide	entify ea	ch Ether	net Con	troller.			
23:	16	N	IACOCT	3	R/W		0x0	MAC	Address	Octet 3						
20.				0			UNU									
										bits rep entify ea				he MAC	addres	s used
													u onor.			
15:	:8	N	IACOCT	2	R/W		0x0	MAC	Address	Octet 2						
								The M	ACOCT2	bits repr	esent th	e secon	d octet o	f the MA	C addre	ss used
								to unio	quely ide	entify ea	ch Ether	net Con	troller.			
7:0	0	Ν	IACOCT	1	R/W		0x0	MAC	Address	Octet 1						
										bits rep ify each				ne MAC a	address	used to

Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018

This register enables software to program the last two bytes of the hardware MAC address of the Network Interface Card (NIC). (The first four bytes are in **MACIA0**). The 6-byte IAR is compared against the incoming Destination Address fields to determine whether the frame should be received.

Ethernet MAC Individual Address 1 (MACIA1)

Base 0x4004.8000 Offset 0x018 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		r i		1	rese	rved	r 1		1		Î	1	1
Turno	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	0	ко 0	0	к0 0	0	0	к0 0	0	0	0	0	0	0	0	0	0
	Ū.	Ū	Ū	•	Ū	0		Ū	Ū	Ū	Ū		Ū	Ū	Ū	•
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	1	MAC	DCT6		1	-		1 I		MAC	OCT5	1	T	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	iold		Name		Туре		Reset	Descr	intion							
Dial			Name		турс		Reset	DCSCI	iption							
31:	16		reserved		RO		0x0	Softwa	are shoi	uld not re	lv on th	e value o	of a rese	erved bit	. To prov	/ide
• · ·										vith futur					•	
								•		oss a rea	•	-				
												•				
15	:8	Ν	ACOCT	6	R/W		0x0	MAC	Address	Octet 6						
								Tho M	۸ COOTE	bits repr	rocont t	ha siyth	octot of	tha MA() addrae	hoau a
										entify ead					auurea	5 U3EU
									10019100	chary cat						
7:	0	Ν	ласост	5	R/W		0x0	MAC	Address	Octet 5						
								T 1		1.14 ······						
										bits repr				ie MAC	address	usea to
								unique	ely ident	tify each	Etherne	et Contro	lier.			

October 09, 2007

Register 9: Ethernet MAC Threshold (MACTHR), offset 0x01C

This register enables software to set the threshold level at which the transmission of the frame begins. If the THRESH bits are set to 0x3F, which is the reset value, transmission does not start until the NEWTX bit is set in the **MACTR** register. This effectively disables the early transmission feature.

Writing the THRESH bits to any value besides all 1s enables the early transmission feature. Once the byte count of data in the TX FIFO reaches this level, transmission of the frame begins. When THRESH is set to all 0s, transmission of the frame begins after 4 bytes (a single write) are stored in the TX FIFO. Each increment of the THRESH bit field waits for an additional 32 bytes of data (eight writes) to be stored in the TX FIFO. Therefore, a value of 0x01 would wait for 36 bytes of data to be written while a value of 0x02 would wait for 68 bytes to be written. In general, early transmission starts when:

```
Number of Bytes >= 4 (THRESH x 8 + 1)
```

Reaching the threshold level has the same effect as setting the NEWTX bit in the **MACTR** register. Transmission of the frame begins and then the number of bytes indicated by the Data Length field is sent out on the physical medium. Because under-run checking is not performed, it is possible that the tail pointer may reach and pass the write pointer in the TX FIFO. This causes indeterminate values to be written to the physical medium rather than the end of the frame. Therefore, sufficient bus bandwidth for writing to the TX FIFO must be guaranteed by the software.

If a frame smaller than the threshold level needs to be sent, the NEWTX bit in the **MACTR** register must be set with an explicit write. This initiates the transmission of the frame even though the threshold limit has not been reached.

If the threshold level is set too small, it is possible for the transmitter to underrun. If this occurs, the transmit frame is aborted, and a transmit error occurs.

Type R/W	V, reset C	x0000.00	3F													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1	rese	I erved		1		1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I		reser	ved	1	I	1				I THR	ESH	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W 1	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Bit/F	ield		Name		Туре		Reset	Descr	ription							
31	:6		reserved	l	RO		0x0	comp	are shou atibility w rved acro	vith futur	e produ	cts, the	value of	a reserv	•	
5:	0		THRESH	ł	R/W		0x3F	Thres	hold Val	ue						
									HRESH b a in the s.	•						

Ethernet MAC Threshold (MACTHR)

Base 0x4004.8000 Offset 0x01C Base 0x4004.8000 Offset 0x020 Type R/W_reset 0x

Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020

This register enables software to control the transfer of data to and from the MII Management registers in the Ethernet PHY. The address, name, type, reset configuration, and functional description of each of these registers can be found in Table 15-2 on page 374 and in "MII Management Register Descriptions" on page 392.

In order to initiate a *read* transaction from the MII Management registers, the WRITE bit must be written with a 0 during the same cycle that the START bit is written with a 1.

In order to initiate a *write* transaction to the MII Management registers, the WRITE bit must be written with a 1 during the same cycle that the START bit is written with a 1.

Type R/W	/, reset 0	x0000.00	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	г		г г		1	rese	erved	1	1	1		1 1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																
i	15	14	13	12	11 1	10	9	8	7	6	5	4	3	2	1	0
				rese	erved I						REGADR		l	reserved	WRITE	START
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:8		reserved		RO		0x0	comp	atibility v	vith futur	e produ		alue of	erved bit. a reserve n.	•	
7:	3	F	REGADR		R/W		0x0	MII R	egister A	ddress						
											•	ts the M nterface		gement r tion.	egister a	address
2			reserved		RO		0x0	comp	atibility v	vith futur	e produ		alue of	erved bit. a reserve n.		
1			WRITE		R/W		0x0	MII R	egister T	ransacti	on Type					
								interfa	ace trans	•	fwrite	•		next MII operatior	0	
0			START		R/W		0x0	MII R	egister T	ransacti	on Enab	ole				
								interfa	ace trans	action. ۱	When a	1 is writt	en to thi	next MII r is bit, the written (w	MII reg	ister

Ethernet MAC Management Control (MACMCTL)

Base 0x4004.8000

Register 11: Ethernet MAC Management Divider (MACMDV), offset 0x024

This register enables software to set the clock divider for the Management Data Clock (MDC). This clock is used to synchronize read and write transactions between the system and the MII Management registers. The frequency of the MDC clock can be calculated from the following formula:

 $F_{mdc} = F_{ipclk} / (2 * (MACMDVR + 1))$

The clock divider must be written with a value that ensures that the MDC clock will not exceed a frequency of 2.5 MHz.

Offset 0x Type R/V	024	x0000.00	80													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1	rese	erved	1	1	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1	1		I	1	D	I IV	1	T	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/F	ield		Name		Туре	I	Reset	Descr	ription							
31	:8	I	reserved	l	RO		0x0	comp	atibility v	vith futu	e produ	ne value icts, the ify-write	value of	a reserv	•	<i>r</i> ide nould be
7:	0		DIV		R/W		0x80	Clock	Divider							
												he clock IAC and				

Ethernet MAC Management Divider (MACMDV)

Register 12: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C

This register holds the next value to be written to the MII Management registers.

Ethernet MAC Management Transmit Data (MACMTXD)

Base 0x4004.8000 Offset 0x02C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1	rese	rved						1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	T	I	г т 1		1	I MD	тх		ſ	1	1	ſ	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	16		reserved		RO		0x0	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of a	a reserv	•	
15	:0		MDTX		R/W		0x0	MII Re	egister T	ransmit	Data					
								The M	DTX bits	represe	nt the d	ata that	will be w	ritten in	the nex	t MII

management transaction.

Register 13: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030

This register holds the last value read from the MII Management registers.

Ethernet MAC Management Receive Data (MACMRXD)

Base 0x4004.8000 Offset 0x030 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	rved	1				1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1					1	MD	I DRX	1				1	1	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0								
Resei	0	U	0	U	0	0	U	0	U	0	0	0	U	0	0	0
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
31:	16	I	reserved		RO		0x0	compa	atibility v	vith futur	e produ	e value o cts, the v fy-write o	alue of	a reserv	•	
15	:0		MDRX		R/W		0x0	MII Re	egister F	Receive I	Data					
								The M	DRX bits	represe	nt the d	ata that v	was rea	d in the	previous	MI

management transaction.

October 09, 2007 www.DataSheet4U.com

Register 14: Ethernet MAC Number of Packets (MACNP), offset 0x034

This register holds the number of frames that are currently in the RX FIFO. When NPR is 0, there are no frames in the RX FIFO and the RXINT bit is not set. When NPR is any other value, there is at least one frame in the RX FIFO and the RXINT bit in the **MACRIS** register is set.

Ethernet MAC Number of Packets (MACNP)

Base 0x4004.8000 Offset 0x034 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					1	rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		reser	ved	1	1	1				N	PR		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
31	:6		reserved		RO		0x0	comp	are shou atibility w rved acro	vith futur	e produ	cts, the v	alue of	a reserv		
5:	0		NPR		RO		0x0	Numb	er of Pa	ckets in	Receive	e FIFO				
								The N	IPR bits r	•		mber of		stored in	the RX	FIFO.

The NPR bits represent the number of packets stored in the RX FIFO. While the NPR field is greater than 0, the RXINT interrupt in the **MACRIS** register will be asserted.

Register 15: Ethernet MAC Transmission Request (MACTR), offset 0x038

This register enables software to initiate the transmission of the frame currently located in the TX FIFO to the physical medium. Once the frame has been transmitted to the medium from the TX FIFO or a transmission error has been encountered, the NEWTX bit is auto-cleared by the hardware.

Base 0x4004.8000 Offset 0x038 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 q 8 7 6 5 4 3 2 1 0 reserved NEWTX RO RO RO RO RO R/W Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Type Reset Description 31:1 RO 0x0 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 0x0 0 NEWTX R/W New Transmission When set, the NEWTX bit initiates an Ethernet transmission once the packet has been placed in the TX FIFO. This bit is cleared once the transmission has been completed. If early transmission is being used (see the MACTHR register), this bit does not need to be set.

Ethernet MAC Transmission Request (MACTR)

15.6 MII Management Register Descriptions

The *IEEE 802.3 standard* specifies a register set for controlling and gathering status from the PHY. The registers are collectively known as the MII Management registers. All addresses given are absolute. Addresses not listed are reserved. Also see "Ethernet MAC Register Descriptions" on page 375.

Base 0x4004.8000

Register 16: Ethernet PHY Management Register 0 – Control (MR0), address 0x00

This register enables software to configure the operation of the PHY. The default settings of these registers are designed to initialize the PHY to a normal operational mode without configuration.

Ethernet PHY Management Register 0 – Control (MR0)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESET	LOOPBK	SPEEDSL	ANEGEN	PWRDN	ISO	RANEG	DUPLEX	COLT			1	reserved	1		
Type Reset	R/W 0	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/V 0
Bit/F	ield		Name		Туре		Reset	Descri	iption							
15			RESET		R/W											
								interna	al state i	ets the r machine by hardw	s. Once					
14	4	I	LOOPBK	C	R/W		0	Loopb	ack Mo	de						
						When set, enables the Loopback mode of operation. The receive of is isolated from the physical medium and transmissions are sen through the receive circuitry instead of the medium.										
13	3	S	SPEEDS	L	R/W		1	Speed Select								
								1: Ena	ables the	e 100 Mb	o/s mode	e of ope	ration (1	00BASE	-TX).	
								0: Ena	ables the	e 10 Mb/	s mode	of opera	ition (10	BASE-T).	
12	2	A	ANEGEN	I	R/W		1	Auto-N	Vegotiat	ion Enat	ble					
								When	set, ena	ables the	e Auto-N	egotiatio	on proce	SS.		
11	1		PWRDN		R/W		0	Power	r Down							
								When	set, pla	ces the l	PHY into	o a low-p	ower co	onsuming	g state.	
10	0		ISO		R/W		0	Isolate	9							
										lates trai nese bus		id receiv	e data p	aths and	d ignore:	s all
9)		RANEG		R/W		0	Resta	rt Auto-I	Vegotiati	on					
										tarts the bit is clea		-	•	ss. Once	the res	tart h
8	5	I	DUPLEX	Ĩ	R/W		1	Set Du	uplex M	ode						
									are in a i	e Full-Du manual o	•					
								0. 500					peration.			

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
7	COLT	R/W	0	Collision Test
				When set, enables the Collision Test mode of operation. The COLT bit asserts after the initiation of a transmission and de-asserts once the transmission is halted.
6:0	reserved	R/W	0x00	Write as 0, ignore on read.

Register 17: Ethernet PHY Management Register 1 – Status (MR1), address 0x01

This register enables software to determine the capabilities of the PHY and perform its initialization and operation appropriately.

Ethernet PHY Management Register 1 – Status (MR1)

Base 0x4004.8000 Address 0x01 Type RO, reset 0x7849

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	100X_F	100X_H	10T_F	10T_H		re	served	1	MFPS	ANEGC	RFAULT	ANEGA	LINK	JAB	EXTD
Type Reset	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RC 0	RO 1	RO 0	RC 0	RO 1
Bit/F	ield		Name		Туре		Reset	Desc	ription							
1	5	r	reserved		RO		0	comp	atibility v	vith futur	e produ	cts, the v	of a rese value of a operation	a reserv		
14	4		100X_F		RO		1	100B	ASE-TX	Full-Dup	olex Moc	le				
									n set, ind Ouplex m		at the PH	IY is cap	bable of s	upportir	ng 100B	ASE-TX
1;	3		100X_H		RO		1	100B	ASE-TX	Half-Du	plex Mo	de				
									n set, ind Duplex m		at the PH	łY is cap	bable of s	upportir	ng 100B/	ASE-TX
1:	2		10T_F		RO		1	10BA	SE-T Fu	II-Duple	k Mode					
								Wher mode		icates th	at the P	HY is ca	apable of	10BAS	E-T Full	-Duplex
1	1		10T_H		RO		1	10BA	SE-T Ha	alf-Duple	x Mode					
									n set, ind Duplex m		at the P	HY is ca	apable of	suppor	ting 10B	ASE-T
10	:7	r	reserved		RO		0	comp	atibility v	vith futur	e produ	cts, the v	of a rese value of a operation	a reserv		
6	6		MFPS		RO		1	Mana	gement	Frames	with Pre	amble S	Suppress	ed		
									-			•	nent Inter e preamt		•	of
5	5		ANEGC		RO		0	Auto-	Negotiat	ion Com	plete					
								comp	leted an		e extend	led regis	otiation p sters defi			n
4	ŀ	I	RFAULT		RC		0	Remo	ote Fault							
													t conditic n if the co			

www.datasheet4u.com

Bit/Field	Name	Туре	Reset	Description
3	ANEGA	RO	1	Auto-Negotiation When set, indicates that the PHY has the ability to perform Auto-Negotiation.
2	LINK	RO	0	Link Made When set, indicates that a valid link has been established by the PHY.
1	JAB	RC	0	Jabber Condition When set, indicates that a jabber condition has been detected by the PHY. This bit remains set until it is read, even if the jabber condition no longer exists.
0	EXTD	RO	1	Extended Capabilities When set, indicates that the PHY provides an extended set of capabilities that can be accessed through the extended register set.

Register 18: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02

This register, along with **MR3**, provides a 32-bit value indicating the manufacturer, model, and revision information.

Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2)

Base 0x4004.8000 Address 0x02 Type RO, reset 0x000E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 OUI[21:6] RO Type Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 **Bit/Field** Name Туре Reset Description 15:0 OUI[21:6] RO 0x000E Organizationally Unique Identifier[21:6] This field, along with the OUI[5:0] field in MR3, makes up the Organizationally Unique Identifier indicating the PHY manufacturer.

Register 19: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03

This register, along with **MR2**, provides a 32-bit value indicating the manufacturer, model, and revision information.

Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3)

Base 0x4004.8000 Address 0x03 Type RO, reset 0x7237

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			OUI[5:0]	ſ			1	M	N	1	1		R	N	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	1	1	1	0	0	1	0	0	0	1	1	0	1	1	1
Bit/F	ield		Name		Туре		Reset	Descr	iption							
15:	10		OUI[5:0]		RO		0x1C	Organ	izationa	lly Uniqu	ue Identi	ifier[5:0]				
										0		21:6] f ifier indic		-	•	
9:4	4		MN		RO		0x23	Mode	Numbe	r						
								The M	N field re	epresent	ts the Mo	odel Nun	nber of t	the PHY.		
3:0	0		RN		RO		0x7	Revisi	ion Num	ber						
								The R	N field re	epresent	s the Re	evision N	lumber o	of the PH	IY.	

October 09, 2007 www.DataSheet4U.com

Register 20: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04

This register provides the advertised abilities of the PHY used during Auto-Negotiation. Bits 8:5 represent the Technology Ability Field bits. This field can be overwritten by software to Auto-Negotiate to an alternate common technology. Writing to this register has no effect until Auto-Negotiation is re-initiated.

Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4)

Base 0x4004.8000

Address 0x04 Type R/W, reset 0x01E1

, ,	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NP	reserved	RF		reser	ved	1	A3	A2	A1	A0			S[4:0]		'
Type Reset	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 1	RO 0	RO 0	RO 0	RO 0	RO 1
Bit/Fie	eld		Name		Туре		Reset	Descr	iption							
15			NP		RO		0	Next I	⊃age							
								When set, indicates the PHY is capable of Next Page exchange provide more detailed information on the PHY's capabilities.							ges to	
14		r	reserved		RO		0	compa	atibility v		e produ	cts, the v	alue of		•	vide hould be
13			RF		R/W		0	Remo	te Fault							
										icates to ounterec		partner	that a R	Remote F	ault co	ndition
12:9	9	r	reserved		RO		0	compa	atibility v		e produ	cts, the v	alue of		•	vide hould be
8			A3		R/W		1	Techn	ology Al	bility Fie	ld[3]					
								signal this bi	ing proto t can be	ocol. If so	oftware w to 0 and	ants to e	ensure th		iode is i	ll-duplex not used, th the
7			A2		R/W		1	Techn	ology Al	bility Fie	ld[2]					
								signal	ing proto	ocol. If so	oftware w	ants to e	ensure th	e 100Bas nat this m on re-initi	iode is i	f-duplex not used,
6			A1		R/W		1	Techn	ology Al	bility Fiel	ld[1]					
								When set, indicates that the PHY supports the 10Base-T full-dup signaling protocol. If software wants to ensure that this mode is not this bit can be written to 0 and Auto-Negotiation re-initiated.						•		
5			A0		R/W		1	Techn	ology Al	bility Fiel	ld[0]					
								When set, indicates that the PHY supports the 10Ba signaling protocol. If software wants to ensure that thi this bit can be written to 0 and Auto-Negotiation re-					nat this m	iode is i	•	

Bit/Field	Name	Туре	Reset	Description
4:0	S[4:0]	RO	0x01	Selector Field
				The $S[4:0]$ field encodes 32 possible messages for communicating between PHYs. This field is hard-coded to 0x01, indicating that the Stellaris [®] PHY is <i>IEEE 802.3</i> compliant.

Register 21: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05

This register provides the advertised abilities of the link partner's PHY that are received and stored during Auto-Negotiation.

Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5)

Base 0x4004.8000 Address 0x05 Type RO, reset 0x0000

-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NP	ACK	RF		г т 1		A[I 7:0]		1				S[4:0]	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/Fi	ield		Name		Туре		Reset	Descr	iption							
15	5		NP		RO		0	Next F	Dage							
									nges to			nk partne etailed inf		•		ext page
14	ļ.		ACK		RO		0	Ackno	wledge							
												evice has uring Au		-	eceived	the link
13	3		RF		RO		0	Remo	te Fault							
								Used inform		ndard tra	ansport	mechani	sm for tr	ansmitti	ng simp	le fault
12:	5		A[7:0]		RO		0x00	Techn	ology A	bility Fiel	d					
										ield enco ee the N		lividual te ster.	echnolog	gies that	are sup	ported
4:0	C		S[4:0]		RO		0x00	Select	tor Field							
									[4:0] f en PHY		odes po	ssible me	essages	for com	munica	ting
								Value	e C	Descriptio	on					
								0x00	F	Reserved	I					
								0x01	I	EEE Std	802.3					
								0x02				SLAN-16	Т			
								0x03		EEE Std						
								0x04		EEE Std						
								0x05-	-Ux1F F	Reserved	1					

Register 22: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06

This register enables software to determine the Auto-Negotiation and Next Page capabilities of the PHY and the link partner after Auto-Negotiation.

Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6)

Base 0x4004.8000 Address 0x06 Type RO, reset 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1			· ·	reserved				1 1		PDF	LPNPA	reserved	PRX	LPANEGA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RC	RO	RO	RC	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
15:	:5		reserved		RO	(000x00	compa	atibility v		e produ	cts, the v	alue of	erved bit. a reserve n.	•	
4			PDF		RC		0	Paralle	el Detec	tion Fau	lt					
									-	icates th s bit is cl				ology has	been	detected
3			LPNPA		RO		0	Link P	artner i	s Next Pa	age Able	е				
								When	set, ind	icates th	at the lir	nk partne	er is Nex	t Page A	ble.	
2			reserved		RO	(0x000	compa	atibility v		e produ	cts, the v	alue of	erved bit. a reserve n.		
1			PRX		RC		0	New F	Page Re	ceived						
								partne		ored in t		•		n receive This bit re		
0			LPANEGA		RO		0	Link P	artner is	s Auto-N	egotiatio	on Able				
								When	set, ind	icates th	at the Li	ink partn	ier is Au	to-Negot	iation A	ble.

Register 23: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10

This register enables software to configure the operation of vendor-specific modes of the PHY.

Ethernet PHY Management Register 16 – Vendor-Specific (MR16)

Base 0x4004.8000 Address 0x10 Type R/W, reset 0x0140

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RPTR	INPOL	reserved	TXHIM	SQEI	NL10		rese	rved		APOL	RVSPOL	reser	rved	PCSBP	RXCC
Type Reset	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 1	RO 0	RO 1	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
Bit/Fi	ield		Name		Туре		Reset	Descri	iption							
15	5		RPTR		R/W		0	Repea	ater Mod	е						
								full-du to rece	plex is r eive activ	ot allow	ed and e PHY is	er mode o the Carrie s configur	er Sense	e signal	only res	ponds
14	1		INPOL		R/W		0	Interru	ıpt Polar	ity						
								1: Set	s the po	larity of t	he PHγ	' interrupt	to be a	ctive Hi	igh.	
								0: Set	s the po	larity of t	he PH	' interrupt	to activ	e Low.		
								Impo	ortant:	Low int	errupts	ledia Acc from the) to ensur	PHY, thi	is bit m	ust alway	
13	3		reserved		RO		0	compa	atibility w	ith futur	e produ	e value o cts, the va ify-write o	alue of a	a reserv	•	
12	2		TXHIM		R/W		0	Transı	mit High	Impeda	nce Mo	de				
								the TX	OP and	rxon tra	nsmitte	itter High r pins are ain fully fu	put into	a high iı		
11			SQEI		R/W		0	SQE I	nhibit Te	esting						
								When	set, pro	hibits 10	Base-T	SQE test	ting.			
									-		• •	erformed I e transmis		•		n pulse
10)		NL10		R/W		0	Natura	al Loopb	ack Mod	le					
								the tra	insmissi	on data	receive	e-T Natura d by the F se-T mode	PHY to b	e loope		
9:6	6		reserved		RO		0x05	compa	atibility w	ith futur	e produ	e value o cts, the va ify-write o	alue of a	a reserv	•	

Bit/Field	Name	Туре	Reset	Description
5	APOL	R/W	0	Auto-Polarity Disable
				When set, disables the PHY's auto-polarity function.
				If this bit is 0, the PHY automatically inverts the received signal due to a wrong polarity connection during Auto-Negotiation if the PHY is in 10Base-T mode.
4	RVSPOL	R/W	0	Receive Data Polarity
				This bit indicates whether the receive data pulses are being inverted.
				If the APOL bit is 0, then the RVSPOL bit is read-only and indicates whether the auto-polarity circuitry is reversing the polarity. In this case, a 1 in the RVSPOL bit indicates that the receive data is inverted while a 0 indicates that the receive data is not inverted.
				If the APOL bit is 1, then the RVSPOL bit is writable and software can force the receive data to be inverted. Setting RVSPOL to 1 forces the receive data to be inverted while a 0 does not invert the receive data.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	PCSBP	R/W	0	PCS Bypass
				When set, enables the bypass of the PCS and scrambling/descrambling functions in 100Base-TX mode. This mode is only valid when Auto-Negotiation is disabled and 100Base-T mode is enabled.
0	RXCC	R/W	0	Receive Clock Control
				When set, enables the Receive Clock Control power saving mode if the PHY is configured in 100Base-TX mode. This mode shuts down the receive clock when no data is being received from the physical medium to save power. This mode should not be used when PCSBP is enabled and is automatically disabled when the LOOPBK bit in the MR0 register

is set.

Register 24: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11

This register provides the means for controlling and observing the events, which trigger a PHY interrupt in the **MACRIS** register. This register can also be used in a polling mode via the MII Serial Interface as a means to observe key events within the PHY via one register address. Bits 0 through 7 are status bits, which are each set to logic 1 based on an event. These bits are cleared after the register is read. Bits 8 through 15 of this register, when set to logic 1, enable their corresponding bit in the lower byte to signal a PHY interrupt in the **MACRIS** register.

Ethernet PHY	Management	Register 1	7 – Interrupt	Control/Status	(MR17)
	managomon	r togiotor i		oon or oral and	(

Base	0x4004.8000

Address 0x11

Type	R/W.	reset	0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	JABBER_IE	RXER_IE	PRX_IE	PDF_IE	LPACK_IE	LSCHG_IE	RFAULT_IE	ANEGCOMP_E	JABBER_INT	RXER_INT	PRX_INT	PDF_INT	LPACK_INT	LSCHG_INT	RFAULT_INT	ANEGCOMP_NT
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RC 0	RC 0	RC 0	RC 0	RC 0	RC 0	RC 0	RC 0
Bit/F	ield		Name		Туре	F	Reset	Descr	iption							
1	5	JA	BBER_	IE	R/W		0	Jabbe	er Interru	pt Enabl	le					
									set, ena PHY.	bles syst	tem inter	rupts wh	en a Jab	ber conc	dition is o	detected
14	4	F	RXER_IE	Ξ	R/W		0	Recei	ve Error	Interrup	t Enable	•				
								When by the	set, ena PHY.	ables sys	stem inte	errupts w	/hen a re	eceive e	rror is de	etected
1:	3		PRX_IE		R/W		0	Page	Receive	d Interru	ipt Enab	le				
								When the PI	set, ena HY.	ables sys	stem inte	errupts w	/hen a n	ew page	e is rece	ived by
1:	2		PDF_IE		R/W		0	Parall	el Detec	tion Fau	lt Interru	ipt Enab	le			
									set, ena ted by th	-	stem inte	errupts w	hen a P	arallel D	etection	Fault is
1	1	L	PACK_I	E	R/W		0	LP Ac	knowled	lge Inter	rupt Ena	ble				
									set, ena cknowled			•		bursts a	re recei	ved with
10)	LS	SCHG_I	E	R/W		0	Link S	Status Ch	nange In	terrupt E	Enable				
									set, ena OK to FA		stem inte	errupts w	/hen the	Link Sta	atus cha	inges
g	1	RI	FAULT_	IE	R/W		0	Remo	te Fault	Interrup	t Enable					
									set, ena ed by th			errupts w	/hen a R	emote F	ault con	dition is
8		ANE	GCOMF	P_IE	R/W		0	Auto-l	Negotiat	ion Com	plete Int	errupt E	nable			
									set, ena ence has			•		Auto-Ne	egotiatic	n

Bit/Field	Name	Туре	Reset	Description
7	JABBER_INT	RC	0	Jabber Event Interrupt
				When set, indicates that a Jabber event has been detected by the 10Base-T circuitry.
6	RXER_INT	RC	0	Receive Error Interrupt
				When set, indicates that a receive error has been detected by the PHY.
5	PRX_INT	RC	0	Page Receive Interrupt
				When set, indicates that a new page has been received from the link partner during Auto-Negotiation.
4	PDF_INT	RC	0	Parallel Detection Fault Interrupt
				When set, indicates that a Parallel Detection Fault has been detected by the PHY during the Auto-Negotiation process.
3	LPACK_INT	RC	0	LP Acknowledge Interrupt
				When set, indicates that an FLP burst has been received with the Acknowledge bit set during Auto-Negotiation.
2	LSCHG_INT	RC	0	Link Status Change Interrupt
				When set, indicates that the link status has changed from OK to FAIL.
1	RFAULT_INT	RC	0	Remote Fault Interrupt
				When set, indicates that a Remote Fault condition has been signaled by the link partner.
0	ANEGCOMP_INT	RC	0	Auto-Negotiation Complete Interrupt
				When set, indicates that the Auto-Negotiation sequence has completed successfully.

Register 25: Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12

This register enables software to diagnose the results of the previous Auto-Negotiation.

Ethernet PHY Management Register 18 – Diagnostic (MR18)

Base 0x4004.8000

Address 0x12 Type RO, reset 0x0000

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		reserved		ANEGF	DPLX	RATE	RXSD	RX_LOCK				reser	ved		•	'		
Type Reset	RO 0	RO 0	RO 0	RC 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Bit/Fi	eld		Name		Туре	F	Reset	Descri	iption									
15:1	13	re	eserved	I	RO		0	compa	atibility v	ith futur	e produ	e value o cts, the v fy-write o	alue of a	a reserv	•			
12	2	A	NEGF		RC		0	Auto-N	Vegotiat	ion Failu	re							
									When set, indicates that no common technology was found during Auto-Negotiation and has failed. This bit remains set until read.									
11			DPLX		RO		0	Duple	x Mode									
								denon	ninator f	ound du	ring the	Duplex wa Auto-Neg ommon c	potiatior	proces	s. Other			
10)		RATE		RO		0	Rate										
								denon	ninator f	ound du	ring the	ase-TX v Auto-Neg ommon d	gotiatior	n proces	s. Other			
9			RXSD		RO		0	Receiv	ve Deteo	ction								
										node) or t		ve signal ichester-e						
8		R	K_LOC	к	RO		0	Receiv	ve PLL l	_ock								
												eceive P of operati						
7:0)	re	eserved	I	RO	00		compa	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.									

Register 26: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13

This register enables software to set the gain of the transmit output to compensate for transformer loss.

Ethernet PHY Management Register 19 - Transceiver Control (MR19)

Base 0x4004.8000 Address 0x13 Type R/W, reset 0x4000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ТХО	[1:0]			ľ		1	· · · ·	rese	rved		1	ı		1	
Туре	R/W	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descri	ption							
15:	14	-	TXO[1:0]		R/W		1	Traner	nit Amn	litude Se	loction					
15.	14				D/ W		I	ITalisi	пі Апр	illuue Se	lection					
] field se former in			output a	mplitude	e to acco	unt for
								Value	Descri	ption						
								0x0	Gain s	et for 0.0	DdB of ir	nsertion	loss			
								0x1	Gain s	et for 0.4	4dB of ir	nsertion	loss			
								0x2	Gain s	et for 0.8	BdB of ir	nsertion	loss			
								0x3	Gain s	et for 1.2	2dB of ir	nsertion	loss			
13	:0	I	reserved		RO		0x0	compa	atibility v	vith futur	e produ	cts, the		a reserv	t. To prov ved bit sh	

Register 27: Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17

This register enables software to select the source that will cause the LEDs to toggle.

Ethernet PHY Management Register 23 – LED Configuration (MR23)

	, reset 0x 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	10	· · ·	1 1	rese	1	10	1	-		· · · · · ·	1[3:0]	· ·		1	D[3:0]	, <u> </u>
Type leset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 0	R/ (
Bit/Fi	eld		Name		Туре		Reset	Descr	iption							
15:	8		reserved		RO		0x0	compa	atibility v	vith futur	ely on the re produc ad-modi	cts, the v	alue of	a reserv		
7:4	ŀ		LED1[3:0]		R/W		1	LED1	Source							
								The ⊥	ED1 fiel	d selects	s the sou	rce that	will togg	gle the ⊥	ED1 sigi	nal.
								Value	Descri	ption						
								0x0	Link O							
								0x1	RX or	TX Activ	vity (Defa	ault LED	1)			
								0x2	TX Ac	tivity						
								0x3	RX Ac	tivity						
								0x4	Collisi	on						
								0x5	100BA	SE-TX I	mode					
								0x6	10BAS	SE-T mo	de					
								0x7	Full-D	uplex						
								0x8	Link O	K & Blin	k=RX or	TX Acti	vity			
3:0)		LED0[3:0]		R/W		0	LED0	Source							
								The L	ED0 fiel	d selects	s the sou	rce that	will togg	gle the ⊥	EDO sig i	nal.
								Value	Descri	ption						
								0x0	Link O	K (Defa	ult LED0)				
								0x1	RX or	TX Activ	/ity					
								0x2	TX Ac	tivity						
								0x3	RX Ac	tivity						
								0x4	Collisi	on						
								0x5		SE-TX I						
								0x6	10BAS	SE-T mo	de					
								0x7	Full-D							
								0x8			k=RX or					

Register 28: Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18

This register enables software to control the behavior of the MDI/MDIX mux and its switching capabilities.

Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24)

Base 0x4004.8000 Address 0x18 Type R/W, reset 0x00C0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	erved			1	PD_MODE	AUTO_SW	MDIX	MDIX_CM		MDI	x_SD	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/Fi	eld		Name		Туре		Reset	Desc	ription							
15:	8	r	reserved		RO		0x0	comp	atibility v	vith future	e produ	ne value o licts, the va ify-write o	alue of	a reserv	•	
7		P	D_MODE	E	R/W		0	Paral	lel Detec	tion Mod	е					
												Detection n is not er		nd allow	/s auto-s	witching
6		A	UTO_SW	1	R/W		0	Auto-	Switchin	g Enable						
								Wher	n set, ena	ables Aut	o-Swite	ching of th	ne MDI/	MDIX m	ux.	
5			MDIX		R/W		0	Auto-	Switchin	g Config	uration					
									n set, ind guration.	icates tha	at the M	IDI/MDIX	mux is	in the cr	ossove	r (MDIX)
									n 0, it ind guration.	icates the	at the n	nux is in tl	he pass	-throug	n (MDI)	
									_sw bit i	_	-	ne MDIX b t is read/v				
4		N	IDIX_CM		RO		0	Auto-	Switchin	g Comple	ete					
								If O, it	indicate		e seque	uto-switcl ence has r	-	•		npleted.
3:0)	N	IDIX_SD		R/W		0	Auto-	Switchin	g Seed						
												eed for the attempts				
								A 0 s	ets the s	eed to 0>	(5.					

16 Analog Comparators

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S6611 controller provides two independent integrated analog comparators that can be configured to drive an output or generate an interrupt

Note: Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables for more information.

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

16.1 Block Diagram

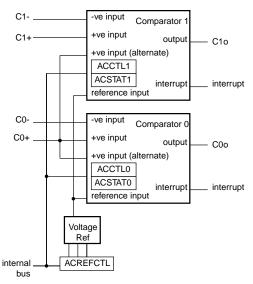
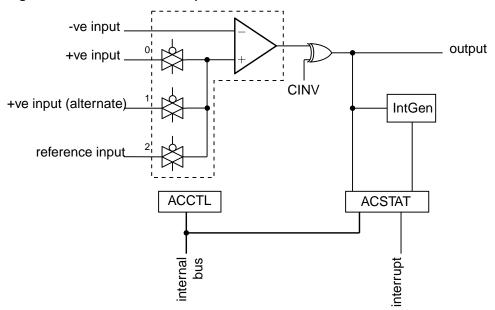


Figure 16-1. Analog Comparator Module Block Diagram

16.2 Functional Description


Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 16-2 on page 412, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

Figure 16-2. Structure of Comparator Unit

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

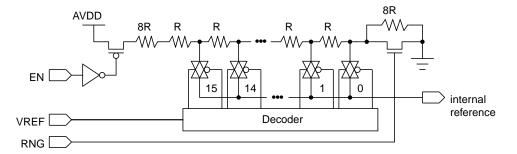
Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin.

Important: Certain register bit values must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

ACCNTL0	Com	Comparator 0							
ASRCP	VIN-	VIN+	Output	Interrupt					
00	C0-	C0+	C0o	yes					
01	C0-	C0+	C0o	yes					
10	C0-	Vref	C0o	yes					
11	C0-	reserved	C0o	yes					

Table 16-1. Comparator 0 Operating Modes

Table 16-2. Comparator 1 Operating Modes


ACCNTL1	Comparator 1								
ASRCP	VIN-	VIN+	Output	Interrupt					
00	C1-	C1o/C1+ ^a	C1o/C1+	yes					
01	C1-	C0+	C1o/C1+	yes					
10	C1-	Vref	C1o/C1+	yes					
11	C1-	reserved	C1o/C1+	yes					

a. C1o and C1+ signals share a single pin and may only be used as one or the other.

16.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 16-3 on page 413. This is controlled by a single configuration register (**ACREFCTL**). Table 16-3 on page 413 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Figure 16-3. Comparator Internal Reference Structure

Table 16-3. Internal Reference Voltage and ACREFCTL Field Values

ACREFCTL F	legister	Output Reference Voltage Based on VREF Field Value
EN Bit Value	RNG Bit Value	
EN=0		0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.

ACREFCTL R	egister	Output Reference Voltage Based on VREF Field Value
EN Bit Value	RNG Bit Value	
EN=1	RNG=0	Total resistance in ladder is 32 R.
		$V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$
		$V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{32}$
		$V_{REF} = 0.825 + 0.103$ VREF
		The range of internal reference in this mode is 0.825-2.37 V.
	RNG=1	Total resistance in ladder is 24 R.
		$V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$
		$V_{REF} = AV_{DD} \times \frac{(VREF)}{24}$
		V_{REF} = 0.1375 x V_{REF}
		The range of internal reference for this mode is 0.0-2.0625 V.

16.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with co- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- 4. Configure comparator 0 to use the internal voltage reference and to *not* invert the output on the C00 pin by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

16.4 Register Map

Table 16-4 on page 415 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

Offset	Name	Туре	Reset	Description	See page
0x00	ACMIS	R/W1C	0x0000.0000	Analog Comparator Masked Interrupt Status	416
0x04	ACRIS	RO	0x0000.0000	Analog Comparator Raw Interrupt Status	417
0x08	ACINTEN	R/W	0x0000.0000	Analog Comparator Interrupt Enable	418
0x10	ACREFCTL	R/W	0x0000.0000	Analog Comparator Reference Voltage Control	419
0x20	ACSTAT0	RO	0x0000.0000	Analog Comparator Status 0	420
0x24	ACCTL0	R/W	0x0000.0000	Analog Comparator Control 0	421
0x40	ACSTAT1	RO	0x0000.0000	Analog Comparator Status 1	420
0x44	ACCTL1	R/W	0x0000.0000	Analog Comparator Control 1	421

Table 16-4. Analog Comparators Register Map

16.5 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00

This register provides a summary of the interrupt status (masked) of the comparators.

Analog	Comparator	Masked	Interrupt Status	(ACMIS)	
--------	------------	--------	------------------	---------	--

Base 0x4003.C000

Offset 0x00 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	г т		1	rese	1 erved	1	1	1	1	1	1	•
									1							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	ı	r r		res	erved	1 1	1	1	T	1	1	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F 31			Name reserved	1	Type RO R/W10		Reset 0x00 0	Softw comp prese	atibility rved ac	with futu cross a re	ead-mod	he value o ucts, the v lify-write o upt Status	value of operatio	a reser	•	
I					R/WIC	,	U	Gives	the ma		errupt s	tate of thi		upt. Writ	e 1 to thi	s bit to
C)		IN0		R/W1C	;	0	Comp	parator	0 Maske	d Interru	upt Status	5			
										asked int iding inte	•	tate of thi	s interrı	upt. Writ	e 1 to thi	s bit to

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04

This register provides a summary of the interrupt status (raw) of the comparators.

Analog Comparator Raw	Interrupt Status (ACRIS)
-----------------------	--------------------------

Base 0x4003.C000 Offset 0x04 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	r r			1	rese	rved	r r		, ,		ĺ	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	· · · ·	r		rese	rved		· · ·		1		1	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_			_								
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31:	:2		reserved		RO		0x00	compa	atibility v	vith futur	e produ	e value of cts, the v ify-write of	alue of	a reserv	•	
1			IN1		RO		0	Comp	arator 1	Interrup	t Status					
								When 1.	set, indi	cates tha	at an inte	errupt ha	s been g	jenerate	d by con	nparator
0			IN0		RO		0	Comp	arator 0	Interrup	t Status					
								When 0.	set, indi	cates tha	at an inte	errupt ha	s been g	jenerate	d by con	nparator

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08

This register provides the interrupt enable for the comparators.

Analog Comparator	Interrupt Enable	(ACINTEN)
-------------------	------------------	-----------

Base 0x4003.C000

Offset 0x08 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	r r		1	rese	rved	1	1	1	1	1	1	
													1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	r r		I	erved	I	I	1	1	1	1	IN1	INO
							103	civeu					1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре		Reset	Descr	iption							
31	:2		reserved	t	RO		0x00	compa	atibility v	vith futu	re produ	ne value icts, the ify-write	value of	a reserv		vide nould be
1			IN1		R/W		0	Comp	arator 1	Interru	ot Enabl	е				
								When	set, ena	bles the	e control	ler interr	upt from	the com	parator 1	output.
0			IN0		R/W		0	Comp	arator 0	Interru	ot Enabl	е				
								When	set, ena	bles the	e control	ler interr	upt from	the com	parator () output.

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10

This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x10 Type R/W, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 10001 0/															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1	rese	rved	1 1		1	1	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	rved			EN	RNG		rese	rved	1		I VF	I REF	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31:	10		reserved		RO		0x00	Softwa	are sho	uld not re	ely on th	e value (of a rese	erved bit	. To prov	vide
								compa	atibility v	with futur ross a rea	e produ	cts, the v	alue of	a reserv	•	
9			EN		R/W		0	Resist	tor Lado	ler Enabl	е					
								resisto		ecifies wł r is unpo ^{D.}						
										et to 0 so wer if not					umes th	e least
8			RNG		R/W		0	Resist	tor Lado	ler Rang	е					
								laddei		pecifies t otal resis 24 R.					-	
7:4	4		reserved		RO		0x00	compa	atibility v	uld not re with futur ross a rea	e produ	cts, the v	alue of	a reserv	•	
3:0	0		VREF		R/W		0x00	Resist	tor Lado	ler Voltag	ge Ref					
								an an: the inf	alog mu ternal re	field spec litiplexer.	The vo voltage	ltage cor available	respond e for con	ling to th nparison	e tap po . See Ta	sition is ible

16-3 on page 413 for some output reference voltage examples.

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20 Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40

These registers specify the current output value of the comparator.

Analog Comparator Status 0 (ACSTAT0)

Base 0x4003.C000 Offset 0x20 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1				1	rese	rved	1 1		1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1				rese	erved	1	1		1		1	OVAL	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/F 31:			Name reserved		Type RO		Reset 0x00	compa	are shou atibility v	vith futur	e produ	ne value o licts, the v ify-write o	alue of	a reserv	•	
1			OVAL		RO		0			output Va specifies		rrent outp	out value	e of the	compara	ator.
0			reserved		RO		0	compa	atibility v	vith futur	e produ	ne value o icts, the v ify-write o	alue of	a reserv	•	

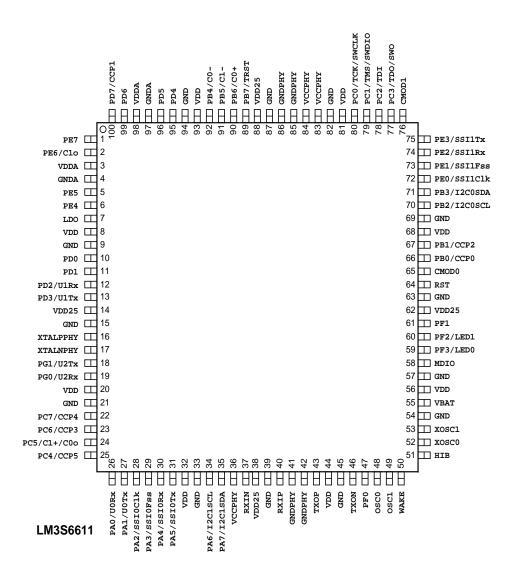
Register 7: Analog Comparator Control 0 (ACCTL0), offset 0x24 Register 8: Analog Comparator Control 1 (ACCTL1), offset 0x44

These registers configure the comparator's input and output.

Analog Comparator Control 0 (ACCTL0)

Base 0x4003.C000 Offset 0x24 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1					rese	rved	1	1	1		1	1	-
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			AS	RCP		rese	rved		ISLVAL	IS	EN	CINV	reserved
Туре	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W	R/W	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	- 1-1		N		T		- 4	Deres								
Bit/F	ield		Name		Туре	I	Reset	Descr	iption							
31:	11		reserved		RO		0x00	Softw	are sho	uld not re	ely on th	ne value o	of a rese	erved bit	. To pro	vide
											•	icts, the v			ed bit sl	hould be
								prese	rved act	oss a re	aa-moo	ify-write o	operatio	n.		
10:	9		ASRCP		R/W		0x00	Analo	g Sourc	e Positiv	e					
								The A	SRCP fie	ld specif	ies the s	ource of i	input vol	tage to t	he VIN+	terminal
								of the	compar	ator. The	e encod	ings for t	his field	are as f	ollows:	
								Value	Functi	on						
								0x0	Pin va							
								0x1		lue of C	JT					
												n 00				
								0x2		al voltage	e reiere	nce				
								0x3	Reser	vea						
8:	5		reserved		RO		0	Softw	aro shoi	ild not re	alv on th	ne value o	of a rese	arved hit	To prov	vide
0.,	J		reserveu		NO		0				•	icts, the v			•	
								prese	rved acr	oss a re	ad-mod	ify-write o	operatio	n.		
4			ISLVAL		R/W		0	Interru	upt Sens	e Level	Value					
								The I	SLVAL	oit specif	fies the	sense va	lue of th	ne input	that ger	erates
							The ISLVAL bit specifies the sense value of the input that generates an interrupt if in Level Sense mode. If 0, an interrupt is generated if the									


an interrupt if in Level Sense mode. If 0, an interrupt is generated if the comparator output is Low. Otherwise, an interrupt is generated if the comparator output is High.

Bit/Field	Name	Туре	Reset	Description
3:2	ISEN	R/W	0x0	Interrupt Sense
				The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see ISLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
1	CINV	R/W	0	Comparator Output Invert
				The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

17 Pin Diagram

Figure 17-1 on page 423 shows the pin diagram and pin-to-signal-name mapping.

Figure 17-1. Pin Connection Diagram

18 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 18-1 on page 424 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 18-2 on page 428 lists the signals in alphabetical order by signal name.

Table 18-3 on page 432 groups the signals by functionality, except for GPIOs. Table 18-4 on page 436 lists the GPIO pins and their alternate functionality.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
1	PE7	I/O	TTL	GPIO port E bit 7
2	PE6	I/O	TTL	GPIO port E bit 6
	Clo	0	TTL	Analog comparator 1 output
3	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
4	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
5	PE5	I/O	TTL	GPIO port E bit 5
6	PE4	I/O	TTL	GPIO port E bit 4
7	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
8	VDD	-	Power	Positive supply for I/O and some logic.
9	GND	-	Power	Ground reference for logic and I/O pins.
10	PD0	I/O	TTL	GPIO port D bit 0
11	PD1	I/O	TTL	GPIO port D bit 1
12	PD2	I/O	TTL	GPIO port D bit 2
	UlRx	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
13	PD3	I/O	TTL	GPIO port D bit 3
	UlTx	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
14	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.

Table 18-1. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type	Description
15	GND	-	Power	Ground reference for logic and I/O pins.
16	XTALPPHY	0	TTL	XTALP of the Ethernet PHY
17	XTALNPHY	I	TTL	XTALN of the Ethernet PHY
18	PG1	I/O	TTL	GPIO port G bit 1
	U2Tx	0	TTL	UART 2 Transmit. When in IrDA mode, this signal has IrDA modulation.
19	PG0	I/O	TTL	GPIO port G bit 0
	U2Rx	I	TTL	UART 2 Receive. When in IrDA mode, this signal has IrDA modulation.
20	VDD	-	Power	Positive supply for I/O and some logic.
21	GND	-	Power	Ground reference for logic and I/O pins.
22	PC7	I/O	TTL	GPIO port C bit 7
	CCP4	I/O	TTL	Capture/Compare/PWM 4
23	PC6	I/O	TTL	GPIO port C bit 6
	CCP3	I/O	TTL	Capture/Compare/PWM 3
24	PC5	I/O	TTL	GPIO port C bit 5
	C1+	I	Analog	Analog comparator positive input
	C00	0	TTL	Analog comparator 0 output
25	PC4	I/O	TTL	GPIO port C bit 4
	CCP5	I/O	TTL	Capture/Compare/PWM 5
26	PAO	I/O	TTL	GPIO port A bit 0
	UORx	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
27	PA1	I/O	TTL	GPIO port A bit 1
	UOTx	0	TTL	UART module 0 transmit. When in IrDA mode. this signal has IrDA modulation.
28	PA2	I/O	TTL	GPIO port A bit 2
Γ	SSIOClk	I/O	TTL	SSI module 0 clock
29	PA3	I/O	TTL	GPIO port A bit 3
	SSIOFss	I/O	TTL	SSI module 0 frame
30	PA4	I/O	TTL	GPIO port A bit 4
	SSIORx	I	TTL	SSI module 0 receive
31	PA5	I/O	TTL	GPIO port A bit 5
-	SSIOTx	0	TTL	SSI module 0 transmit
32	VDD	-	Power	Positive supply for I/O and some logic.
33	GND	-	Power	Ground reference for logic and I/O pins.
34	PA6	I/O	TTL	GPIO port A bit 6
F	I2C1SCL	I/O	OD	I2C module 1 clock
35	PA7	I/O	TTL	GPIO port A bit 7
	I2C1SDA	I/O	OD	I2C module 1 data
36	VCCPHY	I	TTL	VCC of the Ethernet PHY
37	RXIN	I	Analog	RXIN of the Ethernet PHY

Pin Number	Pin Name	Pin Type	Buffer Type	Description
38	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
39	GND	-	Power	Ground reference for logic and I/O pins.
40	RXIP	I	Analog	RXIP of the Ethernet PHY
41	GNDPHY	I	TTL	GND of the Ethernet PHY
42	GNDPHY	I	TTL	GND of the Ethernet PHY
43	TXOP	0	Analog	TXOP of the Ethernet PHY
44	VDD	-	Power	Positive supply for I/O and some logic.
45	GND	-	Power	Ground reference for logic and I/O pins.
46	TXON	0	Analog	TXON of the Ethernet PHY
47	PF0	I/O	TTL	GPIO port F bit 0
48	OSC0	1	Analog	Main oscillator crystal input or an external clock reference input.
49	OSC1	0	Analog	Main oscillator crystal output.
50	WAKE	I	OD	An external input that brings the processor out of hibernate mode when asserted.
51	HIB	0	TTL	An output that indicates the processor is in hibernate mode.
52	XOSC0	1	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
53	XOSC1	0	Analog	Hibernation Module oscillator crystal output.
54	GND	-	Power	Ground reference for logic and I/O pins.
55	VBAT	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
56	VDD	-	Power	Positive supply for I/O and some logic.
57	GND	-	Power	Ground reference for logic and I/O pins.
58	MDIO	I/O	TTL	MDIO of the Ethernet PHY
59	PF3	I/O	TTL	GPIO port F bit 3
	LED0	0	TTL	MII LED 0
60	PF2	I/O	TTL	GPIO port F bit 2
	LED1	0	TTL	MII LED 1
61	PF1	I/O	TTL	GPIO port F bit 1
62	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
63	GND	-	Power	Ground reference for logic and I/O pins.
64	RST	I	TTL	System reset input.
65	CMOD0	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
66	PB0	I/O	TTL	GPIO port B bit 0
	CCP0	I/O	TTL	Capture/Compare/PWM 0
67	PB1	I/O	TTL	GPIO port B bit 1
	CCP2	I/O	TTL	Capture/Compare/PWM 2
68	VDD	-	Power	Positive supply for I/O and some logic.
69	GND	-	Power	Ground reference for logic and I/O pins.
70	PB2	I/O	TTL	GPIO port B bit 2
	I2C0SCL	I/O	OD	I2C module 0 clock
71	PB3	I/O	TTL	GPIO port B bit 3
	I2C0SDA	I/O	OD	I2C module 0 data
72	PEO	I/O	TTL	GPIO port E bit 0
	SSI1Clk	I/O	TTL	SSI module 1 clock
73	PE1	I/O	TTL	GPIO port E bit 1
	SSI1Fss	I/O	TTL	SSI module 1 frame
74	PE2	I/O	TTL	GPIO port E bit 2
	SSI1Rx	1	TTL	SSI module 1 receive
75	PE3	I/O	TTL	GPIO port E bit 3
	SSI1Tx	0	TTL	SSI module 1 transmit
76	CMOD1	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
77	PC3	I/O	TTL	GPIO port C bit 3
	TDO	0	TTL	JTAG TDO and SWO
	SWO	0	TTL	JTAG TDO and SWO
78	PC2	I/O	TTL	GPIO port C bit 2
	TDI	1	TTL	JTAG TDI
79	PC1	I/O	TTL	GPIO port C bit 1
	TMS	I/O	TTL	JTAG TMS and SWDIO
	SWDIO	I/O	TTL	JTAG TMS and SWDIO
80	PC0	I/O	TTL	GPIO port C bit 0
	TCK	I	TTL	JTAG/SWD CLK
	SWCLK	1	TTL	JTAG/SWD CLK
81	VDD	-	Power	Positive supply for I/O and some logic.
82	GND	-	Power	Ground reference for logic and I/O pins.
83	VCCPHY	1	TTL	VCC of the Ethernet PHY
84	VCCPHY	1	TTL	VCC of the Ethernet PHY
85	GNDPHY	1	TTL	GND of the Ethernet PHY
86	GNDPHY	1	TTL	GND of the Ethernet PHY
87	GND	-	Power	Ground reference for logic and I/O pins.
88	VDD25	-	Power	Positive supply for most of the logic function including the processor core and most peripherals.
89	PB7	I/O	TTL	GPIO port B bit 7
	TRST		TTL	JTAG TRSTn

Pin Number	Pin Name	Pin Type	Buffer Type	Description
90	PB6	I/O	TTL	GPIO port B bit 6
	C0+	1	Analog	Analog comparator 0 positive input
91	PB5	I/O	TTL	GPIO port B bit 5
	C1-	I	Analog	Analog comparator 1 negative input
92	PB4	I/O	TTL	GPIO port B bit 4
	C0-	1	Analog	Analog comparator 0 negative input
93	VDD	-	Power	Positive supply for I/O and some logic.
94	GND	-	Power	Ground reference for logic and I/O pins.
95	PD4	I/O	TTL	GPIO port D bit 4
96	PD5	I/O	TTL	GPIO port D bit 5
97	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
98	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
99	PD6	I/O	TTL	GPIO port D bit 6
100	PD7	I/O	TTL	GPIO port D bit 7
	CCP1	I/O	TTL	Capture/Compare/PWM 1

Table 18-2. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type	Description
C0+	90	I	Analog	Analog comparator 0 positive input
C0-	92	I	Analog	Analog comparator 0 negative input
COo	24	0	TTL	Analog comparator 0 output
C1+	24	I	Analog	Analog comparator positive input
C1-	91	I	Analog	Analog comparator 1 negative input
Clo	2	0	TTL	Analog comparator 1 output
CCP0	66	I/O	TTL	Capture/Compare/PWM 0
CCP1	100	I/O	TTL	Capture/Compare/PWM 1
CCP2	67	I/O	TTL	Capture/Compare/PWM 2
CCP3	23	I/O	TTL	Capture/Compare/PWM 3
CCP4	22	I/O	TTL	Capture/Compare/PWM 4
CCP5	25	I/O	TTL	Capture/Compare/PWM 5
CMOD0	65	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
CMOD1	76	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
GND	9	-	Power	Ground reference for logic and I/O pins.
GND	15	-	Power	Ground reference for logic and I/O pins.
GND	21	-	Power	Ground reference for logic and I/O pins.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
GND	33	-	Power	Ground reference for logic and I/O pins.
GND	39	-	Power	Ground reference for logic and I/O pins.
GND	45	-	Power	Ground reference for logic and I/O pins.
GND	54	-	Power	Ground reference for logic and I/O pins.
GND	57	-	Power	Ground reference for logic and I/O pins.
GND	63	-	Power	Ground reference for logic and I/O pins.
GND	69	-	Power	Ground reference for logic and I/O pins.
GND	82	-	Power	Ground reference for logic and I/O pins.
GND	87	-	Power	Ground reference for logic and I/O pins.
GND	94	-	Power	Ground reference for logic and I/O pins.
GNDA	4	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
GNDA	97	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
GNDPHY	41	I	TTL	GND of the Ethernet PHY
GNDPHY	42	I	TTL	GND of the Ethernet PHY
GNDPHY	85	I	TTL	GND of the Ethernet PHY
GNDPHY	86	I	TTL	GND of the Ethernet PHY
HIB	51	0	TTL	An output that indicates the processor is in hibernate mode.
I2C0SCL	70	I/O	OD	I2C module 0 clock
I2C0SDA	71	I/O	OD	I2C module 0 data
I2C1SCL	34	I/O	OD	I2C module 1 clock
I2C1SDA	35	I/O	OD	I2C module 1 data
LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 µF or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
LED0	59	0	TTL	MII LED 0
LED1	60	0	TTL	MII LED 1
MDIO	58	I/O	TTL	MDIO of the Ethernet PHY
OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	49	0	Analog	Main oscillator crystal output.
PAO	26	I/O	TTL	GPIO port A bit 0
PA1	27	I/O	TTL	GPIO port A bit 1
PA2	28	I/O	TTL	GPIO port A bit 2
PA3	29	I/O	TTL	GPIO port A bit 3

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PA4	30	I/O	TTL	GPIO port A bit 4
PA5	31	I/O	TTL	GPIO port A bit 5
PA6	34	I/O	TTL	GPIO port A bit 6
PA7	35	I/O	TTL	GPIO port A bit 7
PBO	66	I/O	TTL	GPIO port B bit 0
PB1	67	I/O	TTL	GPIO port B bit 1
PB2	70	I/O	TTL	GPIO port B bit 2
PB3	71	I/O	TTL	GPIO port B bit 3
PB4	92	I/O	TTL	GPIO port B bit 4
PB5	91	I/O	TTL	GPIO port B bit 5
PB6	90	I/O	TTL	GPIO port B bit 6
PB7	89	I/O	TTL	GPIO port B bit 7
PCO	80	I/O	TTL	GPIO port C bit 0
PC1	79	I/O	TTL	GPIO port C bit 1
PC2	78	I/O	TTL	GPIO port C bit 2
PC3	77	I/O	TTL	GPIO port C bit 3
PC4	25	I/O	TTL	GPIO port C bit 4
PC5	24	I/O	TTL	GPIO port C bit 5
PC6	23	I/O	TTL	GPIO port C bit 6
PC7	22	I/O	TTL	GPIO port C bit 7
PDO	10	I/O	TTL	GPIO port D bit 0
PD1	11	I/O	TTL	GPIO port D bit 1
PD2	12	I/O	TTL	GPIO port D bit 2
PD3	13	I/O	TTL	GPIO port D bit 3
PD4	95	I/O	TTL	GPIO port D bit 4
PD5	96	I/O	TTL	GPIO port D bit 5
PD6	99	I/O	TTL	GPIO port D bit 6
PD7	100	I/O	TTL	GPIO port D bit 7
PEO	72	I/O	TTL	GPIO port E bit 0
PE1	73	I/O	TTL	GPIO port E bit 1
PE2	74	I/O	TTL	GPIO port E bit 2
PE3	75	I/O	TTL	GPIO port E bit 3
PE4	6	I/O	TTL	GPIO port E bit 4
PE5	5	I/O	TTL	GPIO port E bit 5
PE6	2	I/O	TTL	GPIO port E bit 6
PE7	1	I/O	TTL	GPIO port E bit 7
PF0	47	I/O	TTL	GPIO port F bit 0
PF1	61	I/O	TTL	GPIO port F bit 1
PF2	60	I/O	TTL	GPIO port F bit 2
PF3	59	I/O	TTL	GPIO port F bit 3
PGO	19	I/O	TTL	GPIO port G bit 0
PG1	18	I/O	TTL	GPIO port G bit 1

Pin Name	Pin Number	Pin Type	Buffer Type	Description
RST	64	I	TTL	System reset input.
RXIN	37	I	Analog	RXIN of the Ethernet PHY
RXIP	40	I	Analog	RXIP of the Ethernet PHY
SSIOClk	28	I/O	TTL	SSI module 0 clock
SSIOFss	29	I/O	TTL	SSI module 0 frame
SSIORx	30	I	TTL	SSI module 0 receive
SSIOTx	31	0	TTL	SSI module 0 transmit
SSI1Clk	72	I/O	TTL	SSI module 1 clock
SSI1Fss	73	I/O	TTL	SSI module 1 frame
SSI1Rx	74	I	TTL	SSI module 1 receive
SSI1Tx	75	0	TTL	SSI module 1 transmit
SWCLK	80	I	TTL	JTAG/SWD CLK
SWDIO	79	I/O	TTL	JTAG TMS and SWDIO
SWO	77	0	TTL	JTAG TDO and SWO
TCK	80	I	TTL	JTAG/SWD CLK
TDI	78	I	TTL	JTAG TDI
TDO	77	0	TTL	JTAG TDO and SWO
TMS	79	I/O	TTL	JTAG TMS and SWDIO
TRST	89	I	TTL	JTAG TRSTn
TXON	46	0	Analog	TXON of the Ethernet PHY
TXOP	43	0	Analog	TXOP of the Ethernet PHY
UORx	26	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
UlRx	12	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
UlTx	13	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
U2Rx	19	I	TTL	UART 2 Receive. When in IrDA mode, this signal has IrDA modulation.
U2Tx	18	0	TTL	UART 2 Transmit. When in IrDA mode, this signal has IrDA modulation.
VBAT	55	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
VCCPHY	36	I	TTL	VCC of the Ethernet PHY
VCCPHY	83	I	TTL	VCC of the Ethernet PHY
VCCPHY	84	I	TTL	VCC of the Ethernet PHY
VDD	8	-	Power	Positive supply for I/O and some logic.
VDD	20	-	Power	Positive supply for I/O and some logic.
VDD	32	-	Power	Positive supply for I/O and some logic.
VDD	44	-	Power	Positive supply for I/O and some logic.
VDD	56	-	Power	Positive supply for I/O and some logic.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
VDD	68	- Power I		Positive supply for I/O and some logic.
VDD	81	-	Power	Positive supply for I/O and some logic.
VDD	93	-	Power	Positive supply for I/O and some logic.
VDD25	14	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	38	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	62	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDDA	3	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
VDDA	98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
WAKE	50	I	OD	An external input that brings the processor out of hibernate mode when asserted.
XOSC0	52	Ι	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
XOSC1	53	0	Analog	Hibernation Module oscillator crystal output.
XTALNPHY	17	I	TTL	XTALN of the Ethernet PHY
XTALPPHY	16	0	TTL	XTALP of the Ethernet PHY

Table 18-3. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
Analog	C0+	90	I	Analog	Analog comparator 0 positive input
Comparators	C0-	92	I	Analog	Analog comparator 0 negative input
	C0o	24	0	TTL	Analog comparator 0 output
	C1+	24	I	Analog	Analog comparator positive input
	C1-	91	I	Analog	Analog comparator 1 negative input
	C10	2	0	TTL	Analog comparator 1 output

Function	Pin Name	Pin	Pin Type	Buffer	Description
		Number		Туре	
Ethernet PHY	GNDPHY	41	I	TTL	GND of the Ethernet PHY
	GNDPHY	42	I	TTL	GND of the Ethernet PHY
	GNDPHY	85	I	TTL	GND of the Ethernet PHY
	GNDPHY	86	I	TTL	GND of the Ethernet PHY
	LED0	59	0	TTL	MII LED 0
	LED1	60	0	TTL	MII LED 1
	MDIO	58	I/O	TTL	MDIO of the Ethernet PHY
	RXIN	37	I	Analog	RXIN of the Ethernet PHY
	RXIP	40	I	Analog	RXIP of the Ethernet PHY
	TXON	46	0	Analog	TXON of the Ethernet PHY
	TXOP	43	0	Analog	TXOP of the Ethernet PHY
	VCCPHY	36	I	TTL	VCC of the Ethernet PHY
	VCCPHY	83	I	TTL	VCC of the Ethernet PHY
	VCCPHY	84	I	TTL	VCC of the Ethernet PHY
	XTALNPHY	17	I	TTL	XTALN of the Ethernet PHY
	XTALPPHY	16	0	TTL	XTALP of the Ethernet PHY
General-Purpose	CCP0	66	I/O	TTL	Capture/Compare/PWM 0
Timers	CCP1	100	I/O	TTL	Capture/Compare/PWM 1
	CCP2	67	I/O	TTL	Capture/Compare/PWM 2
	CCP3	23	I/O	TTL	Capture/Compare/PWM 3
	CCP4	22	I/O	TTL	Capture/Compare/PWM 4
	CCP5	25	I/O	TTL	Capture/Compare/PWM 5
12C	I2C0SCL	70	I/O	OD	I2C module 0 clock
	I2C0SDA	71	I/O	OD	I2C module 0 data
	I2C1SCL	34	I/O	OD	I2C module 1 clock
	I2C1SDA	35	I/O	OD	I2C module 1 data
JTAG/SWD/SWO	SWCLK	80	I	TTL	JTAG/SWD CLK
	SWDIO	79	I/O	TTL	JTAG TMS and SWDIO
	SWO	77	0	TTL	JTAG TDO and SWO
	TCK	80	I	TTL	JTAG/SWD CLK
	TDI	78	I	TTL	JTAG TDI
	TDO	77	0	TTL	JTAG TDO and SWO
	TMS	79	I/O	TTL	JTAG TMS and SWDIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
Power	GND	9	-	Power	Ground reference for logic and I/O pins.
	GND	15	-	Power	Ground reference for logic and I/O pins.
	GND	21	-	Power	Ground reference for logic and I/O pins.
	GND	33	-	Power	Ground reference for logic and I/O pins.
	GND	39	-	Power	Ground reference for logic and I/O pins.
	GND	45	-	Power	Ground reference for logic and I/O pins.
	GND	54	-	Power	Ground reference for logic and I/O pins.
	GND	57	-	Power	Ground reference for logic and I/O pins.
	GND	63	-	Power	Ground reference for logic and I/O pins.
	GND	69	-	Power	Ground reference for logic and I/O pins.
	GND	82	-	Power	Ground reference for logic and I/O pins.
	GND	87	-	Power	Ground reference for logic and I/O pins.
	GND	94	-	Power	Ground reference for logic and I/O pins.
	GNDA	4	-	Power	The ground reference for the analog circuits (ADC Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	GNDA	97	-	Power	The ground reference for the analog circuits (ADC Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	HIB	51	0	TTL	An output that indicates the processor is in hibernate mode.
	LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
	VBAT	55	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply
	VDD	8	-	Power	Positive supply for I/O and some logic.
	VDD	20	-	Power	Positive supply for I/O and some logic.
	VDD	32	-	Power	Positive supply for I/O and some logic.
	VDD	44	-	Power	Positive supply for I/O and some logic.
	VDD	56	-	Power	Positive supply for I/O and some logic.
	VDD	68	-	Power	Positive supply for I/O and some logic.
	VDD	81	-	Power	Positive supply for I/O and some logic.
	VDD	93	-	Power	Positive supply for I/O and some logic.
	VDD25	14	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals
	VDD25	38	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals
	VDD25	62	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	VDD25	88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDDA	3	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	VDDA	98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	WAKE	50	I	OD	An external input that brings the processor out of hibernate mode when asserted.
SSI	SSIOClk	28	I/O	TTL	SSI module 0 clock
	SSIOFss	29	I/O	TTL	SSI module 0 frame
	SSIORx	30	I	TTL	SSI module 0 receive
	SSIOTx	31	0	TTL	SSI module 0 transmit
	SSI1Clk	72	I/O	TTL	SSI module 1 clock
	SSI1Fss	73	I/O	TTL	SSI module 1 frame
	SSI1Rx	74	I	TTL	SSI module 1 receive
	SSI1Tx	75	0	TTL	SSI module 1 transmit
System Control & Clocks			CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.		
	CMOD1	76	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
	OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	49	0	Analog	Main oscillator crystal output.
	RST	64	I	TTL	System reset input.
	TRST	89	I	TTL	JTAG TRSTn
	XOSC0	52	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
	XOSC1	53	0	Analog	Hibernation Module oscillator crystal output.
UART	UORx	26	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
	UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
	UlRx	12	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
	UlTx	13	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
	U2Rx	19	I	TTL	UART 2 Receive. When in IrDA mode, this signal has IrDA modulation.
	U2Tx	18	0	TTL	UART 2 Transmit. When in IrDA mode, this signal has IrDA modulation.

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PAO	26	UORx	
PA1	27	UOTx	
PA2	28	SSIOClk	
PA3	29	SSIOFss	
PA4	30	SSIORx	
PA5	31	SSIOTx	
PA6	34	I2C1SCL	
PA7	35	I2C1SDA	
PBO	66	CCP0	
PB1	67	CCP2	
PB2	70	I2C0SCL	
PB3	71	I2C0SDA	
PB4	92	C0-	
PB5	91	C1-	
PB6	90	C0+	
PB7	89	TRST	
PC0	80	TCK	SWCLK
PC1	79	TMS	SWDIO
PC2	78	TDI	
PC3	77	TDO	SWO
PC4	25	CCP5	
PC5	24	C1+	COo
PC6	23	CCP3	
PC7	22	CCP4	
PDO	10		
PD1	11		
PD2	12	UlRx	
PD3	13	UlTx	
PD4	95		
PD5	96		
PD6	99		
PD7	100	CCP1	
PEO	72	SSI1Clk	
PE1	73	SSI1Fss	
PE2	74	SSI1Rx	
PE3	75	SSI1Tx	
PE4	6		
PE5	5		
PE6	2	Clo	
PE7	1		
PFO	47		

Table 18-4. GPIO Pins and Alternate Functions

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PF1	61		
PF2	60	LED1	
PF3	59	LED0	
PGO	19	U2Rx	
PG1	18	U2Tx	

19 Operating Characteristics

Table 19-1. Temperature Characteristics

Characteristic	Symbol	Value	Unit				
Operating temperature range ^a	T _A	-40 to +85	°C				
- Maximum atoms to use the set of 150%							

a. Maximum storage temperature is 150°C.

Table 19-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	Θ_{JA}	55.3	°C/W
Average junction temperature ^b	TJ	$T_A + (P_{AVG} \bullet \Theta_{JA})$	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

20 Electrical Characteristics

20.1 DC Characteristics

20.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Characteristic	Symbol	Va	Value	
a		Min	Max	
I/O supply voltage (V _{DD})	V _{DD}	0	4	V
Core supply voltage (V _{DD25})	V _{DD25}	0	4	V
Analog supply voltage (V _{DDA})	V _{DDA}	0	4	V
Battery supply voltage (V _{BAT})	V _{BAT}	0	4	V
Ethernet PHY supply voltage (V _{CCPHY})	V _{CCPHY}	0	4	V
Input voltage	V _{IN}	-0.3	5.5	V
Maximum current per output pins	I	-	25	mA

Table 20-1. Maximum Ratings

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

20.1.2 Recommended DC Operating Conditions

Table 20-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{DD}	I/O supply voltage	3.0	3.3	3.6	V
V_{DD25}	Core supply voltage	2.25	2.5	2.75	V
V _{DDA}	Analog supply voltage	3.0	3.3	3.6	V
V _{BAT}	Battery supply voltage	2.3	3.0	3.6	V
V _{CCPHY}	Ethernet PHY supply voltage	3.0	3.3	3.6	V
V _{IH}	High-level input voltage	2.0	-	5.0	V
V _{IL}	Low-level input voltage	-0.3	-	1.3	V
V _{SIH}	High-level input voltage for Schmitt trigger inputs	0.8 * V _{DD}	-	V _{DD}	V
V _{SIL}	Low-level input voltage for Schmitt trigger inputs	0	-	0.2 * V _{DD}	V
V _{OH}	High-level output voltage	2.4	-	-	V
V _{OL}	Low-level output voltage	-	-	0.4	V

Parameter	Parameter Name	Min	Nom	Max	Unit
I _{OH}	High-level source current, V _{OH} =2.4 V	•	· · · · · ·		·
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA
I _{OL}	Low-level sink current, V _{OL} =0.4 V				
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA

20.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Table 20-3. LDO Regulator	Characteristics
---------------------------	-----------------

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value	2.25	2.5	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	Time off	-	-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO}	External filter capacitor size for internal power supply	1.0	-	3.0	μF

20.1.4 Power Specifications

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V_{DD} = 3.3 V
- V_{DD25} = 2.50 V
- V_{BAT} = 3.0 V
- V_{DDA} = 3.3 V
- V_{DDPHY} = 3.3 V
- Temperature = 25°C
- Clock Source (MOSC) =3.579545 MHz Crystal Oscillator
- Main oscillator (MOSC) = enabled
- Internal oscillator (IOSC) = disabled

Parameter	Parameter Name	Conditions		V _{DD} , V _{DDA} , Vddphy	2.5	V V _{DD25}	3.0	V V _{BAT}	Unit
			Nom	Max	Nom	Max	Nom	Max	
I _{DD_RUN}	Run mode 1	V _{DD25} = 2.50 V	48	pending ^a	108	pending ^a	0	pending ^a	mA
_	(Flash loop)	Code= while(1){} executed in Flash							
		Peripherals = All ON							
		System Clock = 50 MHz (with PLL)							
	Run mode 2	V _{DD25} = 2.50 V	5	pending ^a	52	pending ^a	0	pending ^a	mA
	(Flash loop)	Code= while(1){} executed in Flash							
		Peripherals = All OFF							
	Run mode 1 (SRAM loop)	System Clock = 50 MHz (with PLL)							
		V _{DD25} = 2.50 V	48	pending ^a	100	pending ^a	0	pending ^a	mA
		Code= while(1){} executed in SRAM							
		Peripherals = All ON							
		System Clock = 50 MHz (with PLL)							
	Run mode 2	V _{DD25} = 2.50 V	5	pending ^a	45	pending ^a	0	pending ^a	mA
	(SRAM loop)	Code= while(1){} executed in SRAM							
		Peripherals = All OFF							
		System Clock = 50 MHz (with PLL)							
I _{DD_SLEEP}	Sleep mode	V _{DD25} = 2.50 V	5	pending ^a	16	pending ^a	0	pending ^a	mA
		Peripherals = All OFF							
		System Clock = 50 MHz (with PLL)							
IDD_DEEPSLEEP	Deep-Sleep mode	LDO = 2.25 V	4.6	pending ^a	0.21	pending ^a	0	pending ^a	mA
	mode	Peripherals = All OFF							
		System Clock = IOSC30KHZ/64							
IDD_HIBERNATE	Hibernate mode	V _{BAT} = 3.0 V	0	pending ^a	0	pending ^a	16	pending ^a	μA
		V _{DD} = 0 V							
		V _{DD25} = 0 V							
		V _{DDA} = 0 V							
		V _{DDPHY} = 0 V							
		Peripherals = All OFF							
		System Clock = OFF							
		Hibernate Module = 32 kHz							

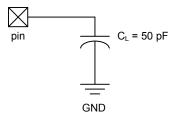
Table 20-4. Detailed Power Specifications

a. Pending characterization completion.

20.1.5 Flash Memory Characteristics

Table 20-5. Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles before failure ^a	10,000	100,000	-	cycles
T _{RET}	Data retention at average operating temperature of $85^{\circ}C$	10	-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms
T _{ME}	Mass erase time	200	-	-	ms


a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

20.2 AC Characteristics

20.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

Figure 20-1. Load Conditions

20.2.2 Clocks

Table 20-6. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{ref_crystal}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{ref_ext}	External clock reference ^a	3.579545	-	8.192	MHz
f _{pll}	PLL frequency ^b	-	400	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Table 20-7. Clock Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{IOSC}	Internal 12 MHz oscillator frequency	8.4	12	15.6	MHz
f _{IOSC30KHZ}	Internal 30 KHz oscillator frequency	21	30	39	KHz
f _{XOSC}	Hibernation module oscillator frequency	-	4.194304	-	MHz
f _{XOSC_XTAL}	Crystal reference for hibernation oscillator	-	4.194304	-	MHz
f _{XOSC_EXT}	External clock reference for hibernation module	-	32.768	-	KHz

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{MOSC}	Main oscillator frequency	1	-	8	MHz
t _{MOSC_per}	Main oscillator period	125	-	1000	ns
f _{ref_crystal_bypass}	Crystal reference using the main oscillator (PLL in BYPASS mode)	1	-	8	MHz
f _{ref_ext_bypass}	External clock reference (PLL in BYPASS mode)	0	-	50	MHz
f _{system_clock}	System clock	0	-	50	MHz

Table 20-8. Crystal Characteristics

Parameter Name		Value				
Frequency	8	6	4	3.5	MHz	
Frequency tolerance	±50	±50	±50	±50	ppm	
Aging	±5	±5	±5	±5	ppm/yr	
Oscillation mode	Parallel	Parallel	Parallel	Parallel		
Temperature stability (0 - 85 °C)	±25	±25	±25	±25	ppm	
Motional capacitance (typ)	27.8	37.0	55.6	63.5	pF	
Motional inductance (typ)	14.3	19.1	28.6	32.7	mH	
Equivalent series resistance (max)	120	160	200	220	Ω	
Shunt capacitance (max)	10	10	10	10	pF	
Load capacitance (typ)	16	16	16	16	pF	
Drive level (typ)	100	100	100	100	μW	

20.2.3 Analog Comparator

Table 20-9. Analog Comparator Characteristics

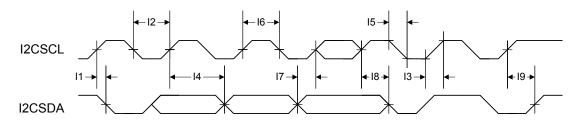
Parameter	Parameter Name	Min	Nom	Max	Unit
V _{OS}	Input offset voltage	-	±10	±25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

Table 20-10. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{HR}	Resolution high range	-	V _{DD} /32	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /24	-	LSB
A _{HR}	Absolute accuracy high range	-	-	±1/2	LSB
A _{LR}	Absolute accuracy low range	-	-	±1/4	LSB

20.2.4 I²C

Table 20-11. I²C Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
l1 ^a	t _{SCH}	Start condition hold time	36	-	-	system clocks
l2 ^a	t _{LP}	Clock Low period	36	-	-	system clocks

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
I3 ^b	t _{SRT}	<code>I2CSCL/I2CSDA</code> rise time (V _{IL} =0.5 V to V $_{\rm IH}$ =2.4 V)	-	-	(see note b)	ns
l4 ^a	t _{DH}	Data hold time	2	-	-	system clocks
I5 ^c	t _{SFT}	I2CSCL/I2CSDA fall time (V _{IH} =2.4 V to V _{IL} =0.5 V)	-	9	10	ns
l6 ^a	t _{HT}	Clock High time	24	-	-	system clocks
I7 ^a	t _{DS}	Data setup time	18	-	-	system clocks
I8 ^a	t _{SCSR}	Start condition setup time (for repeated start condition only)	36	-	-	system clocks
I9 ^a	t _{SCS}	Stop condition setup time	24	-	-	system clocks

a. Values depend on the value programmed into the TPR bit in the I²C Master Timer Period (I2CMTPR) register; a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

- b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.
- c. Specified at a nominal 50 pF load.

Figure 20-2. I²C Timing

20.2.5 Ethernet Controller

Table 20-12. 100BASE-TX Transmitter Characteristics^a

Parameter Name	Min	Nom	Max	Unit
Peak output amplitude	950	-	1050	mVpk
Output amplitude symmetry	0.98	-	1.02	mVpk
Output overshoot	-	-	5	%
Rise/Fall time	3	-	5	ns
Rise/Fall time imbalance	-	-	500	ps
Duty cycle distortion	-	-	-	ps
Jitter	-	-	1.4	ns

a. Measured at the line side of the transformer.

Table 20-13. 100BASE-TX Transmitter Characteristics (informative)^a

Parameter Name	Min	Nom	Мах	Unit
Return loss	16	-	-	dB
Open-circuit inductance	350	-	-	μs

a. The specifications in this table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements.

Parameter Name	Min	Nom	Max	Unit
Signal detect assertion threshold	600	700		mVppd
Signal detect de-assertion threshold	350	425	-	mVppd
Differential input resistance	20	-	-	kΩ
Jitter tolerance (pk-pk)	4	-	-	ns
Baseline wander tracking	-75	-	+75	%
Signal detect assertion time	-	-	1000	μs
Signal detect de-assertion time	-	-	4	μs

Table 20-14. 100BASE-TX Receiver Characteristics

Table 20-15. 10BASE-T Transmitter Characteristics^a

Parameter Name	Min	Nom	Max	Unit
Peak differential output signal	2.2	-	2.8	V
Harmonic content	27	-	-	dB
Link pulse width	-	100	-	ns
Start-of-idle pulse width	-	300	-	ns
		350		

a. The Manchester-encoded data pulses, the link pulse and the start-of-idle pulse are tested against the templates and using the procedures found in Clause 14 of *IEEE 802.3*.

Table 20-16. 10BASE-T Transmitter Characteristics (informative)^a

Parameter Name	Min	Nom	Max	Unit
Output return loss	15	-	-	dB
Output impedance balance	29-17log(f/10)	-	-	dB
Peak common-mode output voltage	-	-	50	mV
Common-mode rejection	-	-	100	mV
Common-mode rejection jitter	-	-	1	ns

a. The specifications in this table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements.

Table 20-17. 10BASE-T Receiver Characteristics

Parameter Name	Min	Nom	Мах	Unit
DLL phase acquisition time	-	10	-	BT
Jitter tolerance (pk-pk)	30	-	-	ns
Input squelched threshold	500	600	700	mVppd
Input unsquelched threshold	275	350	425	mVppd
Differential input resistance	-	20	-	kΩ
Bit error ratio	-	10 ⁻¹⁰	-	-
Common-mode rejection	25	-	-	V

Table 20-18. Isolation Transformers^a

Name	Value	Condition			
Turns ratio	1 CT : 1 CT	+/- 5%			
Open-circuit inductance	350 uH (min)	@ 10 mV, 10 kHz			

Name	Value	Condition
Leakage inductance	0.40 uH (max)	@ 1 MHz (min)
Inter-winding capacitance	25 pF (max)	
DC resistance	0.9 Ohm (max)	
Insertion loss	0.4 dB (typ)	0-65 MHz
HIPOT	1500	Vrms

a. Two simple 1:1 isolation transformers are required at the line interface. Transformers with integrated common-mode chokes are recommended for exceeding FCC requirements. This table gives the recommended line transformer characteristics.

Note: The 100Base-TX amplitude specifications assume a transformer loss of 0.4 dB. For the transmit line transformer with higher insertion losses, up to 1.2 dB of insertion loss can be compensated by selecting the appropriate setting in the Transmit Amplitude Selection (TXO) bits in the **MR19** register.

Table 20-19. Ethernet Reference Crystal^a

Name	Value	Condition
Frequency	25.00000	MHz
Load capacitance ^b	4 ^c	pF
Frequency tolerance	±50	PPM
Aging	±2	PPM/yr
Temperature stability (0° to 70°)	±5	PPM
Oscillation mode	Parallel resonance, fundamental mode	
Parameters at 25° C ±2° C; Drive level = 0.5 mW		
Drive level (typ)	50-100	μW
Shunt capacitance (max)	10	pF
Motional capacitance (min)	10	fF
Serious resistance (max)	60	Ω
Spurious response (max)	> 5 dB below main within 500 kHz	

a. If the internal crystal oscillator is used, select a crystal with the following characteristics.

b. Equivalent differential capacitance across XTLP/XTLN.

c. If crystal with a larger load is used, external shunt capacitors to ground should be added to make up the equivalent capacitance difference.

Figure 20-3. External XTLP Oscillator Characteristics

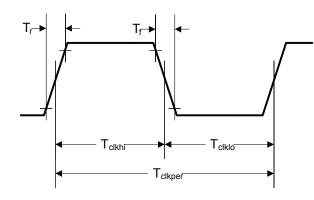


Table 20-20. External XTLP Oscillator Characteristics

Parameter Name	Symbol	Min	Nom	Мах	Unit
XTLN Input Low Voltage	XTLN _{ILV}	-	-	0.8	-
XTLP Frequency ^a	XTLP _f	-	25.0	-	-
XTLP Period ^b	T _{clkper}	-	40	-	-
XTLP Duty Cycle	XTLP _{DC}	40	-	60	%
		40		60	
Rise/Fall Time	T _r , T _f	-	-	4.0	ns
Absolute Jitter		-	-	0.1	ns

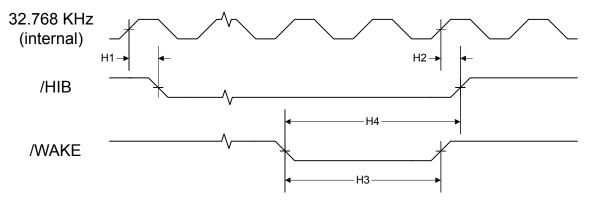
a. IEEE 802.3 frequency tolerance ±50 ppm.

b. IEEE 802.3 frequency tolerance ±50 ppm.

20.2.6 Hibernation Module

The Hibernation Module requires special system implementation considerations since it is intended to power-down all other sections of its host device. The system power-supply distribution and interfaces of the system must be driven to 0 V_{DC} or powered down with the same regulator controlled by $\overline{\text{HIB}}$.

The regulators controlled by $\overline{\text{HIB}}$ are expected to have a settling time of 250 µs or less.

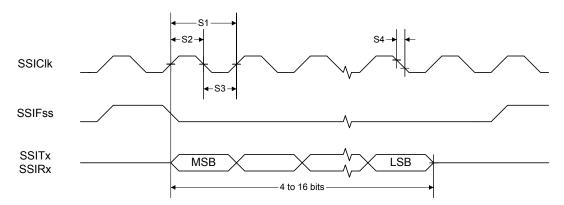

Table 20-21.	Hibernation	Module	Characteristics
--------------	-------------	--------	-----------------

Parameter No	Parameter	Parameter Name	Min	Nom	Max	Unit
H1	t _{HIB_LOW}	Internal 32.768 KHz clock reference rising edge to /HIB asserted	-	200	-	μs
H2	t _{нів_нідн}	Internal 32.768 KHz clock reference rising edge to /HIB deasserted	-	30	-	μs
H3	t _{WAKE_ASSERT}	/WAKE assertion time	62	-	-	μs
H4	t _{WAKETOHIB}	/WAKE assert to /HIB desassert	62	-	124	μs
H5	t _{XOSC_SETTLE}	XOSC settling time ^a	20	-	-	ms
H6	t _{HIB_REG_WRITE}	Time for a write to non-volatile registers in HIB module to complete	92	-	-	μs

Parameter No	Parameter	Parameter Name	Min	Nom	Мах	Unit
H7	t _{HIB_TO_VDD}	$\overline{\mathtt{HIB}}$ deassert to VDD and VDD25 at minimum operational level	-	-	250	μs

a. This parameter is highly sensitive to PCB layout and trace lengths, which may make this parameter time longer. Care must be taken in PCB design to minimize trace lengths and RLC (resistance, inductance, capacitance).

Figure 20-4. Hibernation Module Timing



20.2.7 Synchronous Serial Interface (SSI)

Table 20-22. SSI Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
S1	t _{clk_per}	SSIClk cycle time	2	-	65024	system clocks
S2	t _{clk_high}	SSIClk high time	-	1/2	-	t clk_per
S3	t _{clk_low}	SSIC1k low time	-	1/2	-	t clk_per
S4	t _{clkrf}	SSIClk rise/fall time	-	7.4	26	ns
S5	t _{DMd}	Data from master valid delay time	0	-	20	ns
S6	t _{DMs}	Data from master setup time	20	-	-	ns
S7	t _{DMh}	Data from master hold time	40	-	-	ns
S8	t _{DSs}	Data from slave setup time	20	-	-	ns
S9	t _{DSh}	Data from slave hold time	40	-	-	ns

Figure 20-5. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

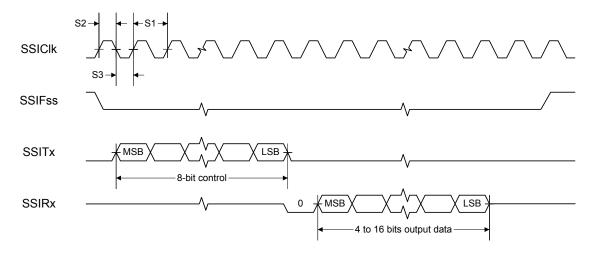
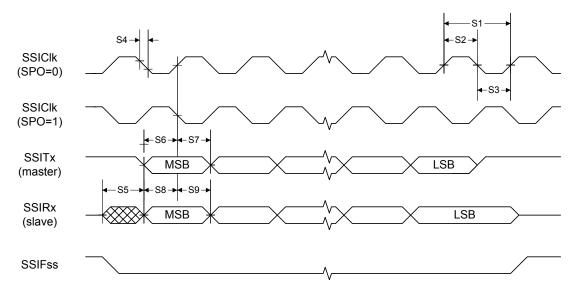
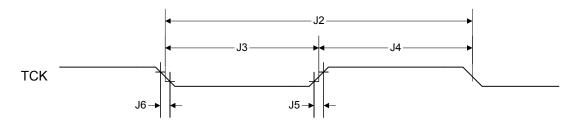
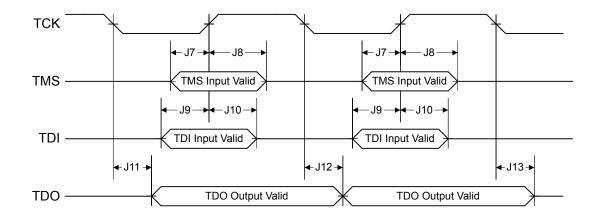



Figure 20-6. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer


20.2.8 JTAG and Boundary Scan


Table 20-23. JTAG Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J1	f _{TCK}	TCK operational clock frequency	0	-	10	MHz
J2	t _{TCK}	TCK operational clock period	100	-	-	ns
J3	t _{TCK_LOW}	TCK clock Low time	-	t _{TCK}	-	ns

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J4	t _{тск_нідн}	TCK clock High time	-	t _{TCK}	-	ns
J5	t _{TCK_R}	TCK rise time	0	-	10	ns
J6	t _{TCK_F}	тск fall time	0	-	10	ns
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
J11	TCK fall to Data Valid from High-Z	2-mA drive	-	23	35	ns
t _{TDO_ZDV}		4-mA drive		15	26	ns
-		8-mA drive		14	25	ns
		8-mA drive with slew rate control		18	29	ns
J12	TCK fall to Data Valid from Data Valid	2-mA drive	-	21	35	ns
t _{TDO_DV}		4-mA drive		14	25	ns
-		8-mA drive		13	24	ns
		8-mA drive with slew rate control		18	28	ns
J13	TCK fall to High-Z from Data Valid	2-mA drive	-	9	11	ns
t _{TDO_DVZ}		4-mA drive		7	9	ns
-		8-mA drive		6	8	ns
		8-mA drive with slew rate control		7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

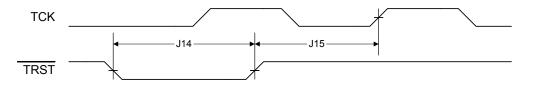

Figure 20-8. JTAG Test Clock Input Timing

Figure 20-9. JTAG Test Access Port (TAP) Timing

Figure 20-10. JTAG TRST Timing

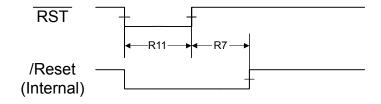
20.2.9 General-Purpose I/O

Note: All GPIOs are 5 V-tolerant.

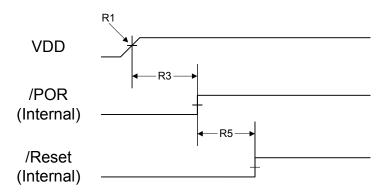
Table 20-24. GPIO Characteristics

Parameter	Parameter Name	Condition	Min	Nom	Max	Unit
t _{GPIOR}	GPIO Rise Time (from 20% to 80% of $V_{\text{DD}})$	2-mA drive	-	17	26	ns
		4-mA drive		9	13	ns
		8-mA drive		6	9	ns
		8-mA drive with slew rate control		10	12	ns
t _{GPIOF}	GPIO Fall Time (from 80% to 20% of V_{DD})	2-mA drive	-	17	25	ns
		4-mA drive		8	12	ns
		8-mA drive		6	10	ns
		8-mA drive with slew rate control		11	13	ns

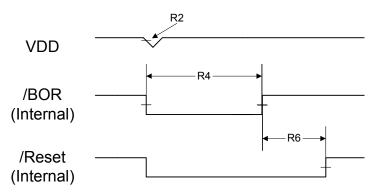
20.2.10 Reset

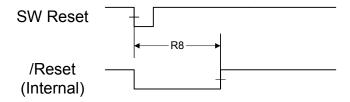

Table 20-25. Reset Characteristics

	Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
ſ	R1	V_{TH}	Reset threshold	-	2.0	-	V


Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	6	-	11	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	0	-	1	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset ($\overline{\mathtt{RST}}$ pin)	0	-	1	ms
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0V-3.3V)	-	-	100	ms
R11	T _{MIN}	Minimum RST pulse width	2	-	-	μs

a. 20 * t _{MOSC_per}


Figure 20-11. External Reset Timing (RST)


Figure 20-12. Power-On Reset Timing

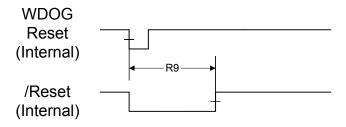

Figure 20-13. Brown-Out Reset Timing

Figure 20-14. Software Reset Timing

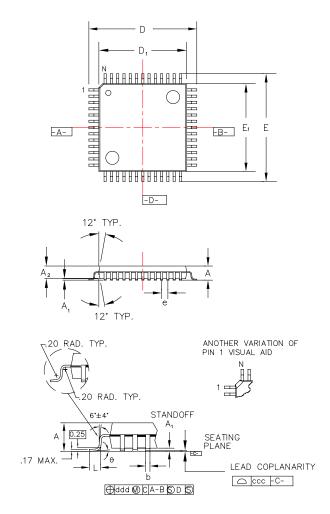


Figure 20-15. Watchdog Reset Timing

21 Package Information

Note: The following notes apply to the package drawing.

- 1. All dimensions shown in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.

Body +2.00 mm	Footprint, 1.4 mm	package thickness
Symbols	Leads	100L
A	Max.	1.60
A ₁		0.05 Min./0.15 Max.
A ₂	±0.05	1.40
D	±0.20	16.00
D ₁	±0.05	14.00
E	±0.20	16.00
E ₁	±0.05	14.00
L	±0.15/-0.10	0.60
e	BASIC	0.50
b	±0.05	0.22
θ	===	0°~7°
ddd	Max.	0.08
ссс	Max.	0.08
JEDEC Refer	ence Drawing	MS-026
Variation [Designator	BED

A Serial Flash Loader

A.1 Serial Flash Loader

The Stellaris[®] serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris[®] device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See "Frame Formats" on page 297 in the SSI chapter for more information on formats for this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running

the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
                               This is the raw data intended for the device, which is formatted in
Data
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the section that describes the serial flash loader command, COMMAND_SEND_DATA (see "COMMAND_SEND_DATA (0x24)" on page 459).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet were valid, just that the packet was received correctly.

A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the

flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

```
Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;
```

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.4.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS

A.4.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
```

```
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
```

A.4.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.4.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.4.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

B Register Quick Reference

31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22	21 5	20 4	19 3	18 2	17 1	16 0
			12		10	9	0		6	5	4	3	2	1	0
-	1 Control														
	400F.E000														
DID0, type	e RO, offse		set -												
		VER										ASS			
				JOR							MI	NOR			
PBORCTL	L, type R/W	offset 0x0	030, reset 0	x0000.7FF	D										
														BORIOR	
LDOPCTL	L, type R/W,	offset 0x0)34, reset 0:	x0000.0000)										
												VA	DJ		
RIS, type	RO, offset	0x050, res	et 0x0000.0	000											
									PLLLRIS					BORRIS	
IMC, type	R/W, offset	0x054, re	set 0x0000.	.0000											
									PLLLIM					BORIM	
MISC, typ	e R/W1C, o	ffset 0x05	8, reset 0x0	0000.0000											
									PLLLMIS					BORMIS	
RESC, typ	pe R/W, offs	et 0x05C,	reset -												
										LDO	SW	WDT	BOR	POR	EXT
RCC, type	e R/W, offse	t 0x060, re	eset 0x07A0	0.3AD1	_										
				ACG		SYS	SDIV		USESYSDIV						
		PWRDN		BYPASS			X	TAL		OSC	SRC			IOSCDIS	MOSCDIS
PLLCFG,	type RO, of	fset 0x064	l, reset -	_				_							
C	DD					F							R		
RCC2, typ	pe R/W, offs	et 0x070, i	reset 0x078	80.2800											
USERCC2					SYS	SDIV2									
		PWRDN2		BYPASS2						OSCSRC2					
DSLPCLK	CFG, type	R/W, offse	t 0x144, res	set 0x0780.	.0000										
					DSDI	/ORIDE									
									0	SOSCSRO)				
DID1, type	e RO, offse	t 0x004, re	set -												
	VE	R			E	AM					PAF	RTNO			
	PINCOUNT								TEMP		Р	KG	ROHS	QL	JAL
DC0, type	e RO, offset	0x008, res	set 0x007F.(003F											
							SRA	MSZ							
							FLA	SHSZ							
DC1, type	e RO, offset	0x010, res	set 0x0000.3	30DF											
	MINS'	YSDIV						MPU	HIB		PLL	WDT	SWO	SWD	JTAG
DC2, type	e RO, offset	0x014, res	set 0x030F.	5037											
						COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMER0
	I2C1		I2C0							SSI1	SSI0		UART2	UART1	UART0
DC3, type	e RO, offset	0x018, res	set 0x3F00.	0FC0											
												1			
		CCP5	CCP4	CCP3	CCP2	CCP1	CCP0								

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC4, typ	e RO, offset (0x01C, res		DOFF								1			
	EPHY0		EMAC0					GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
BCCCO	tupo DAV. off	oot 0x100	rooot 0x00	000040				GFIOH	GFIOG	GFIOF	GFIDE	GFIOD	GFIOC	GFIOB	GFIUA
RUGUU,	type R/W, off	set ux 100,	reset 0x00	000040											
									HIB			WDT			
		aat 0×110		000040					пів			WDI			
30GCU, 1	type R/W, off	set ux 110,	reset 0x00	000040											
									HIB			WDT			
DCCCO	type R/W, off	eat 0x120	rocot 0x00	000040					THE						
00000,	type R/W, OII	Set 0x120,	Teset 0x00	000040											
									HIB			WDT			
RCGC1	type R/W, off	set 0x104	reset 0x00	00000											
10001,	type it ti, on	301 07 104,	Teset 0x00	00000		COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMER
	I2C1		12C0				001011 0			SSI1	SSI0	TIMERO	UART2	UART1	UARTO
SCGC1	type R/W, off	set 0x114		000000						0011	2010		0E	0	0.4110
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMER
	I2C1		12C0				0011110			SSI1	SSI0	THREFTO	UART2	UART1	UARTO
DCGC1	type R/W, off	set 0x124		000000							- 5.0				
,	.,					COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMER
	I2C1		12C0				00.00			SSI1	SSI0		UART2	UART1	UARTO
RCGC2.	type R/W, off	set 0x108.		000000									_	-	
	EPHY0	,	EMAC0												
	2		2.1.2.100					GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SCGC2.	type R/W, off	set 0x118.	reset 0x00	000000											
,	EPHY0	,	EMAC0												
	2		2.1.2.100					GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
DCGC2.	type R/W, off	set 0x128.	reset 0x00	000000								I			
- ,	EPHY0		EMAC0												
	-							GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SRCR0, t	type R/W, offs	set 0x040,	reset 0x00	000000								I			
									HIB			WDT			
SRCR1, t	type R/W, offs	set 0x044,	reset 0x00	000000								1			
						COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMERO
	I2C1		I2C0			-				SSI1	SSI0		UART2	UART1	UARTO
SBCD2 4				00000											
Shonz, i	type R/W, offs	set 0x048,	reset 0x00	000000											
SKCK2, I	type R/W, offs EPHY0	set 0x048,	EMAC0	00000											
SKOKZ, I		set 0x048,						GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern	EPHY0							GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
<mark>Hibern</mark> Base 0x	EPHY0 ation Moc 400F.C000	lule	EMAC0					GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
<mark>Hibern</mark> Base 0x	EPHY0	lule	EMAC0				RT		GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
<mark>Hibern</mark> Base 0x	EPHY0 ation Moc 400F.C000	lule	EMAC0				RT	сс	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC	EPHY0 ation Moc 400F.C000 C, type RO, or	<mark>lule</mark> ffset 0x000	EMAC0	000.0000	F			сс	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC	EPHY0 ation Moc 400F.C000	<mark>lule</mark> ffset 0x000	EMAC0	000.0000	F			cc cc	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC	EPHY0 ation Moc 400F.C000 C, type RO, or	<mark>lule</mark> ffset 0x000	EMAC0	000.0000	F		RT	CC CC CM0	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC	EPHY0 ation Moc 400F.C000 C, type RO, of M0, type R/W,	Jule ffset 0x000 offset 0x0	EMAC0 0, reset 0x0 004, reset 0	000.0000 xFFFF.FFF			RT	CC CC CM0	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC	EPHY0 ation Moc 400F.C000 C, type RO, or	Jule ffset 0x000 offset 0x0	EMAC0 0, reset 0x0 004, reset 0	000.0000 xFFFF.FFF			RT RTC	CC CC CM0 CM0	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC	EPHY0 ation Moc 400F.C000 C, type RO, of M0, type R/W,	Jule ffset 0x000 offset 0x0	EMAC0 0, reset 0x0 004, reset 0	000.0000 xFFFF.FFF			RT RTC RTC	CC CC CM0 CM0	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC HIBRTCM	EPHY0 ation Moc 400F.C000 C, type RO, of M0, type R/W, M1, type R/W,	iule ffset 0x000 offset 0x0	EMAC0), reset 0x0 104, reset 0 108, reset 0	000.0000 xFFFF.FFF	F		RT RTC	CC CC CM0 CM0	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hibern Base 0x HIBRTCC HIBRTCM	EPHY0 ation Moc 400F.C000 C, type RO, of M0, type R/W,	iule ffset 0x000 offset 0x0	EMAC0), reset 0x0 104, reset 0 108, reset 0	000.0000 xFFFF.FFF	F		RT RTC RTC	CC CC CM0 CM0 CM1 CM1	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HIBCTL, ty	ype R/W, of	ffset 0x010	, reset 0x00	000.0000				1				1			
								VABORT	CLK32EN	LOWBATEN	PINWEN	RTCWEN	CLKSEL	HIBREQ	RTCEN
HIBIM, typ	e R/W, offs	set 0x014, i	reset 0x000	0.0000											
												EXTW	LOWBAT	RTCALT1	RTCALT
HIBRIS, ty	/pe RO, offs	set 0x018,	reset 0x000	0.0000											
												EXTW	LOWBAT	RTCALT1	RTCALT
HIBMIS, fv	/ne RO, off	set 0x01C	reset 0x00	00.0000								2,000	LOWBA	INTO/LETT	THE OF LET
	, po 110, on														
												EXTW	LOWBAT	RTCALT1	RTCALT
HIBIC, typ	e R/W1C, c	offset 0x02	0, reset 0x0	000.0000								1			
												EXTW	LOWBAT	RTCALT1	RTCALT
HIBRTCT,	type R/W,	offset 0x02	4, reset 0x0	0000.7FFF											
							_								
							Т	RIM							
HIBDATA,	type R/W,	offset 0x03	80-0x12C, re	eset 0x0000	0.0000			RTD							
								RTD							
Intornal	Memory						-								
	ontrol O														
	00F.D000														
FMA, type	R/W, offse	t 0x000, re	set 0x0000	.0000											
															OFFSET
						1	OF	FSET			1	1	1		
FMD, type	R/W, offse	t 0x004, re	set 0x0000	.0000											
							D	ATA							
							D	ATA							
FMC, type	R/W, offse	t 0x008, re	set 0x0000	.0000											
							WF					СОМТ	MERASE	EDASE	WRITE
	no PO, offe	of 0x00C	eset 0x000	0.0000								CONT	MERAJE	ERASE	WRITE
	be RO, ons		esel 0x000	0.0000											
														PRIS	ARIS
FCIM, type	e R/W, offse	et 0x010, re	eset 0x0000	.0000											
														PMASK	AMASK
FCMISC, t	ype R/W1C	, offset 0x	014, reset 0	x0000.0000)										
														PMISC	AMISC
	Memory														
	Control														
USECRL,	type R/W, c	offset 0x14	0, reset 0x3	51											
											US	EC			
MPRE0,	type R/W, c	offset 0x13	0 and 0x200), reset 0xF	FFF.FFFF										
								ENABLE							
							READ_	ENABLE							

04	00	00	00	07	00	05	04	00	00	04	00	10	40	47	40
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0
			4 and 0x400			9	0	1	0	5	4	3	2	1	0
WIFFLU,		JIISEL UX 13-	4 8110 07400	, reset oxi			PROG	ENABLE							
								ENABLE							
	BG type R/	W offeet Ox	(1D0, reset		FF		1100_								
NW	bo, type to	W, 011361 07	(100, 1636)	•				DATA							
11174							ATA	DAIA						DBG1	DBGC
	EG0 type E)x1E0, reset											DDOT	DDOC
NW		w, onset u						DATA							
INVV							D4	TA							
	EG1 type E)x1E4, reset				DF								
NW		avv, onser u	77124, 16360					DATA							
INVV							D4	TA							
	type R/W	offect 0x20	4, reset 0xF	FEF FEFF											
			., 10301 04F				READ	ENABLE							
								ENABLE							
FMPRF2	type R/W	offset 0x20	8, reset 0x0	000.0000											
			.,				READ	ENABLE							
								ENABLE							
FMPRE3.	type R/W.	offset 0x20	C, reset 0x0	0000.0000											
	,,,		, x				READ	ENABLE							
								ENABLE							
FMPPE1,	type R/W,	offset 0x404	4, reset 0xF	FFF.FFFF											
							PROG	ENABLE							
								ENABLE							
FMPPE2,	type R/W,	offset 0x408	8, reset 0x0	000.0000											
							PROG_	ENABLE							
							PROG_	ENABLE							
FMPPE3,	type R/W,	offset 0x400	C, reset 0x0	0000.0000											
							PROG_	ENABLE							
							PROG_	ENABLE							
Genera	al-Purpo	se Input/	Outputs	(GPIOs)											
GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po	ort B base ort C base ort D base ort E base ort F base ort G base	0x4000.4 0x4000.5 0x4000.6 0x4000.7 0x4002.4 0x4002.5 0x4002.6 0x4002.7	000 000 000 000 000 000 000												
GPIODAT	rA, type R/V	V, offset 0x(000, reset 0	x0000.000	D										
											DA	ATA			
GPIODIR	, type R/W,	offset 0x40	0, reset 0x0	0000.0000											
											D	IR			
GPIOIS, t	type R/W, o	ffset 0x404,	reset 0x00	00.000										_	
											I	S			
		offoot 0x40	8. reset 0x0	0000.0000											
GPIOIBE	, type R/W,	Unset 0x40	-,												
GPIOIBE,	, type R/W,	UISEL 0X40	-,												
GPIOIBE	, type R/W,										IE	BE			
			C, reset 0x0	0000.0000							IE	BE			
				0000.0000							IE	BE			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			, reset 0x00		-										
											IN	ΛE			
GPIORIS,	type RO, o	ffset 0x414	4, reset 0x0	000.0000											
											R	IS			
GPIOMIS,	type RO, o	ffset 0x41	8, reset 0x0	000.000											
-											N	lis			
GPIOICR,	type wic,	offset UX4	1C, reset 0	x0000.0000											
												c			
GPIOAFS	EL. type R/	W. offset 0	x420, reset	-								0			
	-, -, po . u	,													
								-			AF	I SEL			
GPIODR2	R, type R/W	l, offset 0x	500, reset (0x0000.00FF	-										
											DF	RV2			
GPIODR4	R, type R/W	/, offset 0x	504, reset (x0000.0000)		_	-				_	_		
											DF	RV4			
GPIODR8	R, type R/W	/, offset 0x	508, reset (0x0000.0000)			1							1
	turne DAM	offe of OvE	00 react 0								DF	RV8			
GPIOODR	, type rk/ww,	onset ux5	oc, reset u	x0000.0000											
											0	l DE			
GPIOPUR	, type R/W,	offset 0x5	10, reset -					1							
											P	UE			
GPIOPDR	, type R/W,	offset 0x5	14, reset 0x												
											P	DE			
GPIOSLR	, type R/W,	offset 0x5	18, reset 0x	0000.0000											
											S	RL			
GPIODEN	, type R/W,	offset 0x5	1C, reset -												
											P	EN			
		V offect 0	(520 rosot)	0x0000.000 ²	1						U				
	it, type R/W	, onset ux	520, 1858E		•		10	OCK							
								OCK							
GPIOCR.	type -, offse	et 0x524, r	eset -												
,	,	, .													
											C	I R			
GPIOPeri	ohID4, type	RO, offset	t 0xFD0, res	set 0x0000.0	0000										
											PI	D4			
GPIOPeri	ohID5, type	RO, offse	t 0xFD4, res	set 0x0000.(0000										
											PI	D5			

04	00	00	00	07	00	05	04	00	00	01	00	10	40	47	10
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0
	iphID6, type					0	Ū		Ŭ	Ū	-		-		Ū
		,													
											PI	D6			
GPIOPeri	iphID7, type	RO, offset	0xFDC, res	set 0x0000	.0000										
											PI	D7			
GPIOPeri	iphID0, type	RO, offset	0xFE0, res	et 0x0000.	0061	_									
											PI	D0			
GPIOPeri	iphID1, type	RO, offset	0xFE4, res	et 0x0000.	0000										
											PI	 D1			
GPIOPeri	iphID2, type	RO, offset	0xFF8, res	et 0x0000.	0018										
	,	,													
											PI	D2			
GPIOPeri	iphID3, type	RO, offset	0xFEC, res	set 0x0000	.0001										
											PI	D3			
GPIOPCe	ellID0, type F	RO, offset (0xFF0, rese	t 0x0000.0	00D										
											~				
CRIORC	ellID1, type F	O offect (+ 0~0000 0	050						CI	D0			
GFIOFCE	лот, туре г	to, onset t	JXFF4, 1656		0F0							1			
											CI	l D1			
GPIOPCe	ellID2, type F	RO, offset (0xFF8, rese	t 0x0000.0	005										
											CI	D2			
GPIOPCe	ellID3, type F	RO, offset (0xFFC, rese	et 0x0000.0	0B1	_									
											CI	D3			
Timer0 b Timer1 b Timer2 b	al-Purpos base: 0x400 base: 0x400 base: 0x400 base: 0x400 base: 0x400	03.0000 03.1000 03.2000	S												
GPTMCF	G, type R/W	, offset 0x0	000, reset 0	x0000.0000)										
														GPTMCFG	
GPTMTA	MR, type R/	W, offset 0	x004, reset	0x0000.00	00										
													TACHE		
COTMTO	MD time D	W off+ *	v009	020000.00	00							TAAMS	TACMR	TA	MR
GPIMIB	MR, type R/	vv, onset 0:	xuuo, reset	0x0000.00	υU										
												TBAMS	TBCMR	TR	MR
GPTMCT	L, type R/W,	offset 0x0	0C, reset 0	x0000.000)							1 . 2, 110			
			,												
	TBPWML	TBOTE		TBE	VENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN	TAE	VENT	TASTALL	TAEN
GPTMIM	R, type R/W,	offset 0x0	18, reset 0>	<0000.0000								•			
					CBEIM	CBMIM	TBTOIM					RTCIM	CAEIM	CAMIM	TATOIN
GPTMRIS	6, type RO, o	offset 0x01	C, reset 0x	0000.0000											
					CBERIS	CBMRIS	TBTORIS					RTCRIS	CAERIS	CAMRIS	TATORIS

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PTMMIS	5, type RO,	offset 0x02	20, reset 0x	0000.0000											
					CBEMIS	CBMMIS	TBTOMIS					RTCMIS	CAEMIS	CAMMIS	TATOM
PTMICR	R, type W1C	, offset 0x	024, reset 0	x0000.000								I			
					CBECINT	CBMCINT	TBTOCINT					RTCCINT	CAECINT	CAMCINT	TATOCIN
GPTMTAI	LR, type R/	W, offset 0	x028, reset	0x0000.FF	FF (16-bit	node) and	0xFFFF.FFF	F (32-bit	mode)						
							TAIL								
DTMTD							TAII	_RL							
3PTMTBI	ILR, type R/	W, offset (0x02C, reset	t 0x0000.FI	FFF										
							TBI	RL							
GPTMTAN	MATCHR, ty	pe R/W, of	ffset 0x030,	reset 0x00	000.FFFF (1	6-bit mode			32-bit mode)					
							TAN								
							TAN	IRL							
ЗРТМТВ	MATCHR, ty	pe R/W, o	ffset 0x034,	reset 0x00	000.FFFF										
				00000.00	••		TBN	IRL							
SPIMTAR	-к, type R/	v, offset 0	x038, reset	uxuuuu.00	UU										
											TAF	PSR			
ЗРТМТВ	PR, type R/\	N, offset 0	x03C, reset	0x0000.00	00										
											TBI	PSR			
GPTMTAF	PMR, type F	/W, offset	0x040, rese	et 0x0000.0	000							-	_		
											TAP	SMR			
GPIMIB	PMR, type F	/W, offset	0x044, rese	et 0x0000.0	0000										
											TBP	SMR			
GPTMTAF	R, type RO,	offset 0x0	48, reset 0x	0000.FFFF	; (16-bit mo	de) and 0x	FFFF.FFFF	(32-bit mo	ode)						
							TAI		· ·						
							TA	RL							
GPTMTB	R, type RO,	offset 0x0	4C, reset 0	x0000.FFFI	F										
							TB	RL							
	log Time														
	4000.0000		000, reset 0												
WDILOA	D, type tow	, onset ox	ooo, reset o	×	<u> </u>		WDT	Load							
							WDT								
WDTVALI	UE, type RC	, offset 0x	:004, reset 0	xFFFF.FF	FF										
							WDT	Value							
							WDT	Value							
WDTCTL,	type R/W, o	offset 0x00)8, reset 0x(0000.0000											
														DECEN	INITES
WDTICP	tuno MO -	ffeat Aven	C rosot											RESEN	INTEN
WDTICR,	type WO, o	iiset UXUU	o, reset -				WDT	IntClr							
							WDT								
NDTRIS,	type RO, of	fset 0x010), reset 0x00	000.0000											
,															
															WDTRI

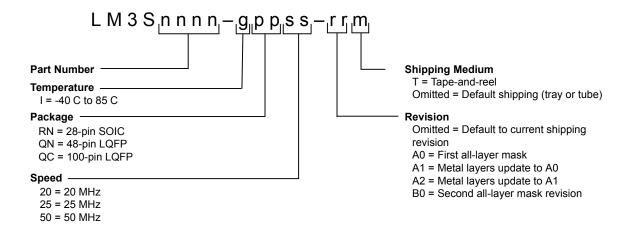
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NDTMIS,	type RO, of	fset 0x014,	reset 0x00	000.0000								1			
															WDTMI
WDTTEST	Γ, type R/W,	offset 0x41	18, reset 0)	×0000.0000											
							STALL								
WDTLOC	K, type R/W,	offset 0x0	00, reset (0x0000.000	D										
							WDT								
							WDT	Lock							
WDTPerip	ohID4, type I	RO, offset	0xFD0, res	et 0x0000.0	0000										
											D	D4			
WDTPorir	ohID5, type I	20 offset	OvED4 res	et 0x0000 (000						F	04			
WD II en	Jines, type i	to, onser	UXI D4, 163												
											P	ID5			
WDTPerip	ohID6, type I	RO, offset	0xFD8, res	et 0x0000.0	0000										
											P	ID6			
WDTPerip	ohID7, type I	RO, offset	0xFDC, res	set 0x0000.	0000										
											P	D7			
WDTPerip	ohID0, type I	RO, offset	0xFE0, res	et 0x0000.0	005										
											PI	D0			
WDTPerip	ohID1, type I	RO, offset	0xFE4, res	et 0x0000.0	018										
											D	 D1			
WDTPorir	ohID2, type I	20 offset	OvEE8 ros	et 0x0000 0	018						F				
WDIFell	JIIDZ, type i	(O, Oliset	UNI LO, IES		010										
											P	l ID2			
WDTPerip	ohID3, type I	RO, offset	0xFEC, res	set 0x0000.0	0001										
											P	ID3			
WDTPCel	IID0, type R	O, offset 0	xFF0, rese	t 0x0000.00	0D										
											С	ID0			
WDTPCel	IID1, type R	O, offset 0	xFF4, rese	t 0x0000.00	F0										
											С	ID1			
WDTPCel	IID2, type R	O, offset 0	xFF8, rese	t 0x0000.00	05										
											0	ID2			
WDTPCA	IID3, type R	O offect O	VEEC PORT		B1						U				
	iib3, type R	o, onset 0	ATTO, Tese												
											C	ID3			
Univer	sal Async	hronou	s Receiv	vors/Tra	nemitter		Te)				5	-			
	base: 0x400		a Receiv	versindi	isinitter	3 (UAR	13)								
UART1 b	base: 0x400	00.D000													
	base: 0x400														
JAR IDR,	type R/W, o	mset 0x000	u, reset Oxi	0000.0000											
				OE	BE	PE	FE				-	 ATA			

31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0
				04, reset 0x		9	0	1	0	5	4	5	2	1	0
o Airtinion	JOARTEON	i, ijpo no													
												OE	BE	PE	FE
UARTRSR	UARTECR	R, type WO	, offset 0x0	04, reset 0x	0000.0000			1			1	1			
											DA	ATA			
UARTFR,	type RO, of	ffset 0x018	8, reset 0x0	000.0090											
									-						
		- 6						TXFE	RXFF	TXFF	RXFE	BUSY			
UARTILPH	R, type R/W	, offset Ux	020, reset (x0000.0000											
											ILPE)VSR			
UARTIBRI	D. type R/W	/. offset 0x	024. reset (Dx0000.0000)										
-	7.51	,	,												
							DIV	I /INT							
UARTFBR	D, type R/V	V, offset 0	x028, reset	0x0000.000	0										
												DIVI	RAC		
UARTLCR	H, type R/V	V, offset 0	x02C, reset	0x0000.000	0										
								0.00	14/1	EN	FEN	OTDO	500	DEN	DDV
	ture DAM	offe of Ov0	20					SPS	VVL	EN	FEN	STP2	EPS	PEN	BRK
UARICIL	, type rk/w,	onsetuxu)30, reset 0:	20000.0300											
						RXE	TXE	LBE					SIRLP	SIREN	UARTEN
UARTIFLS	6, type R/W	, offset 0x	034, reset 0	x0000.0012				1				I			
											RXIFLSEL			TXIFLSEL	
UARTIM, t	ype R/W, o	ffset 0x03	8, reset 0x0	000.0000			_				_				
					OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM				
UARTRIS,	type RO, o	offset 0x03	C, reset 0x	0000.000F											
					OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS				
	type RO o	offset 0x04	IO, reset Ox	000 0000	OLIVIS	BEIRIS	FLIXIS	I LINIS	KIKIS	17113	INAINIS				
orarenano,	, type 110, t														
					OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS				
UARTICR,	type W1C,	offset 0x0)44, reset 0	x0000.0000				1							
					OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC				
UARTPeri	phID4, type	e RO, offse	et 0xFD0, re	set 0x0000.	0000										
		DC 7	10.75								PI	D4			
UARTPeri	pniD5, type	e RU, offse	et UXFD4, re	set 0x0000.	0000										
											PI	 D5			
UARTPeri	phID6. type	RO. offse	et 0xFD8. re	set 0x0000.	0000						rı				
		, 51136													
											PI	l D6			
UARTPeri	phID7, type	RO, offse	et 0xFDC, re	eset 0x0000.	.0000			1							
											PI	D7			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	17	0
	riphID0, type	RO, offse	et 0xFE0, re	set 0x0000	.0011			1				1			
											P	ID0			
UARTPer	riphID1, type	RO, offse	et 0xFE4, re	set 0x0000	.0000										
											P	ID1			
UARTPer	riphID2, type	RO, offse	et 0xFE8, re	set 0x0000	.0018							1			
											D	ID2			
	riphID3, type	RO offse	ot 0xFEC. re	 	0001						F	102			
UAITTE	npines, type	110, 01130													
											P	I ID3			
UARTPC	ellID0, type f	RO, offset	0xFF0, res	et 0x0000.0	00D			1							
											С	ID0			
UARTPC	ellID1, type I	RO, offset	0xFF4, res	et 0x0000.0	0F0										
											С	ID1			
UARTPC	ellID2, type F	RO, offset	0xFF8, res	et 0x0000.0	005										
											C	ID2			
UARTPC	ellID3, type F	RO. offset	0xFFC, res	et 0x0000.0	00B1										
oracti o	ciiibe, type i	10, 011001													
											С	I ID3			
Synchr	ronous S	erial Int	erface (S	SSI)											
SSI0 bas	se: 0x4000			,											
	0 4000														
	se: 0x4000	.9000	- recet Ov0												
	se: 0x4000 type R/W, of	.9000	, reset 0x0	000.0000											
		.9000						SPH	SPO	Ff	3F		Di	SS	
SSICR0, 1	type R/W, of	.9000 fset 0x000	S	CR				SPH	SPO	FF	٦F		D	SS	
SSICR0, 1		.9000 fset 0x000	S	CR				SPH	SPO	FF	RF		D	SS	
SSICR0, 1	type R/W, of	.9000 fset 0x000	S	CR				SPH	SPO	FF	RF	SOD	D: MS	SS	LBM
SSICR0, 1 SSICR1, 1	type R/W, of	.9000 fset 0x000 fset 0x004	S(I, reset 0x0	CR 000.0000				SPH	SPO	Ff	٦F	SOD			LBM
SSICR0, 1 SSICR1, 1	type R/W, of	.9000 fset 0x000 fset 0x004	S(I, reset 0x0	CR 000.0000				SPH	SPO	Ff	₹F	SOD			LBM
SSICR0, 1 SSICR1, 1 SSIDR, ty	type R/W, of type R/W, of	.9000 fset 0x000 fset 0x004 set 0x008,	S(, reset 0x0) reset 0x000	CR 000.0000 00.0000			D/	SPH I I I I I I I I I I I I I I I I I I I	SPO	F	RF	SOD			LBM
SSICR0, 1 SSICR1, 1 SSIDR, ty	type R/W, of	.9000 fset 0x000 fset 0x004 set 0x008,	S(, reset 0x0) reset 0x000	CR 000.0000 00.0000			D/		SPO	FF	RF	SOD			LBM
SSICR0, 1 SSICR1, 1 SSIDR, ty	type R/W, of type R/W, of	.9000 fset 0x000 fset 0x004 set 0x008,	S(, reset 0x0) reset 0x000	CR 000.0000 00.0000					SPO	Ff			MS	SSE	
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty	type R/W, of type R/W, off ype R/W, offs	9000 fset 0x000 fset 0x004 set 0x008, at 0x00C, 1	S(, reset 0x00 reset 0x000	CR 000.0000			D/		SPO	F	RF	SOD RFF			LBM
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty	type R/W, of type R/W, of	9000 fset 0x000 fset 0x004 set 0x008, at 0x00C, 1	S(, reset 0x00 reset 0x000	CR 000.0000			D/		SPO	F			MS	SSE	
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty	type R/W, of type R/W, off ype R/W, offs	9000 fset 0x000 fset 0x004 set 0x008, at 0x00C, 1	S(, reset 0x00 reset 0x000	CR 000.0000					SPO	FF	BSY	RFF	MS	SSE	
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR	type R/W, of type R/W, off ype R/W, offs	.9000 fset 0x000 fset 0x004 set 0x008, set 0x008, set 0x008,	reset 0x000	CR 000.0000 00.0000 00.0000 00.0003			D/		SPO	FF	BSY		MS	SSE	
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR	type R/W, of type R/W, of ype R/W, offs ype RO, offs R, type R/W, o	.9000 fset 0x000 fset 0x004 set 0x008, set 0x008, set 0x008,	reset 0x000	CR 000.0000 00.0000 00.0000 00.0003			D/		SPO	F	BSY	RFF	MS	SSE	
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR	type R/W, of type R/W, of ype R/W, offs ype RO, offs R, type R/W, o	.9000 fset 0x000 fset 0x004 set 0x008, set 0x008, set 0x008,	reset 0x000	CR 000.0000 00.0000 00.0000 00.0003					SPO		BSY	RFF	MS	SSE	
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR	type R/W, of type R/W, of ype R/W, offs ype RO, offs R, type R/W, o	.9000 fset 0x000 fset 0x004 set 0x008, et 0x000, 1 offset 0x07 et 0x014, 1	S(, reset 0x00 reset 0x000 10, reset 0x reset 0x000	CR 000.0000 00.0000 00.0000 00.0003 00.0003 00.0003 00.0000 00.0000					SPO	F	BSY	RFF	MS RNE	SSE	TFE
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR	type R/W, of type R/W, off ype R/W, offs rpe RO, offs R, type R/W, offs	.9000 fset 0x000 fset 0x004 set 0x008, et 0x000, 1 offset 0x07 et 0x014, 1	S(, reset 0x00 reset 0x000 10, reset 0x reset 0x000	CR 000.0000 00.0000 00.0000 00.0003 00.0003 00.0003 00.0000 00.0000					SPO		BSY	RFF	MS RNE	SSE	TFE
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR	type R/W, of type R/W, off ype R/W, offs rpe RO, offs R, type R/W, offs	.9000 fset 0x000 fset 0x004 set 0x008, et 0x000, 1 offset 0x07 et 0x014, 1	S(, reset 0x00 reset 0x000 10, reset 0x reset 0x000	CR 000.0000 00.0000 00.0000 00.0003 00.0003 00.0003 00.0000 00.0000					SPO		BSY	RFF	MS RNE	SSE	TFE
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR SSIIM, ty SSIRIS, ty	type R/W, of type R/W, off ype R/W, offs rpe RO, offs R, type R/W, offs	.9000 fset 0x000 fset 0x004 set 0x008, at 0x00C, 1 offset 0x07 et 0x014, 1 et 0x018,	S(), reset 0x00 reset 0x000 10, reset 0x 10, reset 0x reset 0x000	CR 000.0000 00.0000 00.0003 00.0003 00.0003 00.0000 00.0000 00.0000 00.0000 00.0000 00.0008					SPO		BSY	RFF	MS RNE RNE	SSE	TFE
SSICR0, 1 SSICR1, 1 SSIDR, ty SSISR, ty SSICPSR SSIIM, ty SSIRIS, ty	type R/W, of type R/W, offs ype R/W, offs ype RO, offs pe R/W, offs ype RO, offs	.9000 fset 0x000 fset 0x004 set 0x008, at 0x00C, 1 offset 0x07 et 0x014, 1 et 0x018,	S(), reset 0x00 reset 0x000 10, reset 0x 10, reset 0x reset 0x000	CR 000.0000 00.0000 00.0003 00.0003 00.0003 00.0000 00.0000 00.0000 00.0000 00.0000 00.0008					SPO		BSY	RFF	MS RNE RNE	SSE	TFE

31	20	20	20	07	26	25	24	22	22	21	20	10	10	17	10
15	30 14	29 13	28 12	27	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0
	/pe W1C, of					0	Ŭ		Ŭ				-		
· · · · · , · ,															
														RTIC	RORIO
SIPeriph	nID4, type R	O, offset 0	xFD0, rese	et 0x0000.00	000										
											PI	D4			
SSIPeriph	nID5, type R	O, offset 0	xFD4, rese	et 0x0000.00	000										
											PI	D5			
SSIPeriph	nID6, type R	O, offset u	IXFD8, rese	et 0x0000.00	000										
											PI	 D6			
SSIPeriph	nID7, type R	O. offset 0	xFDC. rese	et 0x0000.0	000										
		.,													
											PI	I D7			
SSIPeriph	nID0, type R	O, offset 0	xFE0, rese	t 0x0000.00)22										
											PI	D0			
SSIPeriph	ID1, type R	O, offset 0	xFE4, rese	et 0x0000.00	000										
											PI	D1			
SSIPeriph	nID2, type R	O, offset 0)xFE8, rese	et 0x0000.00	018										
												 D2			
SSIParinh	nID3, type R	O offset (VEEC rose		001						FI	02			
oon enpii	iibo, type it	0, 01381 0	AT 20, 1636												
											PI	D3			
SSIPCellII	D0, type RC), offset 0x	FF0, reset	0x0000.000	D			1							
											CI	D0			
SSIPCellII	D1, type RC), offset 0x	FF4, reset	0x0000.00F	0										
											CI	D1			
SSIPCellII	D2, type RC), offset 0x	FF8, reset	0x0000.000	5										
SEIDCAIN	D3, type RC	offoot Ox	FEC roast	0~000 000	24						CI	D2			
SSIFCelli	вз, туре кс	, onset ox	IFFC, Teset		51										
											CI	 D3			
Inter-In	tegrated	Circuit	(I ² C) Int	erface				1							
I ² C Mas			(° -)												
I2C Mast	ter 0 base:														
	ter 1 base:														
2CMSA, t	type R/W, o	ffset 0x000), reset 0x0	0000.0000											
															Dia
											SA				R/S
2CMCS, t	type RO, of	rset 0x004	, reset 0x00	000.0000											
									BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERDOD	BUSY
20100	type WO, of	feat 0v004	reset 0v0	000.0000					603831	IULE	ARBL91	DAIACK	ADRAUK	ERRUR	DUSY
201003, 1	ype w0, 0	1361 UXUU4	, reset uxu	000.0000											
												ACK	STOP	START	RUN
													0.01	0.74(1)	- NON

15 I2CMDR,		29	28	27	26	25	24	23	22	21	20	19	18	17	16
2CMDR,	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	type R/W, o	ffset 0x008	, reset 0x0	000.0000											
											DA	TA			
2CMTPR	, type R/W,	offset 0x00	C, reset 0x	¢0000.0001											
											TF	PR			
2CMIMR	, type R/W, c	offset 0x01	0, reset 0x	0000.0000				1							
															IM
I2CMRIS,	, type RO, of	tset 0x014	, reset uxu	000.0000											
															RIS
20MMIS	, type RO, of	ffect 0x018	rocot 0x0	000.0000											IXI3
	, type KO, O	iiset uxu io	, lesel uxu												
															MIS
2CMICR	, type WO, o	ffset 0x010	C. reset 0×0	0000.0000											
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,												
															IC
2CMCR,	type R/W, o	ffset 0x020	, reset 0x0	000.0000											
,															
										SFE	MFE				LPBK
	ve 0 base: (ve 1 base: (
I2CSOAR	R, type R/W,	offset 0x00	00, reset 0x	0000.0000											
2CSCSR												OAR			
	, туре ко, о	ffset 0x004	l, reset 0x0	0000.0000						1		OAR			
	, туре ко, о	ffset 0x004	l, reset 0x0	0000.0000								OAR	500	7050	
												OAR	FBR	TREQ	RREQ
I2CSCSR	t, type WO, c											OAR	FBR	TREQ	RREQ
2CSCSR												OAR	FBR	TREQ	
	t, type WO, c	offset 0x00	4, reset 0x(0000.0000								OAR	FBR	TREQ	RREQ
		offset 0x00	4, reset 0x(0000.0000								OAR	FBR	TREQ	
	t, type WO, c	offset 0x00	4, reset 0x(0000.0000									FBR	TREQ	
I2CSDR,	t, type WO, c	offset 0x00 fset 0x008	4, reset 0xl	0000.0000							DA		FBR	TREQ	
I2CSDR,	type WO, c	offset 0x00 fset 0x008	4, reset 0xl	0000.0000							DA		FBR	TREQ	
I2CSDR,	type WO, c	offset 0x00 fset 0x008	4, reset 0xl	0000.0000							DA		FBR	TREQ	
I2CSDR, I2CSIMR,	type WO, c	offset 0x000 ffset 0x008 offset 0x004	4, reset 0xl , reset 0x0 C, reset 0x1	0000.0000							DA		FBR	TREQ	DA
I2CSDR, I2CSIMR,	type R/W, of	offset 0x000 ffset 0x008 offset 0x004	4, reset 0xl , reset 0x0 C, reset 0x1	0000.0000							DA		FBR	TREQ	DA
2CSDR, 2CSIMR,	type R/W, of	offset 0x000 ffset 0x008 offset 0x004	4, reset 0xl , reset 0x0 C, reset 0x1	0000.0000							DA		FBR	TREQ	DA
2CSDR, 2CSIMR, 2CSRIS,	type R/W, of	ffset 0x00 fset 0x008 ffset 0x000	4, reset 0x0 , reset 0x00 C, reset 0x00	0000.0000							DA		FBR	TREQ	DA
2CSDR, 2CSIMR, 2CSRIS,	type R/W, of	ffset 0x00 fset 0x008 ffset 0x000	4, reset 0x0 , reset 0x00 C, reset 0x00	0000.0000							DA		FBR	TREQ	DA
2CSDR, 2CSIMR, 2CSRIS,	type R/W, of	ffset 0x00 fset 0x008 ffset 0x000	4, reset 0x0 , reset 0x00 C, reset 0x00	0000.0000							DA		FBR	TREQ	DA
I2CSDR, I2CSIMR, I2CSRIS, I2CSMIS,	type R/W, of	iffset 0x000 ifset 0x008 iffset 0x000 fset 0x010, fset 0x014	4, reset 0x0 , reset 0x00 C, reset 0x00 reset 0x00										FBR	TREQ	DA DA IM RIS
2CSDR, 2CSIMR, 2CSRIS, 2CSMIS,	type R/W, of type R/W, of type R/W, of type RO, of	iffset 0x000 ifset 0x008 iffset 0x000 fset 0x010, fset 0x014	4, reset 0x0 , reset 0x00 C, reset 0x00 reset 0x00										FBR	TREQ	DA DA IM RIS MIS
2CSDR, 2CSIMR, 2CSRIS, 2CSMIS,	type R/W, of type R/W, of type R/W, of type RO, of	iffset 0x000 ifset 0x008 iffset 0x000 fset 0x010, fset 0x014	4, reset 0x0 , reset 0x00 C, reset 0x00 reset 0x00										FBR	TREQ	DA DA IM RIS
I2CSDR, I2CSIMR, I2CSRIS, I2CSMIS, I2CSICR,	type R/W, of type R/W, of type R/W, of type RO, of	iffset 0x000 fset 0x008 iffset 0x000 fset 0x010, fset 0x014 ffset 0x018	4, reset 0x0 , reset 0x00 C, reset 0x00 reset 0x00										FBR		DA DA IM RIS MIS


ACIM, type R/W, offset 0x004, reset 0x0000.0007 R PHYINTM MDINTM RXERM FOVM TXEMPM TXEMPM RXINT ACRCTL, type R/W, offset 0x000, reset 0x0000.0000 R R R R R AMUL RXEM ACRCTL, type R/W, offset 0x000, reset 0x0000.0000 R R R R R AMUL RXEM ACCDATA, type R/W, offset 0x000, reset 0x0000.0000 R																
See 0x4004.8000 CRUE, type R0, offset 0x000, need 0x0000.0000 CRUEAUX, type RVL, offset 0x000, need 0x0000.0000 PHYNET MDINT EXER FOV TXEMP TXER RXIN CRUEAUX, type RVL, offset 0x000, need 0x0000.0000 PHYNET MDINT EXER FOV TXEMP TXER RXIN CRUEAUX, type RVL, offset 0x000, need 0x0000.0000 PHYNET MDINT EXER FOV TXEMP TXER RXIN CRUEAUX, type RVL, offset 0x000, need 0x0000.0000 PHYNET MDINT RXER FOV TXEMP TXER RXIN CRUEAUX, type RVL, offset 0x000, need 0x0000.0000 PHYNET MDINT RXER FOV TXEMP TXER RXIN CRUEAUX, type RVL, offset 0x000, need 0x0000.0000 PHYNET MACOCT3 RXER RXER FOV TXENP TXER RXIN CRUEAUX, type RVL, offset 0x010, need 0x0000.0000 TXENT RXER																
XGRIS, type RQ, offset 0x000, reset 0x0000.0000 Image: Control Contrecont Control Control Control Contro Contrel			13	12	11	10	9	8	7	6	5	4	3	2	1	0
XGRACK, type WIC, offset 0x000, reset 0x0000,0000 PHYINT MDINT RXER FOV TXEMP TXER RXIN XGRACK, type WIC, offset 0x000, reset 0x0000,0007 Image: Control Contro Control Control Control Control Control Control Con																
NCLACK, type WIC, offset 0x000, reset 0x0000,0007 PHYNNT MDINT RXER FOV TXER RXIN NCLM, type R/W, offset 0x000, reset 0x0000,0007 PHYNNT MDINT RXER FOV TXER RXIN NCLM, type R/W, offset 0x000, reset 0x0000,0007 PHYNNT MDINT RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x000, reset 0x0000,0000 PHYNNT MDINT RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x000, reset 0x0000,0000 PHYNNT MDINT RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x010, reset 0x0000,0000 PHYNNT MCIN RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x010, reset 0x0000,0000 TXDATA	MACRIS,	type RO, of	rset 0x000), reset 0x00	00.0000											
NCLACK, type WIC, offset 0x000, reset 0x0000,0007 PHYNNT MDINT RXER FOV TXER RXIN NCLM, type R/W, offset 0x000, reset 0x0000,0007 PHYNNT MDINT RXER FOV TXER RXIN NCLM, type R/W, offset 0x000, reset 0x0000,0007 PHYNNT MDINT RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x000, reset 0x0000,0000 PHYNNT MDINT RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x000, reset 0x0000,0000 PHYNNT MDINT RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x010, reset 0x0000,0000 PHYNNT MCIN RXER FOV TXER RXIN NCRCTL, type R/W, offset 0x010, reset 0x0000,0000 TXDATA										PHVINT	MDINT	RYER	FOV	TYEMP	TYER	RYINT
KGIM, type RW, offset 0x004, reset 0x0000.0007 RXIN R	MACIACK	(type W1C	offeet Ox	000 reset 0							MDINT	IVLEN	100	TALINI	IXEN	
XGM, type RW, offset 0x000, reset 0x0000.0007 PHYBTM MDINTM RXERM FOVM TXEMPM			, onset ox			·										
XGM, type RW, offset 0x000, reset 0x0000.0007 PHYBTM MDINTM RXERM FOVM TXEMPM										PHYINT	MDINT	RXER	FOV	TXEMP	TXER	RXINT
ACRACTL. type RW. offset 0x000. reset 0x0000.0000 AMUL PHYINTM MDINTM RXERM FOVM TXEMPM TXEMPM RXINT XCRCTL. type RW. offset 0x000. reset 0x0000.0000 Image: Control on the control on t	MACIM. tv	vpe R/W. off	set 0x004	. reset 0x00	00.007F								-			
XCRCTL, type RW, offset 0x008, reset 0x0000.0000 RSTPFO BADCRC PRMS AMUL RXE XCRCTL, type RW, offset 0x001, reset 0x0000.0000 RXEDATA DUPLEX CRC PADEN TXE XCRATA, type RW, offset 0x010, reset 0x0000.0000 RXEDATA RXEDATA RXEDATA RXEDATA XCRATA, type RW, offset 0x010, reset 0x0000.0000 RXEDATA RXEDATA RXEDATA XCRATA, type RW, offset 0x010, reset 0x0000.0000 TXOATA TXEATA RXEDATA XCRATA, type RW, offset 0x010, reset 0x0000.0000 TXOATA TXEATA RXEATA XCRATA, type RW, offset 0x010, reset 0x0000.0000 TXOATA MACOCTS NACOCTS MACOCTA MACOCTS MACOCTS NACOCTS NACOCTS MACOCTA MACOCTS NACOCTS NACOCTS NACOCTS NACOCTS MACOCTA MACOCTS MACOCTS NACOCTS NACOCTS <td< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				,												
ACTOTL, type R/W, offset 0x000, reset 0x0000,0000 RSTEPPO BADCRC PRMS AMUL RXEP ACTOTL, type R/W, offset 0x000, reset 0x0000,0000 RXOATA DUPLEX CRC PADEN TXEP ACDATA, type R/W, offset 0x010, reset 0x0000,0000 RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA RXOATA										PHYINTM	MDINTM	RXERM	FOVM	TXEMPM	TXERM	RXINT
ACTCTL, type RW, offset 0x000, reset 0x0000.0000 RXDATA DUPLEX CRC PADEN TXEN ACDATA, type RO, offset 0x010, reset 0x0000.0000 RXDATA XXDATA XXDATA XXDATA ACDATA, type RW, offset 0x010, reset 0x0000.0000 TXDATA XXDATA XXDATA XXDATA ACDATA, type RW, offset 0x010, reset 0x0000.0000 TXDATA XXDATA XXDATA XXDATA ACDATA, type RW, offset 0x010, reset 0x0000.0000 TXDATA XXDATA XXDATA XXDATA ACQCT1 MACOCT3 MACOCT3 MACOCT4 MACOCT5 XXDATA ACIA, type RW, offset 0x016, reset 0x0000.0000 MACOCT5 XXDATA XXDATA XXDATA ACIAT, type RW, offset 0x020, reset 0x0000.0000 MACOCT5 XXDATA XXDATA XXDATA XXDATA ACIATA, type RW, offset 0x020, reset 0x0000.0000 MACOCT5 XXDATA	MACRCTI	L, type R/W,	offset 0x	008, reset 0:	x0000.0008				1				1			
ACTCTL, type RW, offset 0x000, reset 0x0000.0000 RXDATA DUPLEX CRC PADEN TXEN ACDATA, type RO, offset 0x010, reset 0x0000.0000 RXDATA XXDATA XXDATA XXDATA ACDATA, type RW, offset 0x010, reset 0x0000.0000 TXDATA XXDATA XXDATA XXDATA ACDATA, type RW, offset 0x010, reset 0x0000.0000 TXDATA XXDATA XXDATA XXDATA ACDATA, type RW, offset 0x010, reset 0x0000.0000 TXDATA XXDATA XXDATA XXDATA ACQCT1 MACOCT3 MACOCT3 MACOCT4 MACOCT5 XXDATA ACIA, type RW, offset 0x016, reset 0x0000.0000 MACOCT5 XXDATA XXDATA XXDATA ACIAT, type RW, offset 0x020, reset 0x0000.0000 MACOCT5 XXDATA XXDATA XXDATA XXDATA ACIATA, type RW, offset 0x020, reset 0x0000.0000 MACOCT5 XXDATA																
ACCOUNT RXDATA DUPLEX CRC PADEN TXEN ACCOUNT RXDATA												RSTFIFO	BADCRC	PRMS	AMUL	RXEN
ACDATA, type RO, offset 0x010, reset 0x0000.0000 RXDATA RXDATA RXDATA RXDATA RXDATA XCDATA, type WO, offset 0x010, reset 0x0000.0000 TXDATA XCIAO, type RW, offset 0x014, reset 0x0000.0000 MACOCT3 MACOCT4 MACOCT3 MACOCT5 MACOCT3 MACOCT6 MACOCT5 ACIAT, type RW, offset 0x010, reset 0x0000.0000 MACOCT5 MACOCT6 MACOCT5 ACCOT7, type RW, offset 0x010, reset 0x0000.0000 THRESH ACMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE XCMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR XCMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR XCMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR XCMATL, type RW, offset 0x030, reset 0x0000.0000 NDTX NDRX NDRX NDRX XCMRXD, type RW, offset 0x030, reset 0x0000.0000 NDRX NDRX NDRX NDRX NEWT XCMRXD, type RW, offset 0x030, reset 0x0000.0000 NDRX NDRX NDRX NEWT NEWT NEWT NEWT	МАСТСТІ	L, type R/W,	offset 0x0	00C, reset 0	x0000.0000											
ACDATA, type RO, offset 0x010, reset 0x0000.0000 RXDATA RXDATA RXDATA RXDATA RXDATA XCDATA, type WO, offset 0x010, reset 0x0000.0000 TXDATA XCIAO, type RW, offset 0x014, reset 0x0000.0000 MACOCT3 MACOCT4 MACOCT3 MACOCT5 MACOCT3 MACOCT6 MACOCT5 ACIAT, type RW, offset 0x010, reset 0x0000.0000 MACOCT5 MACOCT6 MACOCT5 ACCOT7, type RW, offset 0x010, reset 0x0000.0000 THRESH ACMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE XCMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR XCMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR XCMATL, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR XCMATL, type RW, offset 0x030, reset 0x0000.0000 NDTX NDRX NDRX NDRX XCMRXD, type RW, offset 0x030, reset 0x0000.0000 NDRX NDRX NDRX NDRX NEWT XCMRXD, type RW, offset 0x030, reset 0x0000.0000 NDRX NDRX NDRX NEWT NEWT NEWT NEWT																
RXDATA RXDATA RXDATA TXDATA TXDATA MACOCT3 MACOCT2 MACOCT3 MACOCT2 MACOCT5 XCIA1, type R/W, offset 0x010, reset 0x0000.0000 MACOCT5 XCIAT, type R/W, offset 0x020, reset 0x0000.0000 THRESH XCIMOV, type R/W, offset 0x020, reset 0x0000.0000 REGADR WRITE XCIMOV, type R/W, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR XCIMOV, type R/W, offset 0x020, reset 0x0000.0000 DV VRITE STAR XCIMOV, type R/W, offset 0x020, reset 0x0000.0000 DV VRITE VRITE XCIMOV, type R/W, offset 0x030, reset 0x0000.0000 MDX VRITE VRITE XCIMOV, type R/W, offset 0x030, reset 0x0000.0000 VRITE VRITE VRITE XCIMOV, type R/W, offset 0x030, reset 0x0000.0000 VRITE VRITE VRITE XCIMP, type R/W, offset 0x033, reset 0x0000												DUPLEX		CRC	PADEN	TXEN
RXDATA TXDATA ACEDATA, type W0, offset 0x010, reset 0x0000.0000 TXDATA XGLAD, type R/W, offset 0x014, reset 0x0000.0000 MACOCT3 MACOCT4 MACOCT3 MACOCT5 MACOCT3 MACOCT6 MACOCT5 MACOCT7 MACOCT6 MACOCT6 MACOCT5 MACOCT6 MACOCT5 MACOCT7 MACOCT6 MACOCT6 MACOCT6 MACOCT6 MACOCT6 MACOCT7 MACOCT6 MACOCT6 MACOCT6	MACDATA	A, type RO,	offset 0x0	10, reset 0x	0000.0000											
ACDATA, type W0, offset 0x010, reset 0x0000.0000 TXDATA TXDATA CACIA0, type R/W, offset 0x014, reset 0x0000.0000 MACOCT3 MACOCT3 MACOCT2 MACOCT1 MACOCT1 MACOCT6 MACOCT5 MACOCT5 XCHA, type R/W, offset 0x010, reset 0x0000.0007 MACOCT5 THRESH MACOCT6 MACOCT5 MACOCT5 XCHR, type R/W, offset 0x020, reset 0x0000.0007 THRESH THRESH XCMAV, type R/W, offset 0x020, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x020, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x020, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x020, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x020, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x020, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x030, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x030, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x030, reset 0x0000.0000 THRESH THRESH XCMAV, type R/W, offset 0x030, reset 0x0000.0000 THRESH THRESH								RXI	DATA							
TXDATA ACIA0, type RW, offset 0x001, coset 0x0000.0000 MACOCT4 MACOCT3 MACOCT2 MACOCT1 XCIA1, type RW, offset 0x018, reset 0x0000.0000 MACOCT5 ACIA0, type RW, offset 0x010, reset 0x0000.0000 MACOCT5 MACOCT6 MACOCT5 MACOCT6 MACOCT5 ACIA1, type RW, offset 0x010, reset 0x0000.0000 MACOCT5 ACIMAT, type RW, offset 0x020, reset 0x0000.0000 MACOCT5 ACIMAT, type RW, offset 0x020, reset 0x0000.0000 REGADR WRITE ACIMAT, type RW, offset 0x024, reset 0x0000.0000 REGADR WRITE ACIMAT, type RW, offset 0x024, reset 0x0000.0000 REGADR WRITE ACIMAT, type RW, offset 0x024, reset 0x0000.0000 TUTE TUTE ACIMAT, type RW, offset 0x030, reset 0x0000.0000 MITE STAR ACIMATD, type RW, offset 0x034, reset 0x0000.0000 MITE TUTE ACIMATD, type RW, offset 0x034, reset 0x0000.0000 MITE MITE ACIMATD, type RW, offset 0x034, reset 0x0000.0000 MITE MITE ACIMATD, type RW, offset 0x034, reset 0x0000.0000 MITE MITE ACIMATD, type RW, offset 0x034, reset 0x0000.0000 MITE MITE </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RXI</td> <td>DATA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								RXI	DATA							
ACIA0, type R/W, offset 0x014, reset 0x0000.0000 MACOCT3 MACOCT3 MACOCT3 AGLA1, type R/W, offset 0x018, reset 0x0000.0000 MACOCT5 MACOCT5 Image: Content of the conten	MACDATA	A, type WO,	offset 0x0	010, reset 0)	<0000.0000											
ACIA0, type R/W, offset 0x014, reset 0x0000.0000 MACOCT3 MACOCT3 MACOCT3 MACOCT3 MACOCT3 MACOCT4 MACOCT3 MACOCT3 MACOCT4 MACOCT3 MACOCT4 MACOCT3 MACOCT4 MACOCT3 MACOCT4 MACOCT3 MACOCT4 MACOCT3 MACOCT4																
MACOCT4 MACOCT3 MACOCT2 MACOCT1 ACIA1, type RIW, offset 0x018, reset 0x0000.0000 MACOCT5 MACOCT5 MACOCT5 MACOCT4, type RIW, offset 0x01C, reset 0x0000.003F MACOCT5 ACIAT, type RIW, offset 0x020, reset 0x0000.0000 THRESH ACMCT1, type RIW, offset 0x020, reset 0x0000.0000 REGADR WRITE ACMCT1, type RIW, offset 0x020, reset 0x0000.0000 REGADR WRITE ACMTXD, type RIW, offset 0x02C, reset 0x0000.0000 REGADR WRITE ACMTXD, type RIW, offset 0x02C, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x030, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x030, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x030, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x030, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x030, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x030, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x030, reset 0x0000.0000 MIC MIC ACMTXD, type RIW, offset 0x033, reset 0x0000.0000 MIC MIC ACMTR, type RIW, offse								TXI	DATA							
MACOCT2 MACOCT1 AGIA1, type R/W, offset 0x018, reset 0x0000.0000 MACOCT5 MACOCT6 MACOCT5 MACOCT6 MACOCT5 MACOCT7, reset 0x0000.003F MACOCT5 ACTHR, type R/W, offset 0x01C, reset 0x0000.003F MACOCT5 ACMORTL, type R/W, offset 0x02C, reset 0x0000.0000 MACOCT5 ACMORTL, type R/W, offset 0x022, reset 0x0000.0000 REGADR WRITE ACMORTL, type R/W, offset 0x022, reset 0x0000.0000 REGADR WRITE ACMORTL, type R/W, offset 0x022, reset 0x0000.0000 REGADR WRITE ACMARTD, type R/W, offset 0x022, reset 0x0000.0000 REGADR WRITE ACMARTD, type R/W, offset 0x022, reset 0x0000.0000 MACOCT6 MACOCT6 ACMARTD, type R/W, offset 0x024, reset 0x0000.0000 MACOCT6 MACOCT6 ACMARTD, type R/W, offset 0x034, reset 0x0000.0000 MACOCT6 MACOCT6 ACMARTD, type R/W, offset 0x034, reset 0x0000.0000 MACOCT6 MACOCT6 ACT R, type R/W, offset 0x034, reset 0x0000.0000 MACOCT6 MACOCT6 ACT R, type R/W, offset 0x034, reset 0x0000.0000 MACOCT6 MACOCT6 ACT R, type R/W, offset 0x036, reset 0x0000.0000 MACOCT6 MACOCT6 <	MACIA0, 1	type R/W, of	ffset 0x01													
ACIA1, type R/W, offset 0x016, reset 0x0000.0000 MACOCT5 MACOCT5 ACTHR, type R/W, offset 0x01C, reset 0x0000.003F THRESH THRESH ACMOTL, type R/W, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR ACMOTL, type R/W, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR ACMOTL, type R/W, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR ACMOTL, type R/W, offset 0x020, reset 0x0000.0000 REGADR WRITE STAR ACMOTL, type R/W, offset 0x024, reset 0x0000.0000 DIV DIV STAR ACMOTL, type R/W, offset 0x026, reset 0x0000.0000 DIV DIV STAR ACMARD, type R/W, offset 0x030, reset 0x0000.0000 DIV STAR STAR ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 DIV STAR STAR ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 DIV STAR STAR ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 NPR STAR STAR ACTR, type R/W, offset 0x038, reset 0x0000.0000 NPR NPR NPR ACTR, type R/W, offset 0x038, reset 0x0000.0000 NPR NPR NEWT ACTR, type R/W, offset 0x038, reset																
MACOCT6 MACOCT5 ACTHR, type R/W, offset 0x000,0003F Image: State 1 ACTR, type R/W, offset 0x020, reset 0x0000,0000 Image: State 1 ACMOTL, type R/W, offset 0x020, reset 0x0000,0000 Image: State 1 ACMOTL, type R/W, offset 0x020, reset 0x0000,0000 Image: State 1 ACMOTL, type R/W, offset 0x020, reset 0x0000,0000 Image: State 1 ACMOTL, type R/W, offset 0x020, reset 0x0000,0000 Image: State 1 ACMOV, type R/W, offset 0x020, reset 0x0000,0000 Image: State 1 ACMOV, type R/W, offset 0x020, reset 0x0000,0000 Image: State 1 ACMOV, type R/W, offset 0x030, reset 0x0000,0000 Image: State 1 ACMPX, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 ACMPX, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 ACMPX, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 ACMPX, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 ACTR, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 ACTR, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 ACTR, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 ACTR, type R/W, offset 0x033, reset 0x0000,0000 Image: State 1 Image: State 1 Image: State1												MAC	0011			
ACTHR, type R/W, offset 0x01C, reset 0x0000.003F Image: Control in the control i	WACIA1, 1	type R/w, o	nset uxu1	8, reset uxu	000.0000											
ACTHR, type R/W, offset 0x01C, reset 0x0000.003F Image: Control in the control i				MAC								MAC	0075			
ACMOCTL, type R/W, offset 0x020, reset 0x0000.0000 THRESH ACMOTL, type R/W, offset 0x020, reset 0x0000.0080 REGADR WRITE STAR ACMOV, type R/W, offset 0x024, reset 0x0000.0080 REGADR WRITE STAR ACMOV, type R/W, offset 0x024, reset 0x0000.0080 DIV DIV STAR ACMOV, type R/W, offset 0x024, reset 0x0000.0080 DIV DIV STAR ACMOV, type R/W, offset 0x026, reset 0x0000.0000 DIV DIV STAR ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 DIV DIV STAR ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 DIV DIV STAR ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 DIV DIV STAR ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 DIV DIV STAR ACMP, type R/W, offset 0x034, reset 0x0000.0000 DIV DIV STAR ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 DIV DIV STAR ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 DIV DIV STAR ACMRXD, type R/W, offset 0x038, reset 0x0000.0000 DIV DIV STAR ACTR, type R/W, offset 0x038, reset 0x0000.0000	MACTHR	type R/W (offect OvOr									11/10				
ACMCTL, type R/W, offset 0x020, reset 0x0000.0000 Image: Control in the control		, ()p0 10 11 , 0		10,100010x												
ACMCTL, type R/W, offset 0x020, reset 0x0000.0000 Image: Control in the control													I THR	ESH		
ACMDV, type R/W, offset 0x024, reset 0x0000.0080 WRITE STAR ACMDV, type R/W, offset 0x026, reset 0x0000.0080 Image: Comparison of	масмст	L. type R/W	. offset 0x	020. reset 0	x0000.0000)								-		
ACMDV, type R/W, offset 0x024, reset 0x0000.0080 Image: constraint of the																
ACMTXD, type R/W, offset 0x02C, reset 0x0000.0000 DV ACMTXD, type R/W, offset 0x02C, reset 0x0000.0000 MDTX ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 MDTX ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 MDTX ACMP, type R/W, offset 0x034, reset 0x0000.0000 MDTX ACMR, type R/W, offset 0x038, reset 0x0000.0000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>REGADR</td><td></td><td></td><td></td><td>WRITE</td><td>START</td></t<>											REGADR				WRITE	START
ACMTXD, type R/W, offset 0x02C, reset 0x0000.0000 ACMTXD, type R/W, offset 0x030, reset 0x0000.0000 ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 ACMP, type R/W, offset 0x034, reset 0x0000.0000 ACTR, type R/W, offset 0x038, reset 0x0000.0000 ACTR, type R/W, offset 0x038, reset 0x0000.0000	MACMDV	, type R/W, o	offset 0x0	24, reset 0x	0000.0080											
ACMTXD, type R/W, offset 0x02C, reset 0x0000.0000 ACMTXD, type R/W, offset 0x030, reset 0x0000.0000 ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 ACMRXD, type R/W, offset 0x034, reset 0x0000.0000 ACMP, type R/W, offset 0x034, reset 0x0000.0000 ACTR, type R/W, offset 0x038, reset 0x0000.0000 ACTR, type R/W, offset 0x038, reset 0x0000.0000																
MDTX ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 MDTX MDTX MDTX ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 MDRX MDRX MDRX ACNP, type R0, offset 0x034, reset 0x0000.0000 MDRX ACNP, type R0, offset 0x034, reset 0x0000.0000 MDRX ACNR, type R/W, offset 0x038, reset 0x0000.0000 MDRX ACTR, type R/W, offset 0x038, reset 0x0000.0000 MDRX MCTR, type R/W, offset 0x038, reset 0x0000.0000 MCWT MCTR, type R/W, offs												D	IV			
ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 Image: Comparison of the	масмтх	D, type R/W	, offset 0x	02C, reset 0)x0000.000)										
ACMRXD, type R/W, offset 0x030, reset 0x0000.0000 Image: Comparison of the																
ACNP, type RO, offset 0x034, reset 0x0000.0000								M	ХТХ							
ACNP, type RO, offset 0x034, reset 0x0000.0000 ACNP, type RO, offset 0x034, reset 0x0000.0000 Image: Control contron contron control control control control control cont	MACMRX	D, type R/W	, offset 0x	(030, reset 0	x0000.000)										
ACNP, type RO, offset 0x034, reset 0x0000.0000 ACNP, type RO, offset 0x034, reset 0x0000.0000 Image: Control contron contron control control control control control cont																
ACTR, type R/W, offset 0x0038, reset 0x0000.0000 Image: Controller in the control i								M	DRX							
ACTR, type R/W, offset 0x008, reset 0x0000.0000	MACNP, t	ype RO, off	set 0x034,	reset 0x000	0000.00				1							
ACTR, type R/W, offset 0x008, reset 0x0000.0000																
thernet Controller													N	-K		
thernet Controller	MACTR, t	ype R/W, of	rset 0x038	s, reset 0x00	0000.000											
thernet Controller																NEWTY
																INE VVI X
II Management																
	MII Mar	nagemen	t													

				07		05						10	10	47	40
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17 1	16 0
	1004.8000	15	12		10	3	0		0	5		3	2	1	0
	R/W, addro	es 0x00 r	eset 0x310	n											
	LOOPBK				ISO	RANEG	DUPLEX	COLT							
	RO, addre				100	TUTLO	DOI LEX	0021							
		100X_H		10T_H					MFPS	ANEGC	RFAULT	ANEGA	LINK	JAB	EXTD
MR2. type	RO, addre			_						7.1.200	117.0021	/	2	0,12	2,110
	,	,					OUI	21:6]							
MR3. type	RO, addre	ss 0x03. re	set 0x7237	,											
			[5:0]					N	1N				F	RN	
MR4, type	R/W, addro			1											
NP		RF					A3	A2	A1	A0			S[4:0]		
MR5, type	e RO, addre	ss 0x05, re	eset 0x0000					1							
NP	ACK	RF				A[7:0]						S[4:0]		
MR6, type	e RO, addre	ss 0x06, re	eset 0x0000												
											PDF	LPNPA		PRX	LPANEG
MR16, typ	e R/W, add	ress 0x10,	reset 0x01	40											
RPTR	INPOL		TXHIM	SQEI	NL10					APOL	RVSPOL			PCSBP	RXCC
MR17, typ	e R/W, add	ress 0x11,	reset 0x000	00											
JABBER_IE	RXER_IE	PRX_IE	PDF_IE	LPACK_IE	LSCHG_IE	RFAULT_IE	ANEGCOMP_E	JABBER_INT	RXER_INT	PRX_INT	PDF_INT	LPACK_INT	LSCHG_INT	RFAULT_INT	ANEGCOMPIN
MR18, typ	e RO, addr	ess 0x12, i	reset 0x000	0											
			ANEGF	DPLX	RATE	RXSD	RX_LOCK								
MR19, typ	e R/W, add	ress 0x13,	reset 0x40	00											
ТХС	D[1:0]														
MR23, typ	e R/W, add	ress 0x17,	reset 0x00	10											
									LED	1[3:0]			LED	0[3:0]	
MR24, typ	e R/W, add	ress 0x18,	reset 0x00	C0				I							
								PD_MODE	AUTO_SW	MDIX	MDIX_CM		MDI	X_SD	
	Compar														
	1003.C000		0												
ACMIS, ty	vpe R/W1C,	offset UXU	U, reset UXU	000.0000											
														IN1	INO
	pe RO, offs	ot 0x04 ro	set 0x0000	0000											INU
ACKIS, ty	pe KO, ons	el 0.04, 16	Sel UXUUUU	.0000											
														IN1	INO
ACINTEN	, type R/W,	offset 0x08	3. reset 0x0	000.0000											
	, .,		,												
														IN1	IN0
ACREFC	L, type R/V	/, offset 0x	10, reset 0	×0000.0000											
						EN	RNG						VF	REF	
ACSTATO	, type RO, c	ffset 0x20	, reset 0x00	000.0000											
														OVAL	
ACSTAT1	, type RO, c	ffset 0x40	, reset 0x00	000.0000											
														OVAL	
ACCTL0,	type RO, of	fset 0x24,	reset 0x000	00.000											
					ASF	RCP					ISLVAL	IS	EN	CINV	

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ACCTL1,	ACCTL1, type RO, offset 0x44, reset 0x0000.0000														
					ASF	RCP					ISLVAL	IS	EN	CINV	

C Ordering and Contact Information

C.1 Ordering Information

Table C-1. Part Ordering Information

Orderable Part Number	Description
LM3S6611-IQC50	Stellaris [®] LM3S6611 Microcontroller
LM3S6611-IQC50(T)	Stellaris [®] LM3S6611 Microcontroller

C.2 Kits

The Luminary Micro Stellaris[®] Family provides the hardware and software tools that engineers need to begin development quickly.

 Reference Design Kits accelerate product development by providing ready-to-run hardware, and comprehensive documentation including hardware design files:

http://www.luminarymicro.com/products/reference_design_kits/

 Evaluation Kits provide a low-cost and effective means of evaluating Stellaris[®] microcontrollers before purchase:

http://www.luminarymicro.com/products/evaluation_kits/

 Development Kits provide you with all the tools you need to develop and prototype embedded applications right out of the box:

http://www.luminarymicro.com/products/boards.html

See the Luminary Micro website for the latest tools available or ask your Luminary Micro distributor.

C.3 Company Information

Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the

Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit microcontroller designs. With entry-level pricing at \$1.00 for an ARM technology-based MCU, Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural upgrades or software tool changes.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com sales@luminarymicro.com

C.4 Support Information

For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3