
LM368-5.0 and LM368-10 Precision Voltage References

General Description

The LM368 is a precision, monolithic, temperature-compensated voltage reference. The LM368 makes use of thin-film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient (Tempco) of V_{OUT} (as low as 5ppm/°C), along with tight initial tolerance, (as low as 0.02%). The trim scheme is such that individual resistors are cut open rather than being trimmed (partially cut), to avoid resistor drift caused by electromigration in the trimmed area. The LM368 also provides excellent stability vs. changes in input voltage and output current (both sourcing and sinking). This device is available in output voltage options of 5.0V and 10.0V and will operate in both series or shunt mode. Also see the LM368-2.5 data sheet for a 2.5V output. The devices are short circuit proof when sourcing current. A trim pin is made available for fine trimming of VOUT or for obtaining intermediate values without greatly affecting the Tempco of the device.

Features

- 300 µA operating current
- Low output impedance
- Excellent line regulation (.0001%/V typical)
- Single-supply operation
- Externally trimmable
- Low temperature coefficient
- Operates in series or shunt mode
- 10.0V or 5.0V
- Excellent initial accuracy (0.02% typical)

Absolute Maximum Ratings (Note 8)

Input Voltage (Series Mode) Reverse Current (Shunt Mode) 50 mA 600 mW Power Dissipation -60°C to $+150^{\circ}\text{C}$ Storage Temperature Range

Operating Temperature Range

LM368 0° C to $+70^{\circ}$ C Soldering Information

TO-5 (H) Package, 10 sec.

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

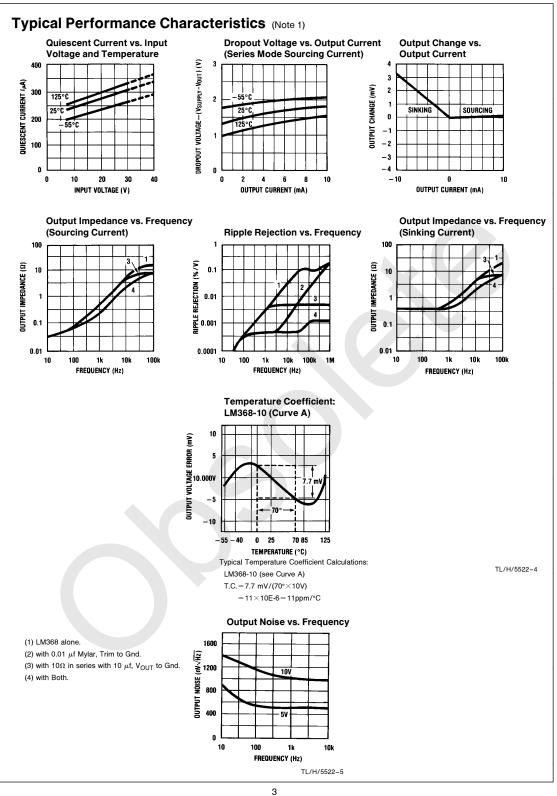
Electrical Characteristics (Note 1)

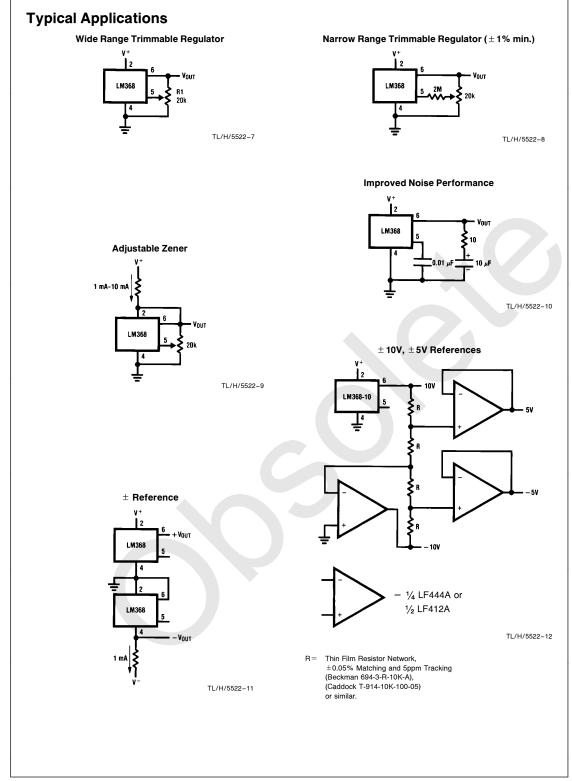
	Conditions	LM368			
Parameter		Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units (Max. unless noted)
V _{OUT} Error		±0.02	±0.1		%
Line Regulation	$(V_{OUT} + 3V) \le V_{IN} \le 30V$	±0.0001	±0.0005		%/V
Load Regulation (Note 4)	$\begin{array}{l} 0 \text{ mA} \leq I_{\mbox{SOURCE}} \leq 10 \text{ mA} \\ -10 \text{ mA} \leq I_{\mbox{SINK}} \leq 0 \text{ mA} \end{array}$	±0.0003 ±0.003	±0.001 ±0.008		%/mA %/mA
Thermal Regulation	T=20 mS (Note 5)	±0.005	±0.01		%/100 mW
Quiescent Current		250	350		μА
Change of Quiescent Current vs. V _{IN}	$(V_{OUT} + 3V) \le V_{IN} \le 30V$	3	5		μΑ/V
Temperature Coefficient of V _{OUT} (see graph): LM368Y (Note 6) LM368	$0^{\circ}C \le T_{A} \le 70^{\circ}C$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$	±11 ±15	± 20	±30	ppm/°C ppm/°C
Short Circuit Current	V _{OUT} = 0	30	70	100	mA
Noise: 10.0V: 0.1 - 10Hz 100Hz - 10 kHz 6.2V: 0.1 - 10Hz 100Hz - 10 kHz 5.0V: 0.1 - 10Hz 100Hz - 10 kHz		30 1100 20 700 16 575			uVp-p nV/√Hz uVp-p nV/√Hz uVp-p nV/√Hz
V _{OUT} Adjust Range: 10.000V 5.000V	$0V \le V_{PIN5} \le V_{OUT}$	4.5-17.0 4.4-7.0		6.0-15.5 4.5-6.0	V min. V min.

Note 1: Unless otherwise noted, these specifications apply: $T_A = 25^{\circ}C$, $V_{IN} = 15V$, $I_{LOAD} = 0$, $0 \le C_L \le 200$ pF, Circuit is operating in Series Mode. Or, circuit is operating in Shunt Mode, $V_{IN} = +15V$ or $V_{IN} = V_{OUT}$, $T_A = +25^{\circ}C$, $I_{LOAD} = -1.0$ mA, $0 \le C_L \le 200$ pF.

Note 2: Tested Limits are guaranteed and 100% tested in production.

Note 3: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

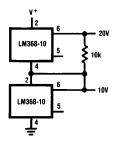

Note 4: The LM368 has a Class B output, and will exhibit transients at the crossover point. This point occurs when the device is asked to sink approximately 120 μA. In some applications it may be advantageous to preload the output to either V_{IN} or Ground, to avoid this crossover point.


Note 5: Thermal Regulation is defined as the change in the output Voltage at a time T after a step change in power dissipation of 100 mW.

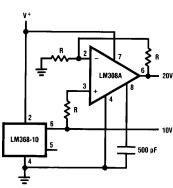
Note 6: Temperature Coefficient of V_{OUT} is defined as the worst case delta-V_{OUT} measured at Specified Temperatures divided by the total span of the Specified Temperature Range (See graphs). There is no guarantee that the Specified Temperatures are exactly at the minimum or maximum deviation.

Note 7: In metal can (H), $\theta_{\rm J-C}$ is 75°C/W and $\theta_{\rm J-A}$ is 150°C/W.

Note 8: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its Rated Operating Conditions (see Note 1 and Conditions).

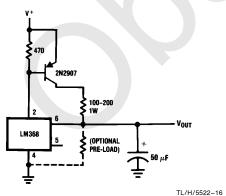


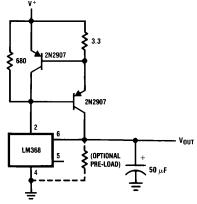
Typical Applications (Continued)


2 6 LM368-10 5 4.7k

Multiple Output Voltages

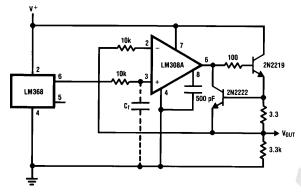
TL/H/5522-14


TL/H/5522-13

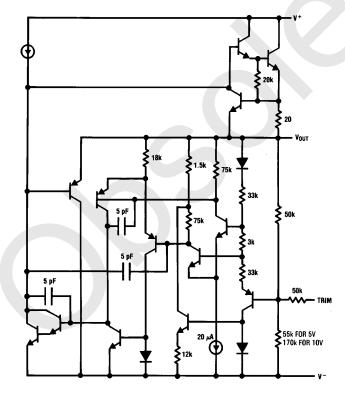

R= Thin Film Resistor Network 0.05% Matching and 5ppm Tracking (Beckman 694-3-R-10K-A), (Caddock T-914-10K-100-05) or similar.

TL/H/5522-15

Reference with Booster


100 mA Boosted Reference

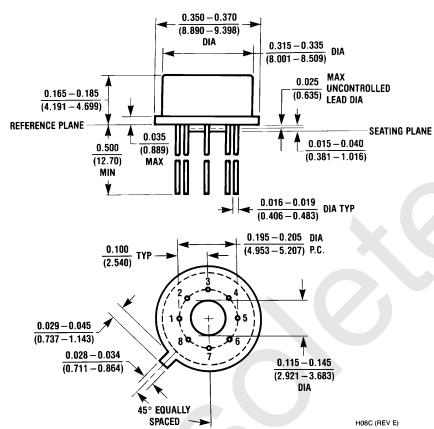
TL/H/5522-17


Typical Applications (Continued)

Buffered High-Current Reference with Filter

TL/H/5522-18

Simplified Schematic Diagram



TL/H/5522-6

*Reg. U.S. Pat. Off.

Physical Dimensions inches (millimeters)

Thermal resistance is 45°C/W, junction to case, and 150°C/W, junction to still air.

Metal Can Package (H)

Order Number LM368YH-10, LM368YH-5.0, LM368H-10, LM368H-5.0 NS Package Number H08C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>