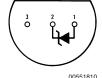
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode General Description

The LM185-1.2/LM285-1.2/LM385-1.2 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a 10 μ A to 20mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life.

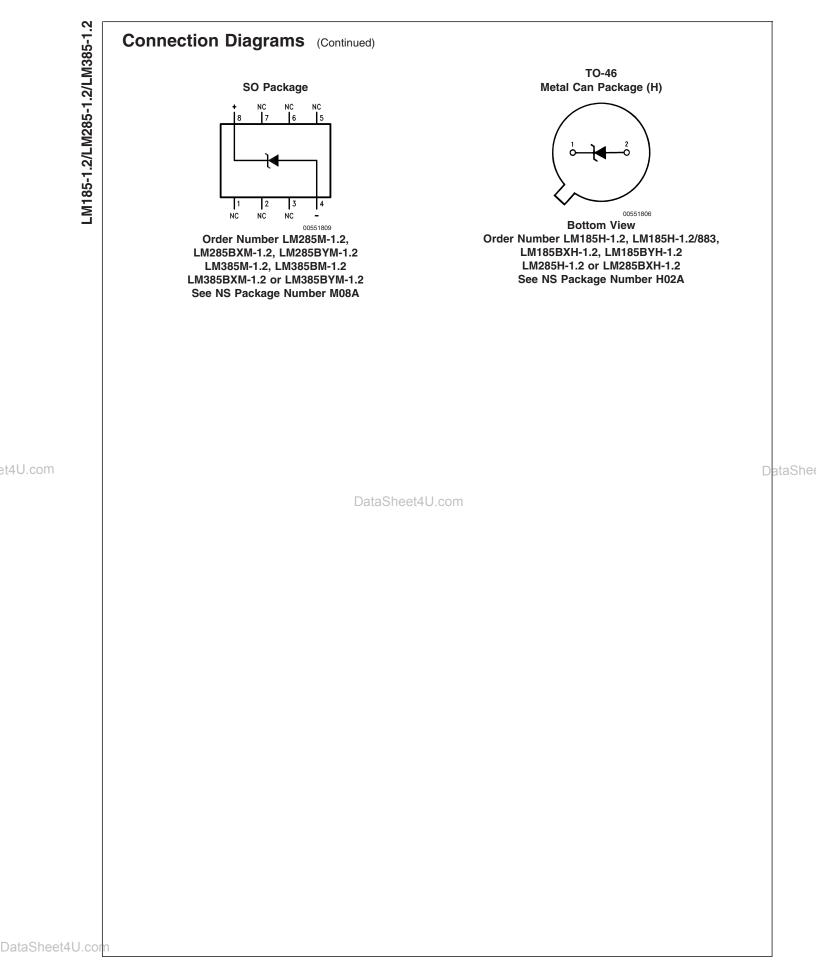
Further, the wide operating current allows it to replace older references with a tighter tolerance part.


The LM185-1.2 is rated for operation over a -55° C to 125° C temperature range while the LM285-1.2 is rated -40° C to 85° C and the LM385-1.2 0° C to 70° C. The LM185-1.2/LM285-1.2 are available in a hermetic TO-46 package and the LM285-1.2/LM385-1.2 are also available in a low-cost TO-92 molded package, as well as SO and SOT-23. The LM185-1.2 is also available in a hermetic leadless chip carrier package.

Features

- ±1% and 2% initial tolerance
- Operating current of 10µA to 20mA
- 1Ω dynamic impedance
- Low temperature coefficient
- Low voltage reference 1.235V
- 2.5V device and adjustable device also available
- LM185-2.5 series and LM185 series, respectively

T0-92 Plastic Package (Z)


Bottom View Order Number LM285Z-1.2, LM285BXZ-1.2, LM285BYZ-1.2 LM385Z-1.2, LM385BZ-1.2 LM385BXZ-1.2 or LM385BYZ-1.2 See NS Package Number Z03A

* Pin 3 is attached to the Die Attach Pad (DAP) and should be connected to Pin 2 or left floating.

Order Number LM385M3-1.2 See NS Package Number MF03A

Sheet4U.com

Absolute Maximum Rat	t ings (Note 1)	Storage Temperature	−55°C to +150°C		
If Military/Aerospace specified devices are required,		Soldering Information			
please contact the National Semicon		TO-92 package: 10 sec.	260°C		
Distributors for availability and specifications. (Note 2)		TO-46 package:10 sec.	300°C		
(NOLE 2)		SO and SOT Pkg.			
Reverse Current	30mA	Vapor phase (60 sec.)	215°C		
Forward Current	10mA	Infrared (15 sec.)	220°C		
Operating Temperature Range (Note 3)		See AN-450 "Surface Mounting Methods and Their Effect			
LM185-1.2	–55°C to +125°C	on Product Reliability" for other methods of soldering			
LM285-1.2	–40°C to +85°C	surface mount devices.	-		
LM385-1.2	0°C to 70°C				
Electrical Characteristi					

Electrical Characteristics (Note 4)

			1 1 1 1	85-1.2					
				55-1.2 5BX-1.2	1 1120	5B-1.2			
							LMO	5 1 0	
				5BY-1.2		BX-1.2	LIVI38	5-1.2	
_				85-1.2	LM385	BY-1.2			Units
Parameter	Conditions	Тур		5BX-1.2					(Limit)
				5BY-1.2		1			
			Tested	Design	Tested	Design	Tested	Design	
			Limit	Limit	Limit	Limit	Limit	Limit	
			(Notes	(Note 6)	(Note 5)	(Note 6)	(Note 5)	(Note 6)	
			5, 8)						
Reverse Breakdown	T _A = 25°C,	1.235	1.223		1.223		1.205		V(Min)
Voltage	$10\mu A \le I_R \le 20mA$		1.247		1.247		1.260		V(Max)
Minimum Operating		8	10	20	15	20	15	20	μA
Current	LM385M3-1.2		Datas	heet411 c	om		10	15	(Max)
Reverse Breakdown	$10\mu A \le I_R \le 1mA$		1	1.5	1	1.5	1	1.5	mV
Voltage Change									(Max)
with Current	$1mA \le I_R \le 20mA$		10	20	20	25	20	25	mV
									(Max)
Reverse Dynamic	I _R = 100µA, f = 20Hz	1							Ω
Impedance									
Wideband Noise	I _R = 100μΑ,	60							μV
(rms)	$10Hz \le f \le 10kHz$								
Long Term Stability	I _R = 100μΑ, T = 1000	20							
	Hr,	20							ppm
	$T_A = 25^{\circ}C \pm 0.1^{\circ}C$								
Average	I _R = 100μA								
Temperature									
Coefficient (Note 7)	X Suffix		30		30				ppm/°C
	Y Suffix		50		50				ppm/°C
	All Others			150		150		150	ppm/°C
									(Max)

LM185-1.2/LM285-1.2/LM385-1.2 260°C 300°C 215°C 220°C eir Effect

DataShe

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Refer to RETS185H-1.2 for military specifications.

Note 3: For elevated temperature operation, Ti max is:

LM185 150°C

LM285 125°C

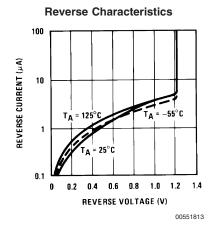
LM385 100°C

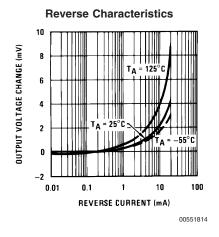
DataSheet4U.com

et4U.cor

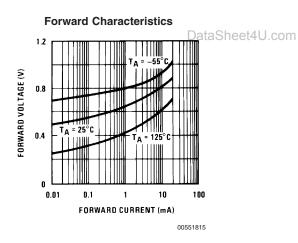
Thermal Resistance	TO-92	TO-46	SO-8	SOT23
θ_{JA} (junction to ambient)	180°C/W (0.4" leads)	440°C/W	165°C/W	283°C/W
	170°C/W (0.125" leads)			
θ_{JC} (junction to case)	N/A	80°C/W	N/A	N/A

Note 4: Parameters identified with boldface type apply at temperature extremes. All other numbers apply at $T_A = T_J = 25^{\circ}C$.

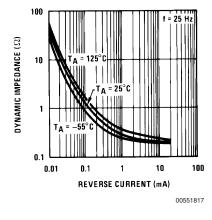

Note 5: Guaranteed and 100% production tested.

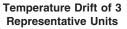

Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate average outgoing quality levels.

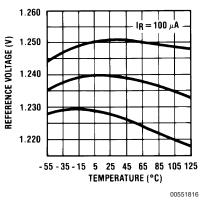
Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating T_{MAX} and T_{MIN} , divided by $T_{MAX} - T_{MIN}$. The measured temperatures are -55°C, -40°C, 0°C, 25°C, 70°C, 85°C, 125°C.

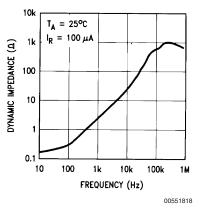

Note 8: A military RETS electrical specification is available on request.

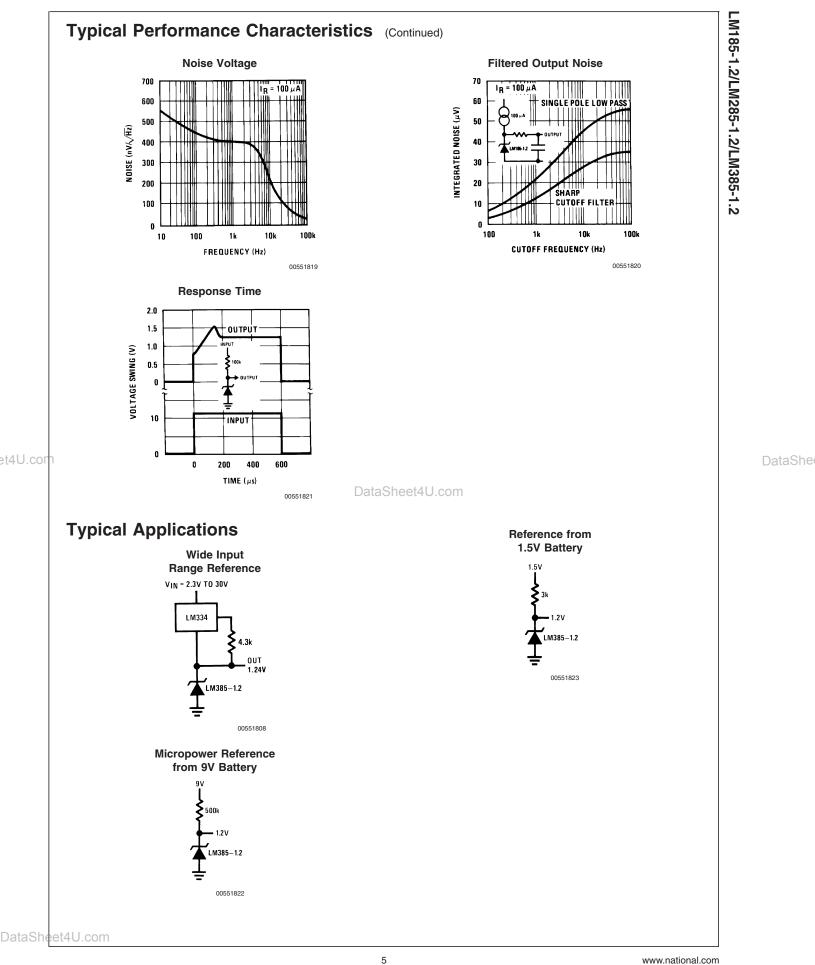
Typical Performance Characteristics

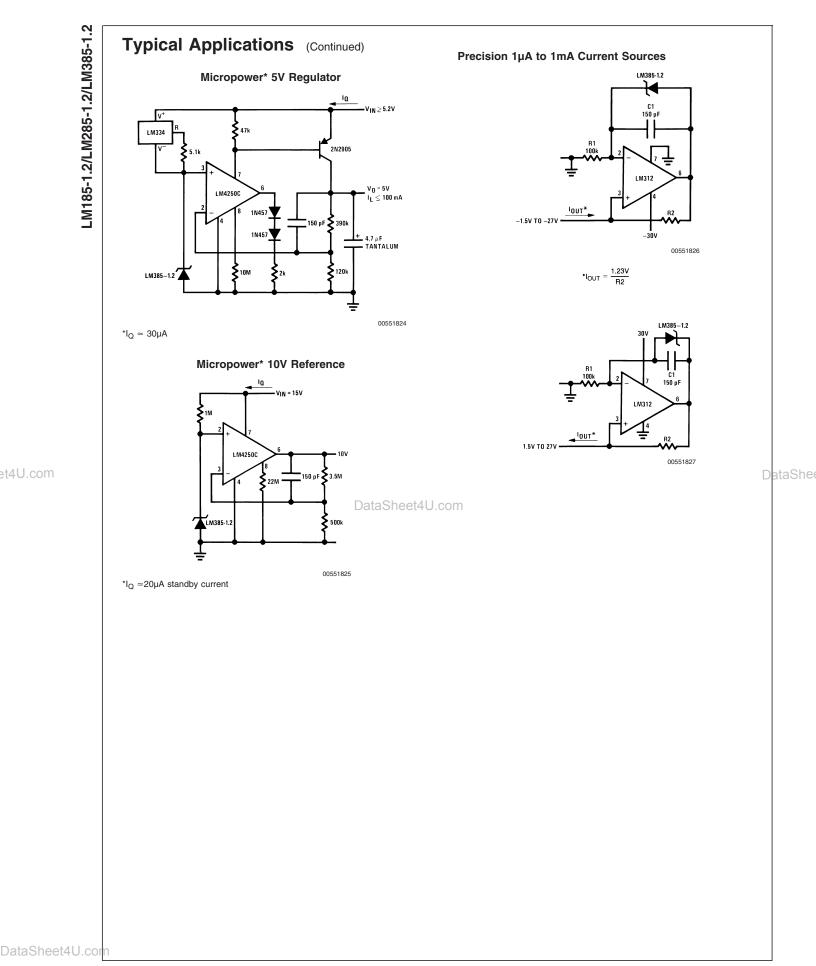




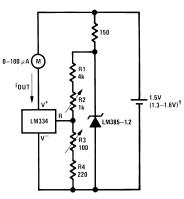

et4U.com


Reverse Dynamic Impedance





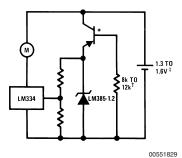
Reverse Dynamic Impedance


DataShe

Typical Applications (Continued) METER THERMOMETERS

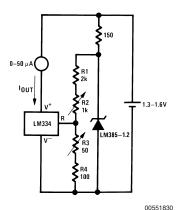
0°C-100°C Thermometer

00551828


Calibration

et4U.com

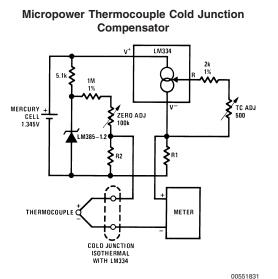
1. Short LM385-1.2, adjust R3 for $I_{OUT}=$ temp at 1µA/°K 2. Remove short, adjust R2 for correct reading in centigrade $\dagger I_Q$ at 1.3V~500µA


 I_Q at 1.6V~2.4mA

Lower Power Thermometer

*2N3638 or 2N2907 select for inverse $H_{FE} \simeq 5$ †Select for operation at 1.3V $\ddagger I_{Q} \simeq 600\mu A$ to 900 μA

0°F–50°F Thermometer


Calibration

1. Short LM385-1.2, adjust R3 for $I_{OUT}\text{=}$ temp at 1.8 $\mu\text{A/}^{\circ}\text{K}$

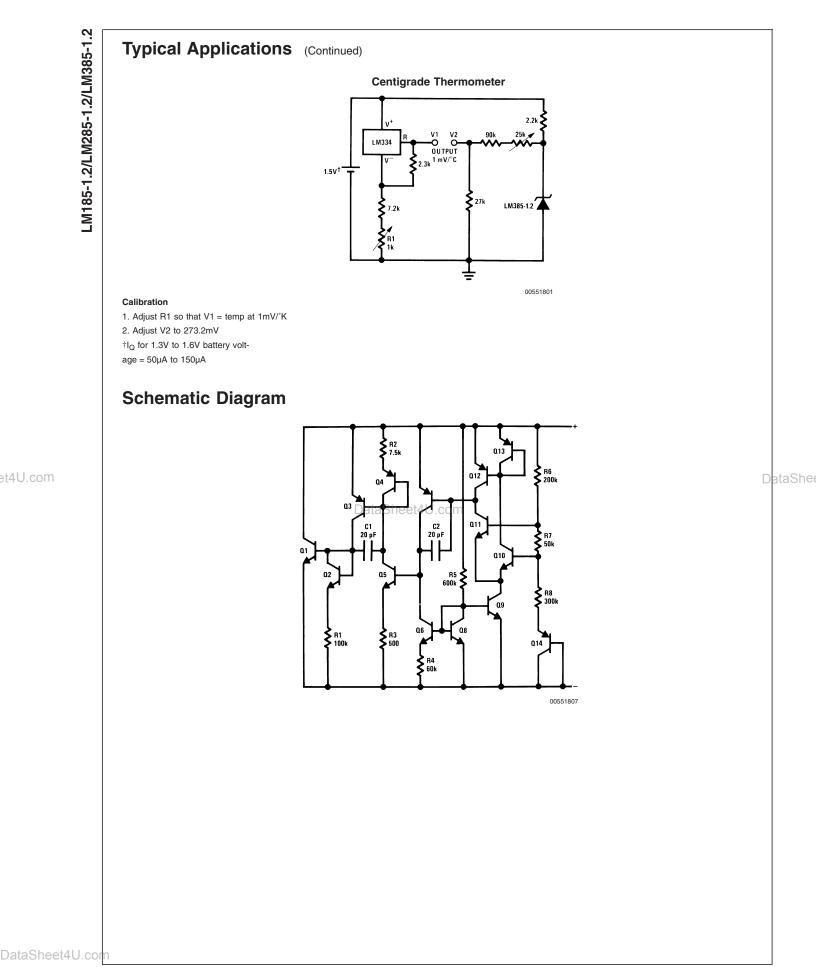
2. Remove short, adjust R2 for correct reading in $^\circ F$

Typical supply current 50µA

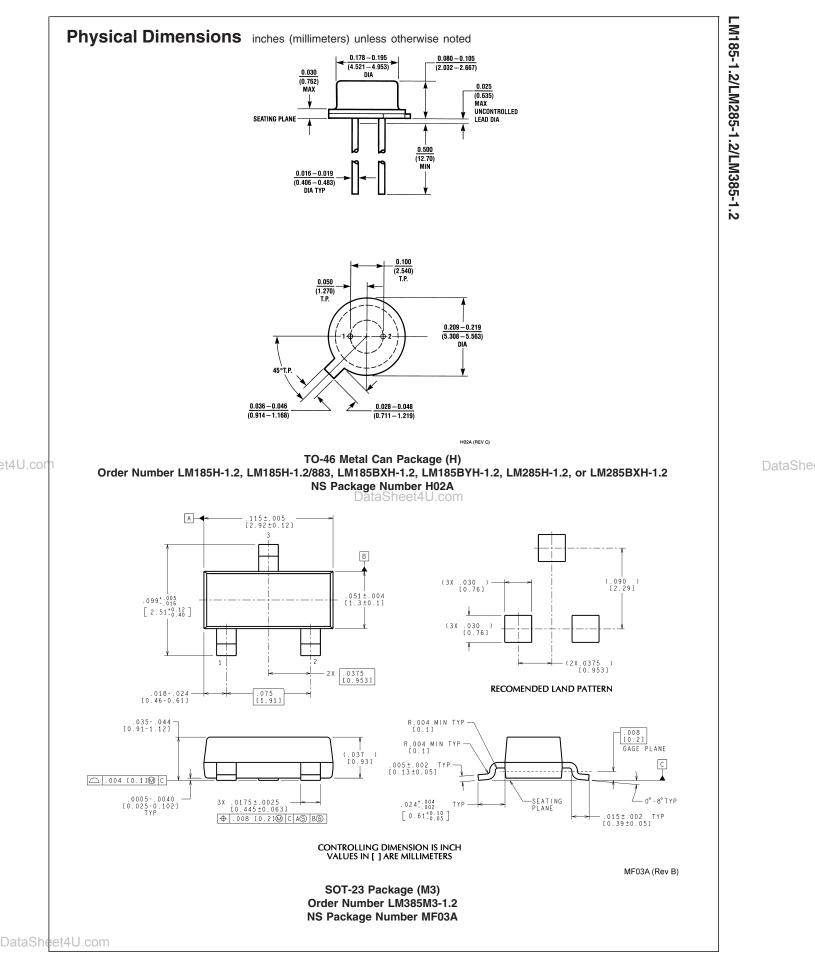
DataSheet4U.com

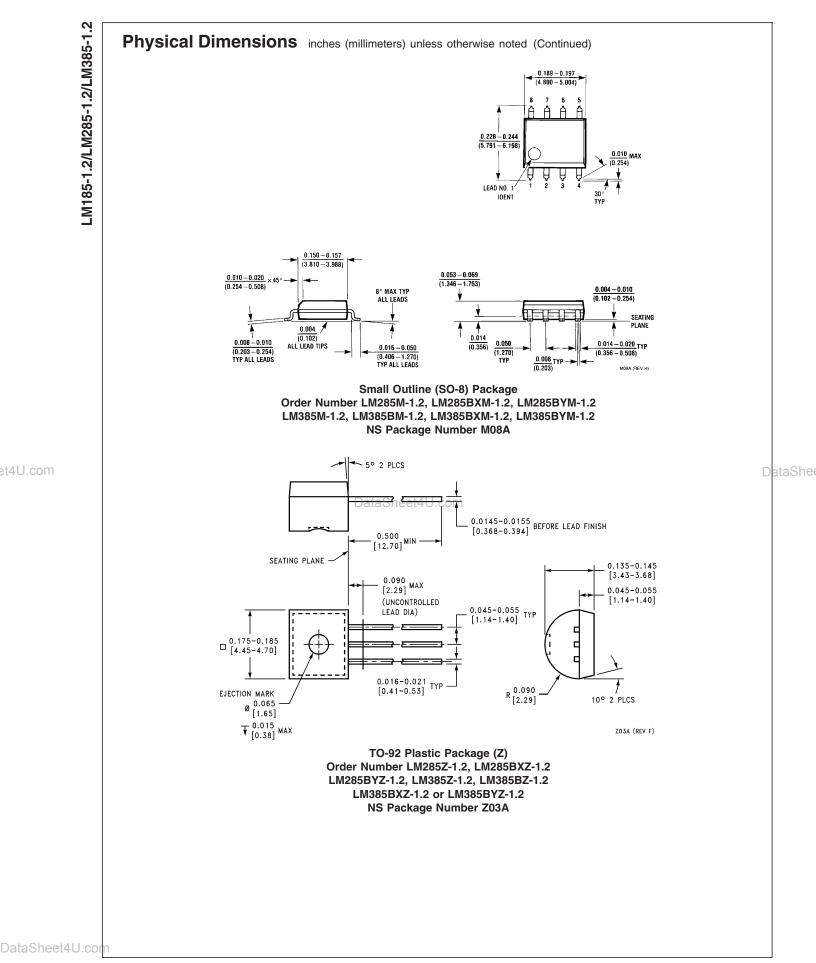
Adjustment Procedure

 Adjust TC ADJ pot until voltage across R1 equals Kelvin temperature multiplied by the thermocouple Seebeck coefficient.
Adjust zero ADJ pot until voltage across R2 equals the thermocouple


Seebeck coefficient multiplied by 273.2.

Thermocouple Type	Seebeck Coefficien	R1 R2 t (Ω) (Ω)	Voltage Across R1	Voltage Across R2
ataSheet4U.com	(µV/°C)		@ 25°C	(mV)
			(mV)	
J	52.3	523.24k	15.60	14.32
Т	42.8	432 1k	12.77	11.78
К	40.8	41 2 53Ω	12.17	11.17
S	6.4	$\textbf{63.450}\Omega$	1.908	1.766


DataShe


LM185-1.2/LM285-1.2/LM385-1.2

7

www.national.com

	Ν	lotes	
m			
		ataSheet4U.com	
		1001100140.0011	
National does not assume	any responsibility for use of any circuitr	y described, no circuit patent licenses a	re implied and National reserves
the right at any time witho	out notice to change said circuitry and s	pecifications.	re implied and National reserves
the right at any time witho	but notice to change said circuitry and s luct information visit us at www.national	pecifications.	re implied and National reserves
the right at any time witho For the most current produ- LIFE SUPPORT POLICY NATIONAL'S PRODUCTS	but notice to change said circuitry and s luct information visit us at www.national S ARE NOT AUTHORIZED FOR USE A S WRITTEN APPROVAL OF THE PRE	oecifications. com. S CRITICAL COMPONENTS IN LIFE S	UPPORT DEVICES OR SYSTEM
the right at any time witho For the most current produ- LIFE SUPPORT POLICY NATIONAL'S PRODUCTS WITHOUT THE EXPRESS CORPORATION. As used 1. Life support devices which, (a) are intended (b) support or sustain li properly used in ac provided in the labeling	but notice to change said circuitry and s luct information visit us at www.national S ARE NOT AUTHORIZED FOR USE A S WRITTEN APPROVAL OF THE PRE d herein: or systems are devices or systems d for surgical implant into the body, or ife, and whose failure to perform when coordance with instructions for use g, can be reasonably expected to result	S CRITICAL COMPONENTS IN LIFE S SIDENT AND GENERAL COUNSEL C 2. A critical component is an device or system whose failu	UPPORT DEVICES OR SYSTEM OF NATIONAL SEMICONDUCTO y component of a life support ire to perform can be reasonably re of the life support device or
the right at any time witho For the most current produce LIFE SUPPORT POLICY NATIONAL'S PRODUCTS WITHOUT THE EXPRESS CORPORATION. As used 1. Life support devices which, (a) are intended (b) support or sustain liproperly used in action	but notice to change said circuitry and s luct information visit us at www.national S ARE NOT AUTHORIZED FOR USE A S WRITTEN APPROVAL OF THE PRE d herein: or systems are devices or systems d for surgical implant into the body, or life, and whose failure to perform when cordance with instructions for use g, can be reasonably expected to result o the user.	S CRITICAL COMPONENTS IN LIFE S SIDENT AND GENERAL COUNSEL C 2. A critical component is an device or system whose failu expected to cause the failu	UPPORT DEVICES OR SYSTEM OF NATIONAL SEMICONDUCTO y component of a life support ire to perform can be reasonably re of the life support device or
the right at any time witho For the most current produces LIFE SUPPORT POLICY NATIONAL'S PRODUCTS WITHOUT THE EXPRESS CORPORATION. As used 1. Life support devices which, (a) are intended (b) support or sustain lip properly used in acc provided in the labeling in a significant injury to BANNED SUBSTANCE C National Semiconductor of	ARE NOT AUTHORIZED FOR USE AS S WRITTEN APPROVAL OF THE PRE d herein: or systems are devices or systems d for surgical implant into the body, or life, and whose failure to perform when cordance with instructions for use g, can be reasonably expected to result to the user. COMPLIANCE certifies that the products and packing C2) and the Banned Substances and Ma	S CRITICAL COMPONENTS IN LIFE S SIDENT AND GENERAL COUNSEL C 2. A critical component is an device or system whose failu expected to cause the failu system, or to affect its safety materials meet the provisions of the 0	UPPORT DEVICES OR SYSTEM OF NATIONAL SEMICONDUCTO y component of a life support tre to perform can be reasonably re of the life support device or y or effectiveness.