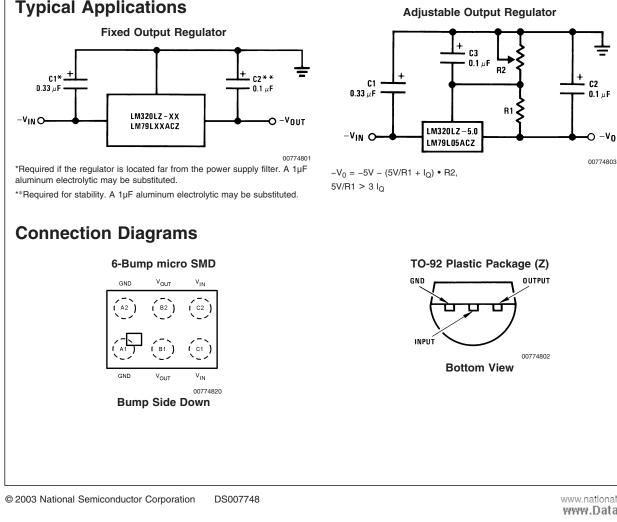


LM320L/LM79LXXAC/LM13121 Series **3-Terminal Negative Regulators General Description**


The LM320L/LM79LXXAC/LM13121 dual marked series of 3-terminal negative voltage regulators features fixed output voltages of -5V, -12V, and -15V with output current capabilities in excess of 100mA. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of 0.1µF, exhibits an excellent transient response, a maximum line regulation of 0.07% V_O/V , and a maximum load regulation of 0.01% Vo/mA.

The LM320L/LM79LXXAC/LM13121 series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead TO-92 package, 8-lead SOIC package, and the 6-Bump micro SMD package. The LM320L series is available in the 3-lead TO-92 package.

For output voltage other than -5V, -12V and -15V, the LM137L series provides an output voltage range from 1.2V to 47V.

Features

- Preset output voltage error is less than ±5% overload, line and temperature
- Specified at an output current of 100mA
- Easily compensated with a small 0.1µF output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% V_{OUT}/V
- Maximum load regulation less than 0.01% $V_{\rm OUT}/mA$
- See AN-1112 for micro SMD considerations

-Vo

Connection Diagrams (Continued)

Ordering Information

Package Part Number		Package Marking	Transport Media	NSC Drawing
8-Lead SOIC	LM79L05ACM	LM79L05ACM	95 Units/Rail	M08A
	LM79L05ACMX]	2.5k Units Tape and Reel	
	LM79L13ACM	LM79L12ACM	95 Units/Rail	
	LM79L13ACMX	1	2.5k Units Tape and Reel	
	LM79L15ACM	LM79L15ACM	95 Units/Rail	
	LM79L15ACMX	1	2.5k Units Tape and Reel	
3-Pin TO-92	LM13121Z-5.0	320L79L05	1800 Units Per Box	Z03A
	LM13121Z-12	320L79L12	1800 Units Per Box	
	LM13121Z-15	320L79L15	1800 Units Per Box	
6-Bump	LM79L05ACTL	XTPB	250 Units Tape and Reel	TLA06AMA
micro SMD	LM79L05ACTLX	1	3k Units Tape and Reel	7

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage

$V_{\rm O} = -5V, -12V, -15V$	-35V
Internal Power Dissipation (Note 2)	Internally Limited

Electrical Characteristics (Note 3)

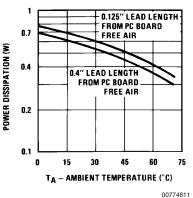
 $T_{A} = 0^{\circ}C$ to +70°C unless otherwise noted

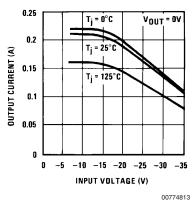
Operating Temperature Range0°C to +70°CMaximum Junction Temperature+125°CStorage Temperature Range-55°C to +150°CLead Temperature(Soldering, 10 sec.)260°C

$T_A = 0^{\circ}$	°C to +70°C un	ess otherwise noted.										
Output Voltage			–5V		–12V			–15V			Units	
Input Voltage (unless otherwise noted)			–10V		–17V		-20V					
Symbol	Parameter	Conditions	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	
Vo	Output	T _J = 25°C, I _O = 100mA	-5.2	-5	-4.8	-12.5	-12	-11.5	-15.6	-15	-14.4	
Sheet4U.co	Voltage											
		$1mA \le I_O \le 100mA$	-5.25		-4.75	-12.6		-11.4	-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20	$\leq V_{IN} \leq$	-7.5)		$\leq V_{IN} \leq$	–14.8)	(–30	$\leq V_{IN} \leq$		V
		$1mA \le I_O \le 40mA$	-5.25		-4.75	-12.6			-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	$\leq V_{IN}$	≤ -7)	(–27	$\leq V_{IN} \leq$	–14.5)	(-30 ±	$\leq V_{IN} \leq$	-17.5)	
ΔV_{O}	Line	$T_{\rm J} = 25^{\circ} \text{C}, I_{\rm O} = 100 \text{mA}$			60			45			45	mV
	Regulation											
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20	$\leq V_{IN} \leq$	-7.3)	(-27	$\leq V_{IN} \leq$		(-30 s	$\leq V_{IN} \leq$		V
		$T_{\rm J} = 25^{\circ} {\rm C}, \ {\rm I}_{\rm O} = 40 {\rm mA}$			60			45			45	mV
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	$\leq V_{IN}$	≤ -7)	(–27	$\leq V_{IN} \leq$	–14.5)	(-30 s	$\leq V_{IN} \leq$	–17.5)	V
ΔV_{O}	Load	$T_J = 25^{\circ}C$			50			100			125	mV
	Regulation											
		$1\text{mA} \le I_{O} \le 100\text{mA}$										
ΔV _O	Long Term Stability	I _O = 100mA		20			48			60		mV/khrs
l _Q	Quiescent Current	I _O = 100mA		2	6		2	6		2	6	mA
ΔI_Q	Quiescent Current	$1\text{mA} \le \text{I}_{O} \le 100\text{mA}$			0.3			0.3			0.3	
	Change	$1 \text{mA} \le \text{I}_{O} \le 40 \text{mA}$			0.1			0.1			0.1	mA
		I _O = 100mA			0.25	5 0.25		0.25			0.25	mA
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20	$\leq V_{IN} \leq$	-7.5)	(–27	$\leq V_{IN} \leq$	-14.8)	(-30	$\leq V_{IN} \leq$	≤ –18)	V
V _n	Output Noise Voltage	$T_{\rm J} = 25^{\circ} {\rm C}, \ {\rm I}_{\rm O} = 100 {\rm mA}$	40			96			120		μV	
		f = 10Hz – 10kHz										
ΔV _{IN}	Ripple	T _J = 25°C, I _O = 100mA	50			52			50			dB
ΔV_{O}	Rejection	f = 120Hz										
	Input Voltage	T _J = 25°C, I _O = 100mA			-7.3			-14.6			-17.7	V
	Required to	I _O = 40mA			-7.0			-14.5			-17.5	V
	Maintain Line											
	Regulation											
		1	,						1			

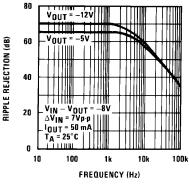
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

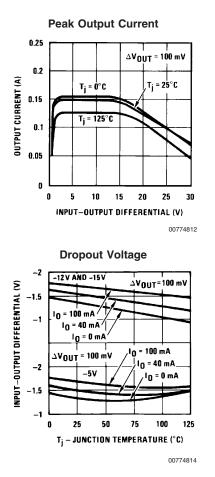
Note 2: Thermal resistance of Z package is 60° C/W θ_{JC} , 232°C/W θ_{JA} at still air, and 88°C/W at 400 ft/min of air. The M package θ_{JA} is 180°C/W in still air. The maximum junction temperature shall not exceed 125°C on electrical parameters.

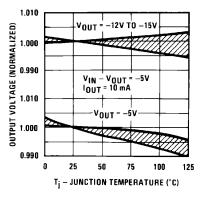

Note 3: To ensure constant junction temperature, low duty cycle pulse testing is used.

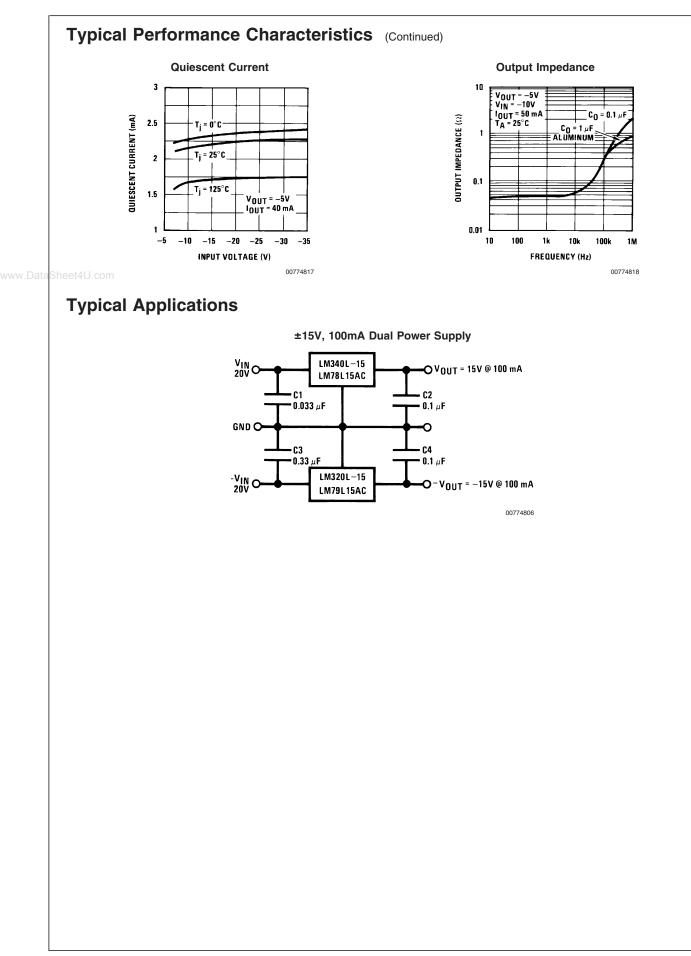

www.DataSheet4U.com

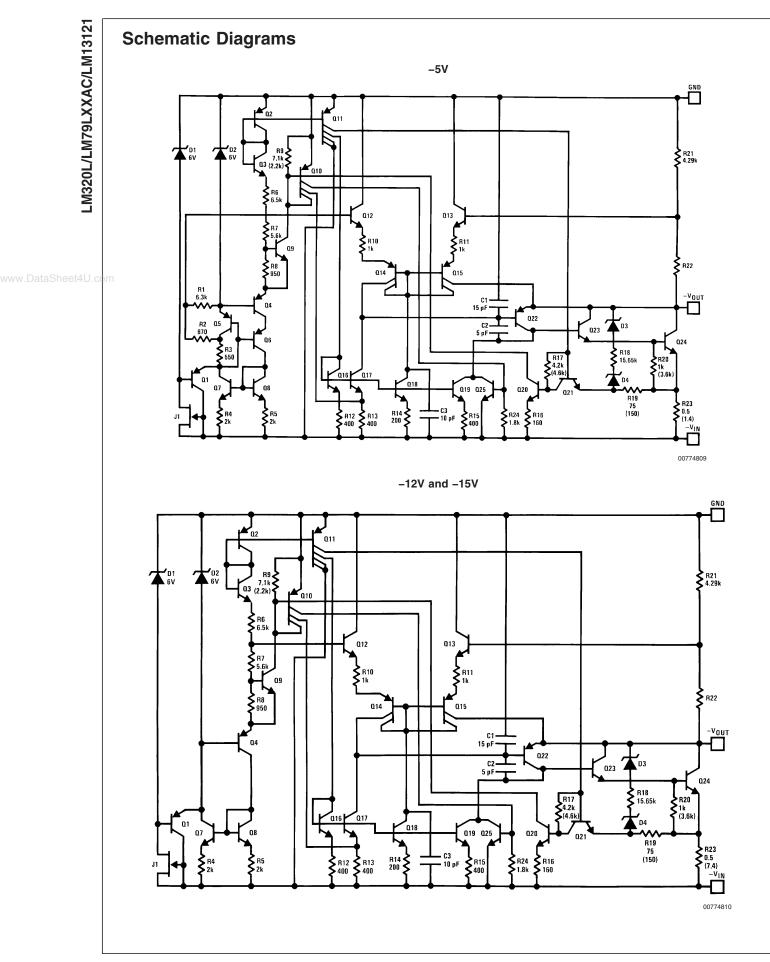
Typical Performance Characteristics

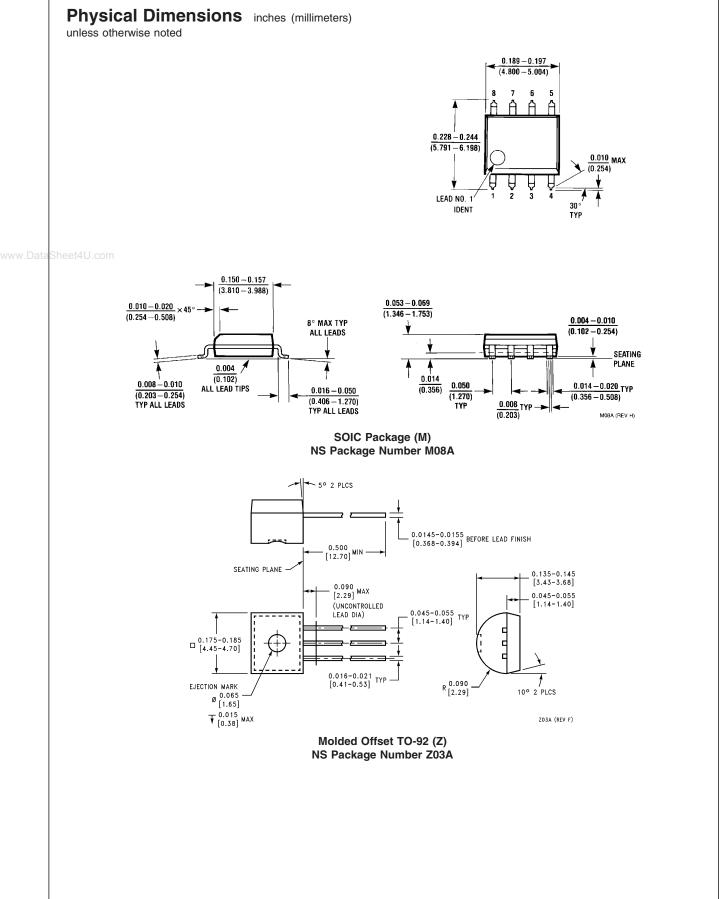

Maximum Average Power Dissipation (TO-92)

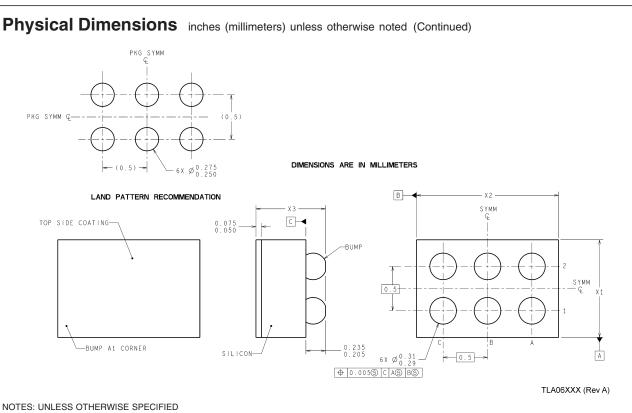

Short Circuit Output Current




00774815




Output Voltage vs. Temperature (Normalized to 1V @ 25°C)



00774816

1. EPOXY COATING.

2. 63Sn/67Pb EUTECTIC BUMP.

3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.

4. PIN A1 ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.

5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS

PACKAGE HEIGHT.

6. REFERENCE JEEC REGISTRATION MO-211, VARIATION BC.

6-Bump micro SMD NS Package Number TLA06AMA $X_1 = 1006 \mu m$ $X_2 = 1793 \mu m$ $X_3 = 600 \mu m$

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Fax: 65-6250 4466 Email: ap.support@nsc.com Tel: 65-6254 4466 National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: nsj.crc@jksmtp.nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. www.DataSheet4U.com