PREPARED BY:	\mathbf{DATE}		SPEC No. LD-K21907
		SHARP	FILE No.
APPROVED BY:	DATE		ISSUE: Sep, 17, 2009
			PAGE: 22 pages
		AVC LIQUID CRYSTAL DISPLAY GROUP	APPLICABLE GROUP
		SHARP CORPORATION	AVC LIQUID CRYSTAL DISPLAY
		SPECIFICATION	GROUP
1			

DEVICE SPECIFICATION FOR

TFT-LCD module

MODEL No. LK260T3LA17

CUSTOMER'S APPROVAL	•
DATE	
ВУ	PRESENTED
<u>D1</u>	T. SUZUKI
	GENERAL MANAGER
	MODULE DEVELOPMENT CENTER
	AVC LIQUID CRYSTAL DISPLAY GROUP
	SHARP CORPORATION

RECORDS OF REVISION

MODEL No. : LK260T3LA17

SPEC No.: LD-K21907

DATE	NO.	REVISED No.	PAGE	SUMMARY	NOTE
2009.9.17	LD-K21907	-	-	-	1st Issue
		•			

1. Application

This specification applies to the color 26.0" Wide XGA TFT-LCD module LK260T3LA17.

- * These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT ($\underline{\text{Thin }}\underline{\text{Film }}\underline{\text{Transistor}}$). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a $1366\times\text{RGB}\times768$ dots panel with 16,777,216 colors by using LVDS ($\underline{\text{Low }}\underline{\text{V}}$ oltage $\underline{\text{D}}$ ifferential $\underline{\text{Signaling}}$) to interface, +12V of DC supply voltages.

This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit	
Display size	66.053 (Diagonal)	cm	
Display size	26.0 (Diagonal)	inch	
Active area	575.769 (H) × 323.712 (V)	mm	
Pixel Format	1366 (H) × 768 (V)	pixel	
r ixei r'ormat	(1pixel = R + G + B dot)	pixei	
Pixel pitch	0.4215(H) × 0.1405 (V)	mm	
Pixel configuration	R,G, B horizontal stripe		
Display mode	Normally black		
Unit Outline Dimensions (*1)	$626.0(W) \times 373.0(H) \times 45.0 max(D)$	mm	
Mass	3.5	kg	
Surface treatment	Low-Haze Anti Glare		
Surface treatment	Hard coating: 2H		

(*1) Outline dimensions are shown in Fig.1

4. Input Terminals

4-1. TFT panel driving

Global LCD Panel Exchange Center

CN1 (Interface signals and +12V DC power supply) (Shown in Fig.1)

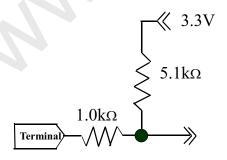
Using connector : FI-X30SSL-HF (Japan Aviation Electronics Ind., Ltd.) or equivalent

Matching connector : FI-X30H/FI-X30HL, FI-X30C/FI-X30C2L

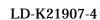
or FI-X30M (Japan Aviation Electronics Ind., Ltd.)

Matching LVDS transmitter: THC63LVDM83R (THine) or equivalent device

Pin No.	Symbol	Function	Remark
1 111 140.	VCC	+12V Power Supply	Kelliaik
2	VCC	+12V Power Supply +12V Power Supply	
3	VCC	11 7	
4	VCC	11 2	
		+12V Power Supply	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	SELLVDS	Select LVDS data order [Note 1]	Default: Pull up (H:3.3V) [Note 2]
10	Reserved	Not Available	
11	GND	Ground	
12	RIN0-	Negative (-) LVDS differential data input	LVDS
13	RIN0+	Positive (+) LVDS differential data input	LVDS
14	GND	Ground	
15	RIN1-	Negative (-) LVDS differential data input	LVDS
16	RIN1+	Positive (+) LVDS differential data input	LVDS
17	GND	Ground	
18	RIN2-	Negative (-) LVDS differential data input	LVDS
19	RIN2+	Positive (+) LVDS differential data input	LVDS
20	GND	Ground	
21	CLKIN-	Clock Signal(-)	LVDS
22	CLKIN+	Clock Signal(+)	LVDS
23	GND	Ground	
24	RIN3-	Negative (-) LVDS differential data input	LVDS
25	RIN3+	Positive (+) LVDS differential data input	LVDS
26	GND	Ground	
27	Reserved	Not Available	
28	Reserved	Not Available	
29	GND	Ground	
30	GND	Ground	

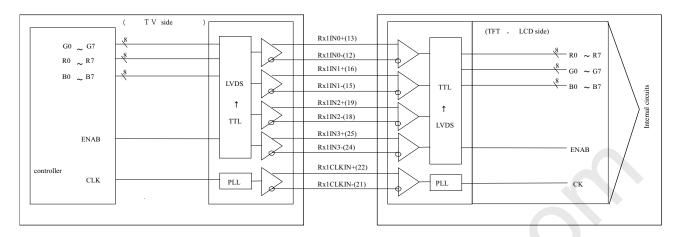

[Note] GND of a liquid crystal panel drive part has connected with a module chassis.

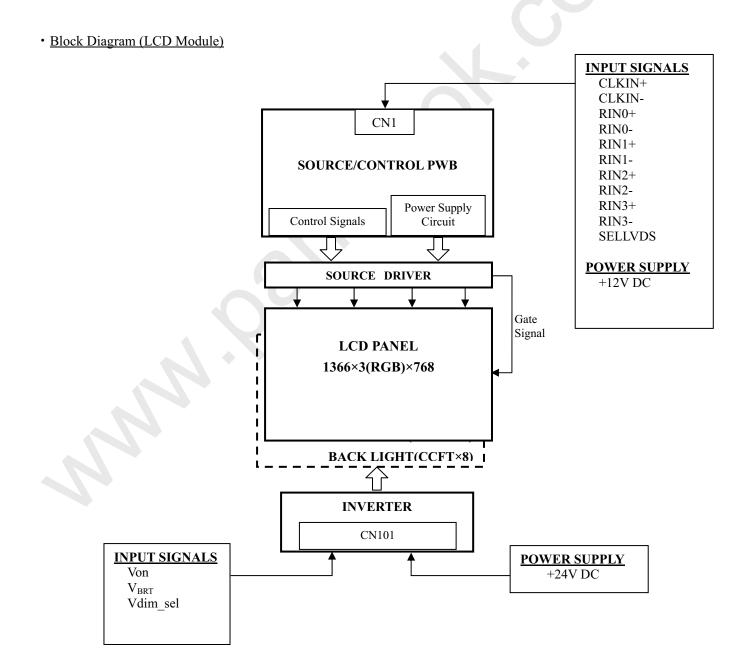
[Note1] SELLVDS


Global LCD Panel Exchange Center

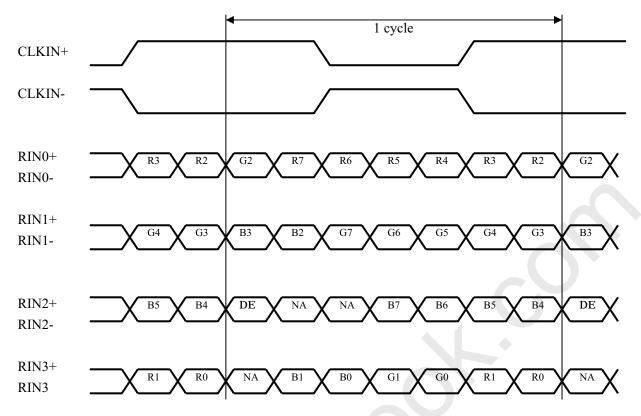
Transmitter		SELLVDS			
Pin No	Data	= L(GND)	= H(3.3V) or Open		
51	TA0	R0(LSB)	R2		
52	TA1	R1	R3		
54	TA2	R2	R4		
55	TA3	R3	R5		
56	TA4	R4	R6		
3	TA5	R5	R7(MSB)		
4	TA6	G0(LSB)	G2		
6	TB0	G1	G3		
7	TB1	G2	G4		
11	TB2	G3	G5		
12	TB3	G4	G6		
14	TB4	G5	G7(MSB)		
15	TB5	B0(LSB)	B2		
19	TB6	B1	В3		
20	TC0	B2	B4		
22	TC1	В3	B5		
23	TC2	B4	B6		
24	TC3	B5	B7(MSB)		
27	TC4	NA	NA		
28	TC5	NA	NA		
30	TC6	DE(*)	DE(*)		
50	TD0	R6	R0(LSB)		
2	TD1	R7(MSB)	R1		
8	TD2	G6	G0(LSB)		
10	TD3	G7(MSB)	G1		
16	TD4	B6	B0(LSB)		
18	TD5	B7(MSB)	B1		
25	TD6	NA	NA		

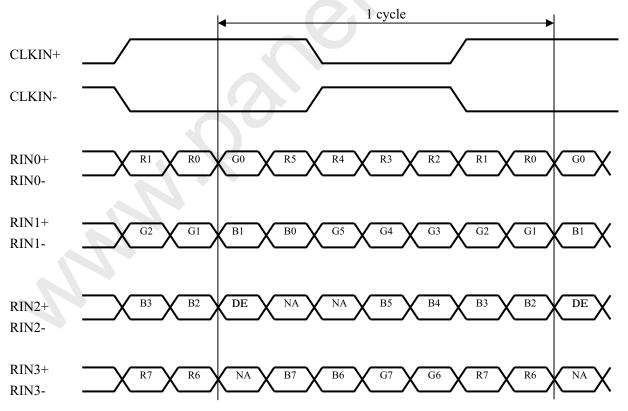
[Note 2] The equivalent circuit figure of the terminal




^(*) Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High."

· Interface block diagram


Corresponding Transmitter: THC63LVDM83R (THine) or equivalent device



SELLVDS= High (3.3V) or Open

Global LCD Panel Exchange Center

SELLVDS= Low(GND)

DE: Display Enable

NA: Not Available (Fixed Low)

4-2. Backlight driving

CN101 (Inverter control)

Global LCD Panel Exchange Center

Using connector: S14B-PHA-SM-TB(JST)

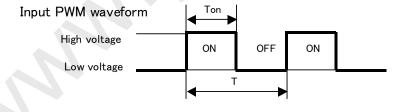
Matching connector: PHAR-14 (JST), PHR-14(JST) or equivalent connector

\mathcal{C}		()•	. / 1		
Pin No.	Symbol	Function	Default(OPEN)	Input Impedance	Remark
1	V_{INV}	+24V			
2	V_{INV}	+24V			
3	V_{INV}	+24V			
4	V_{INV}	+24V			
5	V_{INV}	+24V			
6	GND	Ground			
7	GND	Ground			
8	GND	Ground			
9	GND	Ground			
10	GND	Ground			
11	Reserved		-		
12	Von	Inverter ON/OFF	Inverter OFF	1160 kΩ	[Note 1]
13	V_{BRT}	Brightness Control	3.3V : pull up Duty 100%	55 kΩ	[Note 3]
14	Vdim_sel	PWM selection	3.3V : pull up Selected Analog PWM	314 kΩ	[Note 2]

[Note 1] Inverter ON/OFF

Input voltage	Function
3.3V	Inverter: ON
0V	Inverter: OFF (Default)

[Note 2] PWM selection


Pin No.14 is used for the selection of dimming control for V_{BRT} pin (Pin No.13).

Input voltage	$ m V_{BRT}$
0V	Pulse PWM
3.3V	Analog PWM

[Note 3] Brightness Control (Pulse PWM Dimming)

1. Pulse PWM Dimming

Pin No.13 is used for the control of the PWM duty with input pulse from 100Hz to 350Hz.

High: 2.3~3.6V Low: 0~1.0V

Ta=25°C

		MIN	TYP	MAX	Remark
Pulse signal	[Hz]	100	325	350	
DUTY (T _{ON} /T)	[%]	27	<->	100	
Dimming level	[%]	10	<->	100	Pulse signal=325Hz
(Brightness ratio)					

[Note] Dimming level is reference value.

2. Analog PWM Dimming

Global LCD Panel Exchange Center

Pin No.13 is used for the dimming control with input voltage from 0 to 3.15V.

(when Analog PWM is selected with Pin 14)

Ta=25°C

	MIN	TYP	MAX	Function
Input voltage [V]	0	<->	3.15	OV: Dork 2 15V: Pright
Brightness ratio [%]	10	<->	100	0V: Dark - 3.15V: Bright

[Note] PWM frequency: 325±10Hz

3. The back light system characteristics

The back light system is direct type with 8 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Life time	T_L	50000	60000	-	Hour	Duty= 100% [Note]

- [Note] • Lamp life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25°C and brightness control (V_{BRT}=100%).
 - · Above value is applicable when the long side of LCD module is placed horizontally. (Landscape position). (Lamp lifetime may vary if LCD module is in portrait position due to the change of mercury density inside the lamp.)

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	Vı	Ta=25°C	-0.3 ~ 3.6	V	[Note 1]
+12V supply voltage (for Control)	V_{CC}	Ta=25°C	0 ~ +14	V	
Input voltage (for Inverter)	$egin{array}{c} V_{BRT} \ V_{ON} \end{array}$	Ta=25°C	0~+6	V	
+24V supply voltage (for Inverter)	V_{INV}	Ta=25°C	0 ~ +29	V	
Storage temperature	Tstg	-	-25 ~ +60	°C	D. (2)
Operation temperature (Ambient)	Topa	-	0~+50	°C	[Note 2]

[Note 1] SELLVDS

[Note 2] Humidity 95%RH Max.($Ta \le 40$ °C)

Maximum wet-bulb temperature at 39°C or less.(Ta > 40°C), No condensation.

6. Electrical Characteristics

Global LCD Panel Exchange Center

6-1. Control circuit driving

Ta=25°C

Pa	Parameter			Min.	Typ.	Max.	Uniit	Remark
	Sup	ply voltage	Vcc	+11.4	+12.0	+12.6	V	[Note 1]
+12V supply			Icc	-	0.7	1.2	A	[Note 2]
voltage	Curre	ent dissipation	I_{RUSH}	-	2.5	1	A	[Note 5]
			T_{RUSH}	-	0.72	1	ms	[Note 5]
Permissible i	nput r	ipple voltage	V_{RP}	-	ı	100	mV _{P-P}	Vcc = +12.0V
Differential i	nput	High	V_{TH}	-	-	100	mV	$V_{CM} = +1.2V$
threshold vol	threshold voltage Low		V_{TL}	-100	-	-	mV	[Note 4]
Input I	Low v	oltage	V_{IL}	-	-	0.7	V	[Note 3]
Input I	ligh v	oltage	V_{IH}	2.6	ľ	3.3	V	[Note 3]
Input leak current (Low)			IIL	-	-	400	μΑ	$V_{I} = 0V$ [Note 3]
Input leak current (High)		Іш	-	1	100	μΑ	V _I =3.3V [Note 3]	
Termi	nal re	sistor	Rт	=	100	-	Ω	Differential input

[Note] Vcm: Common mode voltage of LVDS driver.

[Note 1]

Input voltage sequences

 $0 < t1 \le 20 ms$

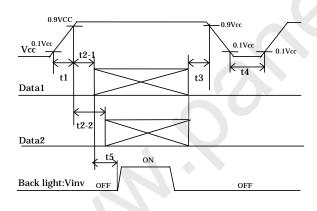
 $20ms < t2-1 \le 5s$

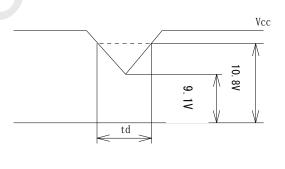
 $t2-2 \ge 20 \text{ms}$

 $0 < t3 \le 1s$

 $t4 \ge 1s$

 $t5 \ge 300 \text{ms}$

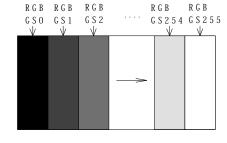

Dip conditions for supply voltage


a)
$$9.1V \le V_{CC} < 10.8V$$

$$td \leq 10ms$$

b)
$$V_{CC} < 9.1V$$

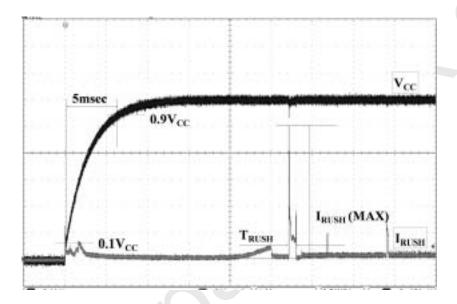
Dip conditions for supply voltage is based on input voltage sequence.



- Data1: CLKIN±,RIN0±,RIN1±, RIN2±, RIN3±
- **X** Data2: SELLVDS
- * About the relation between data input and back light lighting, please base on the above-mentioned input sequence.

When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2]Typical current situation: 256 gray-bar pattern (Vcc = +12.0V)The explanation of RGB gray scale is seen in section 8.

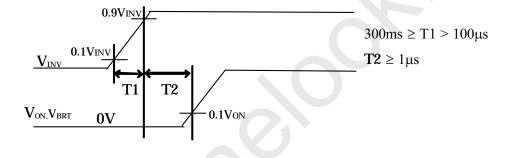

Vcc = +12.0VCK = 82.0MHz $Th = 20.68 \mu s$

[Note 3] SELLVDS

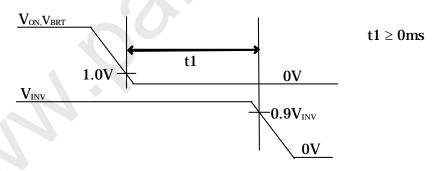
Global LCD Panel Exchange Center

[Note 4] CLKIN+/CLKIN-, RIN0+/RIN0-, RIN1+/RIN1-, RIN2+/RIN2-, RIN3+/RIN3-,

[Note 5] The Rush current corrugation at the time of power on


6-2. Inverter driving for back light

The back light system is direct type with 8 CCFTs (Cold Cathode Fluorescent Tube).


Ta=25°C

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	Current dissipation 1		-	3.5	3.7	A	$Von = 3.3V$ $V_{INV} = 24V$
+24V	Current dissipation 2	IINV 2	2.43	2.7	2.97	A	$V_{INV} = 24V$ $V_{BRT} = 3.3V$
	Supply voltage	Vinv	22.5	24.0	25.5	V	[Note 1,2]
Permissible input ripple voltage		Vrf	-	-	1000	mV_{p-p}	$V_{\rm INV} = 24 V$
Iı	nput voltage (Low)	$V_{\scriptscriptstyle m ONL}$	0	-	1.0	V	Von
Ir	nput voltage (High)	$V_{\scriptscriptstyle m ONH}$	2.3	3.3	3.6	V	Impedance = $1160 \text{ k}\Omega \text{ min}$
Brig	htness control voltage		0	\rightarrow	3.6	V	
Brig	Brightness control voltage		0	\rightarrow	3.15	V	V_{BRT} Impedance = 55 k Ω min
Brightness level (Reference value)			10	\rightarrow	100	%	
Lamp Driving Frequency		f	60	62	64	kHz	

[Note 1] 1) Vinv-turn-on condition

2) Vinv-turn-off condition

[Note 2] Current dissipation 1 : Definition within 60 minutes after turn on. (Rush current is excluded.)

Current dissipation 2 : Definition more than 60minutes after turn on.

[Note 3] The inverter unit is driving at the following drive frequency.

Lamp driving frequency: 62kHz Burst dimmer frequency: 325Hz

There is possibility that the display problem of the backlights such as flicker, blinking, etc by the interference of the above inverter driving frequency and the LCD driving frequency will occur.

In setting of a LCD driving frequency, we recommend to set for the no interference with the above frequency to occur.

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2 $\,$

	Parameter	Symbol	Min.	NTSC	/p. PAL	Max.	Unit
Clock	Frequency	1/Tc	72	82	82	85	MHz
	Horizontal period	TH	1540	1696	1696	1940	clock
	riorizontai period	111	19.84	20.68	20.68	-	μs
Data enable Signal	Horizontal period (High)	THd	1366	1366	1366	1366	clock
	Vertical period	TV	778	806	967	972	line
	Vertical period (High)	TVd	768	768	768	768	line

[Note] When vertical period is very long, flicker may occur.

Please turn off the module after it shows the black screen.

Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.

As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

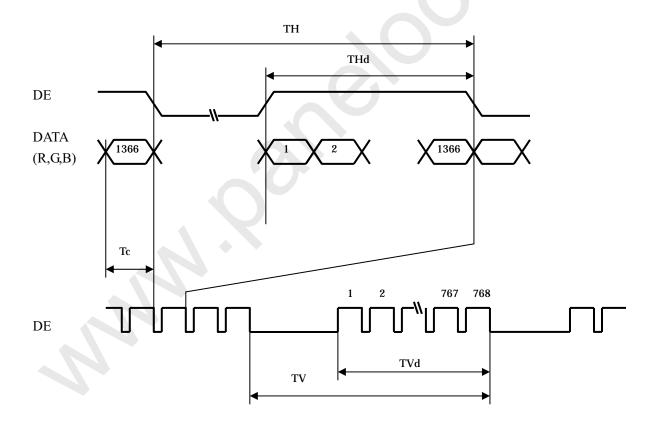
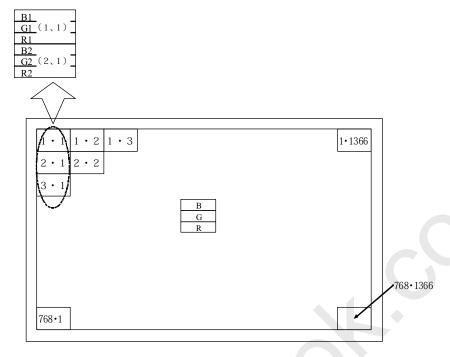



Fig.2 Timing characteristics of input signals

7-2. Input data signal and display position on the screen

Display Position of Data (V,H)

Global LCD Panel Exchange Center

LD-K21907-13

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

	Colors &												Data	sign	nal											
	Gray scale	Gray Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	ВЗ	B4	В5	В6	В
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
lor	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic Color	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sasic	Red	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Е	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
q	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
f Re	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
le of	仓	\rightarrow				`	V							`	V							`	V			
Gray Scale of Red	Û	\rightarrow	↓								L							•	V							
	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
)	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
n:	Û	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Gre	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Gray Scale of Green	Û	V				`	L							`	L							`	V			
Scal	Û	\rightarrow				•	L							`	L							•	V			
ray	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	(
G	Û	GS254	0	0	0 <	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	(
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	(
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
o)	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	(
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	(
	Û	\	V					V								,	ν									
	Û	+	V					\downarrow								,	V									
ray	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	
5	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

^{0 :} Low level voltage,

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16,777,216 colors display can be achieved on the screen.

^{1 :} High level voltage.

9 Ontical characteristics

Global LCD Panel Exchange Center

3. Optical characteristics		

				$Ta = 25^{\circ}$	C, Vcc =	+12V, Y	$V_{INV} = +24V$		
Paran	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Viewing angle	Horizontal	θ 21 θ 22	CR ≥ 10	70	88	-	Deg.	[Note1,4]	
range	Vertical	θ 11 θ 12	CK 2 TO	70	88	-	Deg.	[Note1,4]	
Contras	st ratio	CRn		2000	2500	-	-	[Note2,4] V _{BRT} =3.3V	
Respon	Response time			-	7	-	ms	[Note3,4,5] V _{BRT} =3.3V	
Chromotioi	ty of white	X		0.248	0.278	0.308	-		
Chromatici	ty of wifite	y	0 0 1	0.255	0.285	0.315	-		
Chromatic	rity of rad	X	$\theta = 0$ deg.	0.612	0.642	0.672	-	[Note 4]	
Cilioniatic	Tity of fed	y		0.311	0.341	0.371	-		
Chromatici	ty of green	X		0.255	0.285	0.315	-	$V_{BRT}=3.3V$	
Cinomatici	Chromaticity of green			0.573	0.603	0.633	-		
Chromaticity of blue		X		0.116	0.146	0.176	-		
		y		0.036	0.066	0.096	-		
Luminance of white		Y_L		360	450		cd/m ²	[Note 4] V _{BRT} =3.3V	
Luminance uniformity		δw		_	-	1.25		[Note 6]	

Measurement condition : Set the value of V_{BRT} to maximum luminance of white.

[Note] The optical characteristics are measured using the following equipment.

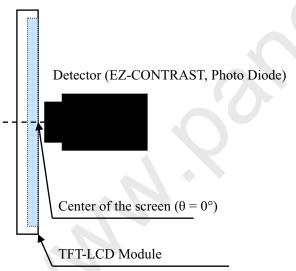


Fig.3-1 Measurement of viewing angle range and response time.

(Viewing angle range: EZ-CONTRAST Response time: Photo Diode)

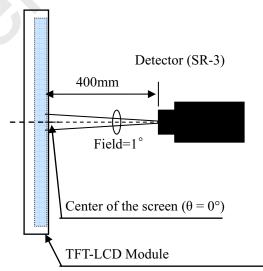
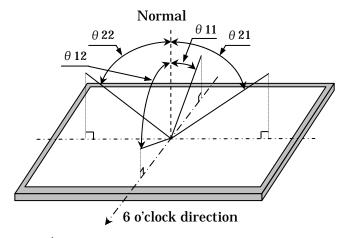



Fig.3-2 Measurement of Contrast, Luminance, and Chromaticity.

^{*}The measurement shall be executed 60 minutes after lighting at rating.

[Note 1] Definitions of viewing angle range:

Global LCD Panel Exchange Center

[Note 2] Definition of contrast ratio:

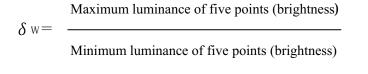
The contrast ratio is defined as the following.

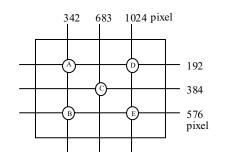
[Note 3] Definition of response time

The response time (τ_{DRV}) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)".

	0%	25%	50%	75%	100%
0%		tr: 0%-25%	tr: 0%-50%	tr: 0%-75%	tr: 0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr: 25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td: 100%-75%	

 $t^*:x-y...$ response time from level of gray(x) to level of gray(y)

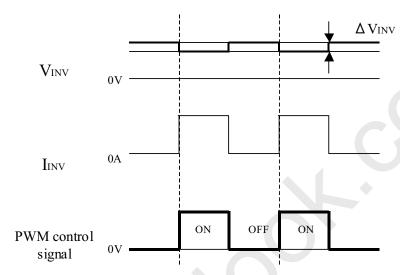

$$\tau_{DRV} = \Sigma(t^*:x-y)/20$$


[Note 4] This shall be measured at center of the screen.

[Note 5] This value is valid when O/S driving is used at typical input time value.

[Note 6] Definition of white uniformity;

White uniformity is defined as the following with five measurements. (A \sim E)



10. Handling Precautions of the module

Global LCD Panel Exchange Center

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts (inverter, CCFT etc), which generate the high voltage. Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for "ON" and "OFF", as shown in Fig.4. Voltage difference generated by this switching, $\Delta VINV$, may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Brightness control voltage. Fig.4

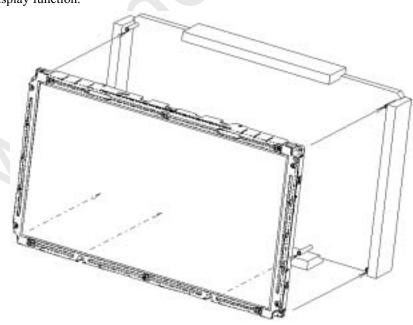
- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- j) Please consider to minimize the influence of EMI and the exogenous noise before designing the grounding of LCD module.
- k) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- 1) Observe all other precautionary requirements in handling components.
- m) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.
- n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- o) Connect a module frame to GND.

11. Packing form

a) Piling number of cartons: (2 packages / 1 palette) \times 2 maximum

b) Packing quantity in one package: 14 pcs.

c) Carton size: 1080(W)×750(D)×1196(H)


d) Total mass of one carton filled with full modules: 140 kg(Max)

12. Reliability test item

No.	Test item	Condition					
1	High temperature storage test	Ta=60°C 240h					
2	Low temperature storage test	Ta=-25°C 240h					
3	High temperature and high humidity	Ta=40°C; 95%RH 240h					
3	operation test	(No condensation)					
4	High temperature operation test	Ta=50°C 240h					
5	Low temperature operation test	Ta=0°C 240h					
	Vibration test	Frequency: 10~57Hz/Vibration width (one side): 0.075mm					
6	(non-operation)	: 58~500Hz/Acceleration: 9.8 m/s ²					
0		Sweep time: 11 minutes					
		Test period: 3 hours (1h for each direction of X, Y, Z)					
	Shock test	Maximum acceleration: 490m/s ²					
7	(non-operation)	Pulse width: 11ms, sinusoidal half wave					
	(non-operation)	Direction: +/-X, +/-Y, +/-Z, once for each direction.					
		* At the following conditions, it is a thing without incorrect					
		operation and destruction.					
		(1)Non-operation: Contact electric discharge $\pm 10 \text{kV}$					
8	ESD	Non-contact electric discharge ±20kV					
		(2)Operation Contact electric discharge ±8kV					
		Non-contact electric discharge ±15kV					
		Conditions: 150nF. 330ohm					

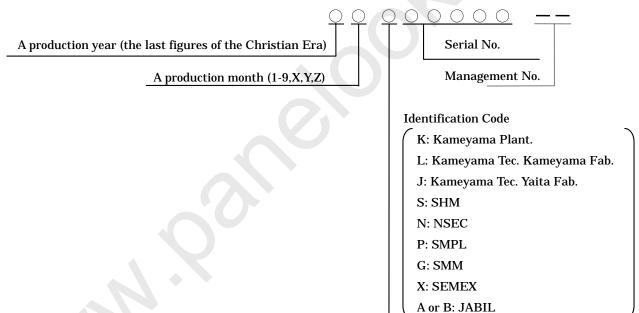
[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

M5 Screw: 6 pieces

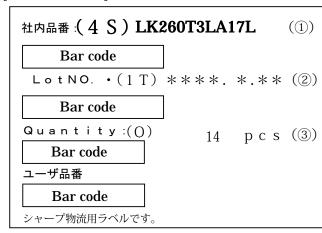
Figure of Shock test's JIG/Module fixed position. The fixation of method is not guaranteed excluding this method

13. Others


1) Lot No. Label;

The label that displays SHARP, product model (LK260T3LA17), a product number is stuck on the back of the

[LK260T3LA17L] INNOLUX PRODUCTION


How to express Lot No.

2) Packing Label

Global LCD Panel Exchange Center

[LK260T3LA17L] INNOLUX PRODUCTION

- ① Management No
- ② Lot No. (Date)
- 3 Quantity
- 3) Disassembling the module can cause permanent damage and should be strictly avoided.
- 4) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 5) The chemical compound, which causes the destruction of ozone layer, is not being used.
- 6) Label of material information The optical part material has been described to the module as shown in the figure below.
- 7) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local ordinances or regulations for disposal. The below figure shows the label.

- 9) When any question or issue occurs, it shall be solved by mutual discussion.
- 10) Rust on the module is not taken up a problem.
- 11) Source/Control-PWB(SC-PWB) must be on upper side of LCD module when it is in the TV-set.
 - *:Please inform SHARP if SC-PWB is at bottom side of LCD module when it is in the TV-set
- 12) This module is corresponded to RoHS.

14. Carton storage condition

Temperature 0° C to 40° C Humidity 95%RH or less

Reference condition : 20°C to 35°C, 85%RH or less (summer)

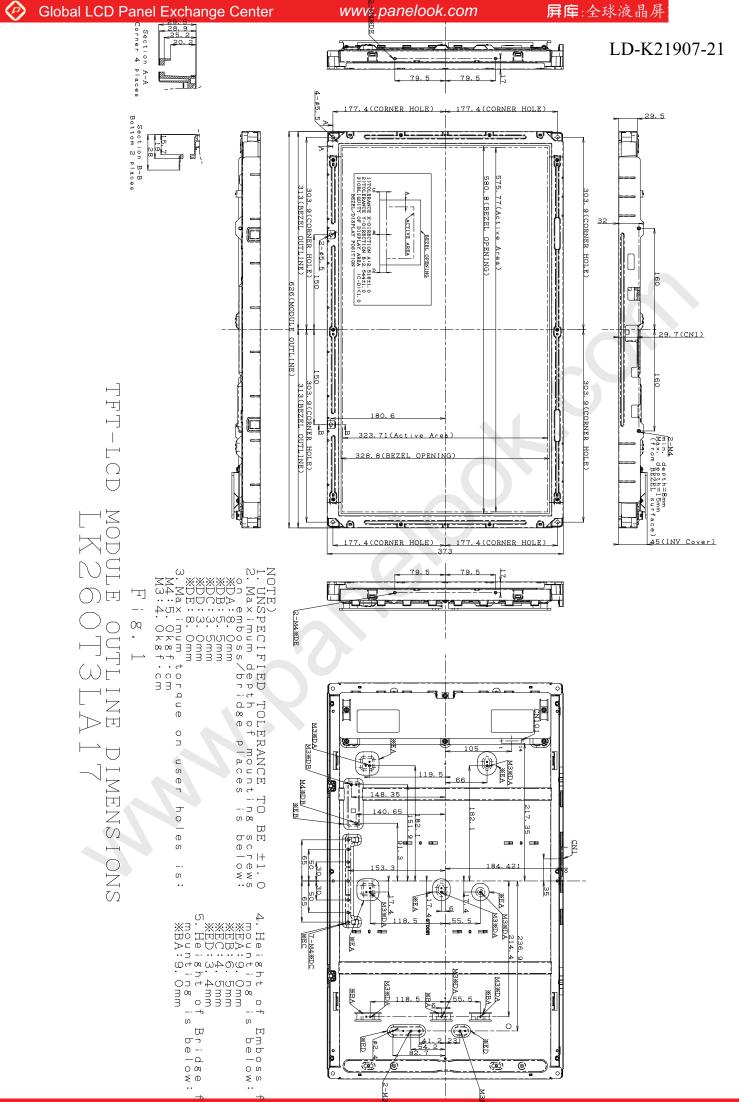
: 5°C to 15°C, 85%RH or less (winter)

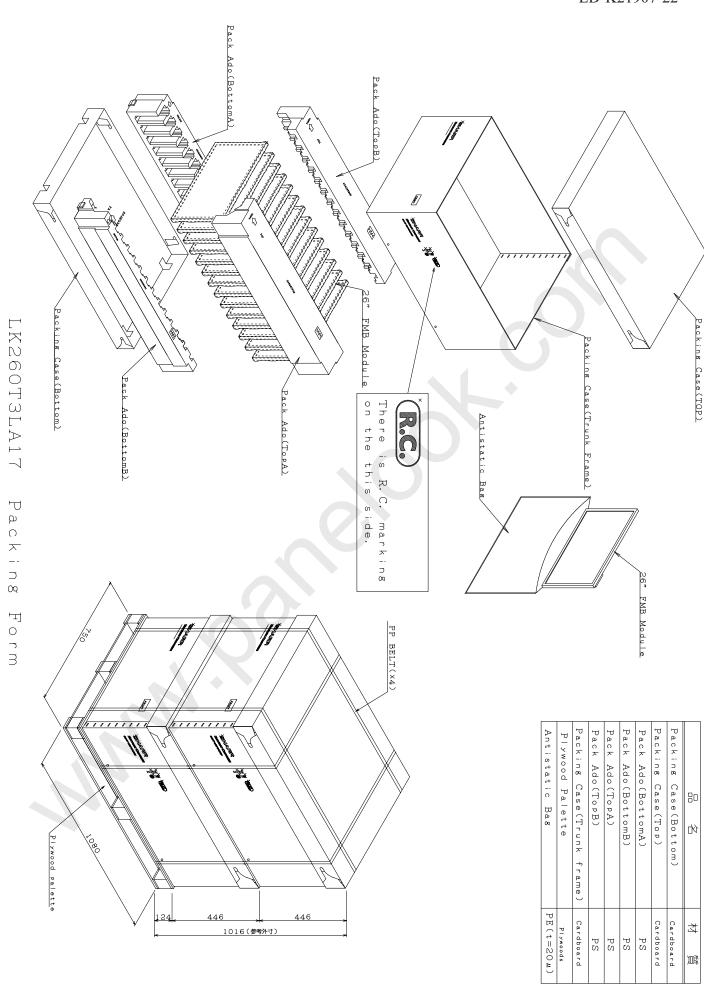
• the total storage time (40°C,95%RH): 240H or less

Sunlight Be sure to shelter a product from the direct sunlight.

Atmosphere Harmful gas, such as acid and alkali which bites electronic components and/or

wires must not be detected.


Notes Be sure to put cartons on palette or base, don't put it on floor, and store them with


removing from wall

Please take care of ventilation in storehouse and around cartons, and control

changing temperature is within limits of natural environment

Storage life 1 year

