Το;	SPEC No. E L 0 6 X 1 0 9 I S S U E: Aug. 10.
REQUES F	NFIRMATION FICATIONS
Product Type160 Output	LCD Segment/Common Driver
Muodel No. LH	1 1 5 6 0 F
	ages including the cover and appendix. e contact us before issuing purchasing order.
DATE:	
BY:	PRESENTED
2	BY: Jano Y. SANO Dept. General Manager
	REVIEWED BY: PREPARED BY:
	ENGINEERING DEPARTMENT I LOGIC IC ENGINEERING CENTER TENRI INTEGRATED CIRCUITS (IC) GROUP SHARP CORPORATION

LH1560F

- •Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- •When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - •Office electronics
 - •Instrumentation and measuring equipment
 - •Machine tools
 - •Audiovisual equipment
 - •Home appliances
 - •Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.

•Control and safety devices for airplanes, trains, automobiles, and other transportation equipment

- •Mainframe computers
- •Traffic control systems
- •Gas leak detectors and automatic cutoff devices
- •Rescue and security equipment
- •Other safety devices and safety equipment, etc.
- (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - •Aerospace equipment
 - ·Communications equipment for trunk lines
 - •Control equipment for the nuclear power industry
 - •Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- •Please direct all queries regarding the products covered herein to a sales representative of the company.

LH1560F

	Contents	
1.	Summary	Page • 2
2.	Features	• 2
3.	Block Diagram	• 3
4.	Functional Operations of Each Block	• 3
5.	Pin Configuration ••••••	• 5
6.	Pin Descriptions	• 5
7.	Description of Functional Operations	• 8
8.	Precaution	• 17
9.	Absolute Maximum Ratings	• 18
10.	Recommended Operating Conditions	• 18
11.	Electrical Characteristics	• 19
12.	Example of System Configuration	• 25
13.	Example of Typical Characteristic	• 26
14.	Package and Packing Specification	• 27

SHARP

```
1. Summary
   The LH1560F is a 160 output segment/common driver LSI suitable for driving
   large scale dot matrix LC panels using as personal computers/work stations.
   Through the use of SST (Super Slim TCP) technology, it is ideal for
   substantially decreasing the size of the frame section of the LC module.
   The LH1560F is good both segment driver and common driver, and a low power
   consuming, high-precision LC panel display can be assembled.
   In case of segment mode, the data input is selected 4bit parallel input mode
   and 8bit parallel input mode by a mode(MD) pin.
   In case of common mode, data input/output pins are bidirectional, four data
   shift directions are pin-selectable.
2. Features
   (Segment mode)

    Shift Clock frequency

                                          : 14 MHz (Max,) (V_{DD} = +5 V \pm 10\%)
                                            : 8 MHz (Max.) (V_{pp} = +2.5 V_{+4.5} V)

    Adopts a data bus system

    • 4-bit/8-bit parallel input modes are selectable with a mode (MD) pin

    Automatic transfer function of an enable signal

    · Automatic counting function which, in the chip select mode, causes the
      internal clock to be stopped by automatically counting 160 of input data
   (Common mode)
    • Shift clock frequency
                                            : 4.0 MHz (Max.)
    • Built-in 160-bits bidirectional shift register (divisible into 80-bits x2)

    Available in a single mode (160-bits shift register) or in a dual mode

      (80-bits shift register x2)
         I Y_1 \rightarrow Y_{160} 
                                    Single mode
       \emptyset Y_{160} \rightarrow Y_1
                                        11
         I Y_1 \rightarrow Y_{80}, Y_{81} \rightarrow Y_{160}  Dual mode
       ( ) Y_{160} \rightarrow Y_{81}, Y_{80} \rightarrow Y_1 
      The above 4 shift directions are pin-selectable
   (Both segment mode and sommon mode)

    Supply voltage for LC drive

                                         : +15.0 to +42.0 V

    Number of LC drive outputs

                                          : 160
   • Low output impedance
   • Low power consumption
   • Supply voltage for the logic system : +2.5 to +5.5 V
   • COMS silicon gate process(P-type Silicon Substrate)

    Package

                                            : 186pin TCP (Tape Carrier Package)

    Not designed or rated as radiation hardened
```

SHARP

٠

3. Block Diagram			
	VOR VIZE VASE VI Y2 VISO VISO VISO VASE Level Shifter Active Control Logic SP Conversion & Data Control (4 to 8 or 8 to 8) VISO		
L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
4. Functional			
	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ V _{DD} V _{SS} V _{SS}		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ V _{DD} V _{SS} V _{SS} Operations of Each Block Function		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Operations of Each Block Function In case of segment mode, controls the selection or deselection		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Operations of Each Block Function In case of segment mode, controls the selection or deselection of the chip.		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Operations of Each Block Function In case of segment mode, controls the selection or deselection		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Operations of Each Block Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Operations of Each Block Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Operations of Each Block Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in.		
Block	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ VDD VSS VSS Operations of Each Block Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected.		
Block Active Control	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins.		
Block Active Control SP Conversion	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of		
Block Active Control SP Conversion	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ VDD Vss Vss Operations of Each Block Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input		
Block Active Control SP Conversion	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch		
Block Active Control SP Conversion	DI ₀ DI ₁ DI ₂ DI ₃ DI ₄ DI ₅ .DI ₆ DI ₇ Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits		
Block Active Control SP Conversion & Data Control	DIO DI, DI2 DI3 DI4 DI5. DI6 DI7 Function Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time.		
Block Active Control SP Conversion & Data Control Data Latch	DIO DI, DI2 DI3 DI4 DI5.DI6 DI7 Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time. In case of segment mode, selects the state of the data latch		
Block Active Control SP Conversion & Data Control	DIO DI, DI2 DI3 DI4 DI5. DI6 DI7 Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time. In case of segment mode, selects the state of the data latch which reads in the data bus signals. The shift direction is		
Block Active Control SP Conversion & Data Control Data Latch	DIO DI, DI2 DI3 DI4 DI5.DI6 DI7, Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time. In case of segment mode, selects the state of the data latch which reads in the data bus signals. The shift direction is controlled by the control logic, for every 16 bits of data read		
Block Active Control SP Conversion & Data Control Data Latch	DIO DI, DI2 DI3 DI4 DI5. DI6 DI7 Function In case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the chip select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected. In case of common mode, controls the input/output data of bidi- rectional pins. In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time. In case of segment mode, selects the state of the data latch which reads in the data bus signals. The shift direction is		

Block	Function		
Data Latch	In case of segment mode, latches the data on the data bus. The		
	latched state of each LC driver output pin is controlled by the		
	cotrol logic and the data latch control, 160 bits of data are		
	read in 20 sets of 8 bits.		
Line Latch/	In case of segment mode, all 160 bits which have been read into		
Shift Register	the data latch are simultaneously latched on the falling edge of		
	the LP signal, and output to the level shifter block.		
	In case of common mode, shifts data from the data input pin on		
	the falling edge of the LP signal.		
Level Shifter	The logic voltage signal is level-shifted to the LC driver		
voltage level, and output to the driver block.			
4-Level Driver	Drives the LC driver output pins from the line latch/shift		
	register data, selecting one of 4 levels $(V_0, V_{12}, V_{43}, V_{ss})$		
	based on the S/C, FR and DISPOFF signals.		
Control Logic	Controls the operation of each block. In case of segment mode,		
	when a LP signal has been input, all blocks are reset and the		
	control logic waits for the selection signal output from the		
	active control block.		
	Once the selection signal has been output, operation of the data		
	latch and data transmission are controlled,160 bits of data are		
	read in, and the chip is deselected.		
	In case of common mode, controls the direction of data shift.		

LH1560F

6. Pin Descriptions

Pin No.	Symbol	I/0	Designation	
1 to 160	Y ₁ -Y ₁₆₀	0	LC drive output	
161, 186	V _{0L} , V _{0R}	-	Power supply for LC drive	
162, 185	V_{12L} , V_{12R}	-	Power supply for LC drive	
163, 184	V _{43L} , V _{43R}	-	Power supply for LC drive	
165	L/R	Ι	Display data shift direction selection	
166	V _{DD}	-	Power supply for logic system(+2.5 to +5.5 V)	
167	S/C	Ι	Segment mode/common mode selection	
168	EIO ₂	I/0	Input/output for chip select or data of shift	
			register	
169 to 175	DI ₀ -DI ₆	Ι	Display data input for segment mode	
176	DI ₇	I	Display data input for Segment mode/	
			Dual mode data input	
177	XCK	I	Display data shift clock input for segment mode	
178	DISPOFF	I	Control input for deselect output level	
179	LP	I	Latch pulse input/shift clock input for shift	
			register	
180	EIO ₁	I/0	Input/output for chip select or data of shift	
			register	
181	FR	I	AC-converting signal input for LC drive waveform	
182	MD	I	Mode selection input	
164, 183	V _{ss}	_	Ground(O V)	

LH1560F

LH1560F

~

LH1560F

7.	Description	on of	Functional	Operations

7-1. Pin Functions

/-1. Pin F				
(Segment				
Symbol	Function			
V _{DD}	Logic system power supply pin connects to +2.5 to +5.5 V			
V _{ss}	Ground pin connects to 0 V			
V _{0 R} , V _{0 L}	Power supply pin for LC driver voltage bias.			
V_{12R}, V_{12L}				
V43R, V43L				
	•To further reduce the difference between the output waveforms of LC			
	driver output pins Y_1 and Y_{160} , externally connect V_{iR} and V_{iL}			
	(i=0, 12, 43).			
$DI_0 - DI_7$	Input Pin for display data			
	•In 4-bit parallel input mode, input data into the 4 pins DI_0-DI_3 .			
	Connect $DI_4 - DI_7$ to V_{ss} or V_{DD} .			
	•In 8-bit parallel input mode, input data into the 8 pins DI_0-DI_7 .			
XCK	Clock input pin for taking display data			
	•Data is read on the falling edge of the clock pulse.			
LP	Latch pulse input pin for display data			
	•Data is latched on the falling edge of the clock pulse.			
L/R	Direction selection pin for reading display data			
	•When set to V_{ss} level "L", data is read sequentially from Y_{160} to Y_1 .			
	•When set to V_{DD} level "H", data is read sequentially from Y_1 to Y_{160} .			
	Control input pin for output deselect level			
	•The input signal is level-shifted from logic voltage level to LC			
	drive voltage level, and controls LC drive circuit.			
	•When set to V_{ss} level "L", the LC drive output pins $(Y_1 - Y_{160})$ are			
DISPOFF	set to level V _{ss} .			
	•While set to "L", the contents of the line latch are reset, but read			
	the display data in the data latch regardless of condition of			
	DISPOFF. When the DISPOFF function is canceled, the driver outputs			
	deselect level $(V_{12} \text{ or } V_{43})$, then outputs the contents of the date			
	latch on the next falling edge of the LP. That time, if DISPOFF			
	removal time can not keep regulation what is shown AC			
ED	characteristics (Page 21), can not output the reading data correctly.			
FR	AC signal input for LC driving waveform			
	•The input signal is level-shifted from logic voltage level to LC			
	drive voltage level, and controls LC drive circuit.			
1	•Normally, inputs a frame inversion signal.			
	•The LC driver output pin's output voltage level can be set using the line latch output signal and the FR signal.			
	Table of truth values is shown in 7-2-1.			
MD	Mode selection pin			
	•When set to V _{s's} level "L", 4-bit parallel input mode is set.			
	•When set to V _{ss} level "H", 8-bit parallel input mode is set.			
	•The relationship between the display data and driver output pins is			
	shown in 7-2-2.			
L				

•

Symbol	Function			
S/C	Segument mode/common mode selection pin			
	•When set to V _{DD} level "H",segment mode is set.			
EIO1	Input/Output pin for chip selection			
EIO ₂	•When L/R input is at V_{ss} level "L", EIO ₁ is set for output, and EIO			
	is set for input.			
	•When L/R input is at V_{DD} level "H", EIO1 is set for input, and EIO2			
	is set for output.			
	•During output, set to "H" while LP*XCK is "H" and after 160-bits of			
	data have been read, set to "L" for one cycle (from falling edge to			
falling edge of XCK), after which it returns to "H".				
	•During input, after the LP signal is input, the chip is selected			
	while EI is set to "L". After 160-bits of data have been read, the			
	chip is deselected.			
Y ₁ -Y ₁₆₀	LC driver output pins			
	•Corresponding directly to each bit of the data latch, one level			
	$(V_0, V_{12}, V_{43}, \text{ or } V_{ss})$ is selected and output.			
	Table of truth values is shown in 7-2-1.			

(Common mode)

Symbol	Function				
V _{DD}	Logic system power supply pin connects to +2.5 to +5.5 V				
Vss	Ground pin connects to 0 V				
V _{OR} ,V _{OL}	Power supply pin for LC driver voltage bias.				
V _{12R} , V _{12L}	•Normally, the bias voltage used is set by a resistor divider.				
V43R. V43L	•Ensure that voltages are set such that $V_{ss} < V_{43} < V_{12} < V_0$.				
	•To further reduce the difference between the output waveforms of LC				
	driver output pins Y_1 and Y_{160} , externally connect V_{iR} and V_{iL}				
	(i=0, 12, 43).				
EIO1	Bidirectional shift register shift data input/output pin				
	•Output pin when L/R is at V_{ss} level "L", input pin when L/R is at				
	V _{DD} level "H".				
	•When EIO1 is used as input pin, it will be pull-doen.				
	•When EIO ₁ is used as output pin,it won't be pull-down.				
EIO ₂ Bidirectional shift register shift data input/output pin					
	-Input pin when L/R is at V_{ss} level "L", output pin when L/R is at				
	V _{DD} level "H".				
	•When EIO ₂ is used as input pin, it will be pull-down.				
	•When EIO ₂ is used as output pin, it won't be pull-down.				
LP	Bidirectional shift register shift clock pulse input pin				
	•Data is shifted on the falling edge of the clock pulse.				
L/R	Bidirectional shift register shift direction selection pin				
	•Data is shifted from Y_{160} to Y_1 when set to V_{ss} level "L", and data				
	is shifted from Y_1 to Y_{160} when set to V_{DD} level "H".				

	Control input pin for output deselect level		
	•The input signal is level-shifted from logic voltage level to LC		
	drive voltage level, and controls LC drive circuit.		
	•When set to V_{ss} level "L", the LC driver output pins $(Y_1 - Y_{160})$ are		
DISPOFF	set to level V_{ss} .		
2102 011	•While set to "L", the contents of the shift resister are reset not		
	reading data. When the DISPOFF function is canceled, the driver		
	outputs deselect level (V_{12} or V_{43}), and the shift data is reading		
	on the falling edge of the LP. That time, if DISPOFF removal time		
	can not keep regulation what is shown AC characteristics (Page 24)		
	the shift data is not reading correctly.		
FR	AC signal input for LC driving waveform		
	•The input signal is level-shifted from logic voltage level to LC		
	drive voltage level, and controls LC drive circuit.		
	•Normally, input a frame inversion signal.		
	•The LC driver output pin's output voltage level can be set using		
	the shift register output signal and the FR signal.		
	Table of truth values is shown in $7-2-1$.		
MD	Mode selection pin		
	•When set V_{ss} level "L", Single Mode operation is selected, when se		
	to Y_{DD} level "H", Dual Mode operation is selected.		
DI ₇	Dual Mode data input pin		
	•According to the data shift direction of the data shift register,		
	data can be input starting from the 81st bit.		
	When the chip is used as Dual Mode, DI_7 will be pull-down.		
	When the chip is used as Single Mode, DI7 won't pull-down.		
S/C	Segment mode/common mode selection pin		
	•When set to V _{ss} level "L", common mode is set.		
DI ₀ -DI ₆	Not used		
	•Connect $DI_0 - DI_8$ to V_{ss} or V_{DD} . Avoiding floating.		
ХСК	Not used		
	•XCK is pull-down in common mode, so connect to V_{ss} or open.		
$Y_{1} - Y_{160}$	LC driver output pins		
	\cdot Corresponding directly to each bit of the shift register, one leve		
	$(V_0, V_{12}, V_{43}, \text{ or } V_{ss})$ is selected and output.		
	Table of truth values is shown in 7-2-1.		

10

LH1560F

7-2. Functional Operations

7-2-1. Truth Table

(Segment Mode)

FR	Latch Data	DISPOFF	Driver Output Voltage Level(Y1-Y160)
L	Ĺ	H	V ₄₃
L	Н	Н	V _{ss}
H	L	Н	V ₁₂
H	Н	Н	V ₀
X	x	L	V _{ss}

Here, $V_{ss} \langle V_{43} \langle V_{12} \langle V_0, H : V_{DD}(+2.5 \text{ to } +5.5 \text{ V}), L : V_{ss}(0 \text{ V}), x : Don't care$

(Common Mode)

FR	Latch Data		Driver Output Voltage Level(Y1-Y160)
L	L	Н	· V ₄₃
L	· H	Н	V ₀
Н	L	Н	V ₁₂
Н	Н	Н	۷ _{s s}
X	x	L	V _{ss}

Here, $V_{ss} < V_{43} < V_{12} < V_0$, H : V_{DD} (+2.5 to +5.5 V), L : V_{ss} (0 V), X : Don't care [Note]There are two kinds of power supply (logic level voltage, LC drive

voltage) for LCD driver, please supply regular voltage which assigned by specification for each power pin.

That time "Don't care" should be fixed to "H" or "L", avoiding floating.

LH1560F

7-2-2. Relationship between the Display Data and Driver Output pins

(Segment Mode)

(a) 4-bit Parallel Mode

MD	L/R	EIO ₁	EIO ₂	Data			Figur	e of C	lock		
				Input	40clock	39clock	38clcok	••	3clock	2clock	lclock
				DIo	Υı	Y 5	Υ ₉	••	Y ₁₄₉	Y ₁₅₃	Y ₁₅₇
				DI	Υ ₂	Y ₆	Y ₁₀	••	Y ₁₅₀	Y ₁₅₄	Y ₁₅₈
L	L	Output	Input	DI ₂	Y ₃	Y 7	Y ₁₁	••	Y ₁₅₁	Y ₁₅₅	Y ₁₅₉
				DI ₃	Υ ₄	Υ ₈	Y ₁₂	• •	Y ₁₅₂	Y ₁₅₆	Y ₁₆₀
				DIo	Y ₁₆₀	Y ₁₅₆	Y ₁₅₂	••	Y ₁₂	Υ ₈	Υ ₄
		-		DI1	Y ₁₅₉	Y ₁₅₅	Y ₁₅₁	• •	Y ₁₁	Y 7	Y ₃
L	н	Input	Output	DI ₂	Y ₁₅₈	Y ₁₅₄	Y ₁₅₀	••	Y ₁₀	Y ₆	Υ ₂
				DI ₃	Y ₁₅₇	Y ₁₅₃	Y ₁₄₉	••	Y 9	Y 5	Υ ₁

(b) 8-bit Parallel Mode

MD	L/R	EIO ₁	EIO2	Data			Figur	e of C	lock		
				Input	20clock	19clock	18clock	••	3clock	2clock	1clock
				DIo	Y ₁	Υ ₉	Y ₁₇	••	Y ₁₃₇	Y ₁₄₅	Y ₁₅₃
				DII	Y ₂	Y ₁₀	Y ₁₈	••	Y ₁₃₈	Y ₁₄₆	Y ₁₅₄
				DI ₂	Y ₃ ·	Y ₁₁	Y ₁₉	••	Y ₁₃₉	Y ₁₄₇	Y ₁₅₅
				DI ₃	Y ₄	Y ₁₂	Y ₂₀	••	Y ₁₄₀	Y ₁₄₈	Y ₁₅₆
н	L	Output	Input	DI4	Y 5	Y ₁₃	Y ₂₁	••	Y ₁₄₁	Y ₁₄₉	Y ₁₅₇
				DI5	Υ ₆	Y ₁₄	Y ₂₂	•••	Y ₁₄₂	Y ₁₅₀	Y ₁₅₈
				DI ₆	Υ ₇	Y ₁₅	Y ₂₃	••	Y ₁₄₃	Y ₁₅₁	Y ₁₅₉
				DI7	Y 8	Y ₁₆	Y 2 4	••	Y ₁₄₄	Y ₁₅₂	Y ₁₆₀
				DIO	Y ₁₆₀	Y ₁₅₂	Y ₁₄₄	••	Y ₂₄	Y 1 6	Y 8
				DI1	Y ₁₅₉	Y ₁₅₁	Y ₁₄₃	••	Y ₂₃	Y ₁₅	Y 7
				DI ₂	Y ₁₅₈	Y ₁₅₀	Y ₁₄₂	••	Y ₂₂	Y ₁₄	Y ₆
				DI ₃	Y ₁₅₇	Y149	Y ₁₄₁	••	Y ₂₁	Y ₁₃	Y 5
H	H	Input	Output	DI ₄	Y ₁₅₆	Y ₁₄₈	Y ₁₄₀	••	Y ₂₀	Y ₁₂	Y 4
				DI ₅	Y ₁₅₅	Y ₁₄₇	Y ₁₃₉	••	Y 19	Y ₁₁	Y 3
				DI6	Y ₁₅₄	Y ₁₄₆	Y ₁₃₈	••	Y ₁₈	Y 1 0	Υ ₂
				DI7	Y ₁₅₃	Y ₁₄₅	Y ₁₃₇	••	Y ₁₇	Y 9	Y 1

(Common Mode)

MD	L/R	Data Transfer Direction	EIO1	EIO ₂	DI7
L	L(shift to left)	$Y_{160} \rightarrow Y_1$	Output	Input	Х
(Single)	H(shift to right)	$Y_1 \rightarrow Y_{160}$	Input	Output	х
	L(shift to left)	$Y_{160} \rightarrow Y_{81}$	Output	Inpout	Input
Н		$Y_{80} \rightarrow Y_1$			
(Dual)	H(shift to right)	$Y_1 \rightarrow Y_{80}$	Inpout	Output	Input
		$Y_{81} \rightarrow Y_{160}$			

[Note] "Don't care" should be fixed to "H" or "L", avoiding floating.

LH1560F

LH1560F

SHARP

LH1560F

8. Precaution

OPrecaution when connecting or disconnecting the power

This LSI has a high-voltage LC driver, so it may be permanently damaged by a high current which may flow if a voltage is supplied to the LC driver power supply while the logic system power supply is floating. The detail is as follows.

•When connecting the power supply, connect the LC drive power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LC drive power.

•We recommend you connecting the serial resistor $(50 \sim 100 \ \Omega)$ or fuse to the LC drive power V₀ of the system as a current limitter. And set up the suitable value of the resistor in consideration of LC display grade.

And when connecting the logic power supply, the logic condition of this LSI inside is insecurity. Therefore connect the LC drive power supply after resetting logic condition of this LSI inside on DISPOFF function. After that, cancel the DISPOFF function after the LC drive power supply has become stable. Furthermore, when disconnecting the power, set the LC drive output pins to level V_{ss} on DISPOFF function. After that, disconnect the logic system power after disconnecting the LC drive power.

When connecting the power supply, show the following recommend sequence.

LH1560F

9. Absolute Maximum Ratings

Parameter	Symbol	Conditions	Applicable pins	Ratings	Unit
Supply voltage (1)	V _{DD}	Ta=25 t	V _{DD}	-0.3 to +7.0	Y
Supply voltage (2)	V _o	Referenced	V _{OL} ,V _{OR}	-0.3 to +45.0	V
	V ₁₂	to V _{ss} (0 V)	V _{12L} , V _{12R}	-0.3 to $V_0+0.3$	V
	V 4 3		V _{43L} , V _{43R}	-0.3 to V ₀ +0.3	V
Input voltage	V I		DI ₀₋₇ , XCK, LP, L/R, FR	-0.3 to $V_{DD}+0.3$	V
			$MD,S/C,EIO_1,EIO_2$,		
			DISPOFF		
Storage temperature	Tstg	<u></u>		-45 to +125	r

10. Recommended Operating Conditions

Supply voltage (1) V _{DD} Referenced V _{DD}	+2.5	+5.5	v
			1 1
Supply voltage (2) V_0 to $V_{ss}(0 V)V_{0L}, V_{0R}$ +	-15.0	+42.0	V
Operating temperature T _{opr}	-20	+85	Ľ

[Note]Ensure that voltages are set such that $V_{ss} < V_{43} < V_{12} < V_0$

.

LH1560F

11. Electrical Characteristics

11-1. DC Characteristics

(Segment Mode)

(V _{ss} =0) V, V _D	p = +2.5 V to +5.5	V, $V_0 = +15.0$ to +	42.0 V,	Ta=-20	to +85	i t)
Parameter	Symbol	Conditions	Applicable pins	Min.	Typ.	Max.	Unit
Input voltage	VIII		DI0-7,XCK,LP,L/R	0.8V _{DD}			V
	VIL		FR, MD, S/C, EIO1			0.2V _{DD}	V
			EIO2, DISPOFF				
Output voltage	V _{он}	I _{0H} =-0.4 mA	EIO ₁ ,EIO ₂	$V_{DD} - 0.4$			V
	Vol	$I_{oL} = +0.4 \text{ mA}$				+0.4	V
Input leakage 🔔	ILIH	$V_{T} = V_{D D}$	DI0~7,XCK,LP,L/R			+10.0	μA
current	ILIL	$V_1 = V_{SS}$	FR, MD, S/C, EIO1			-10.0	μA
			EIO2. DISPOFF				
		$ \Delta V_{0N} V_0 = +40.0 V$			0.7	1.0	
Output resistance	Ron	$=0.5 \text{ V} \text{ V}_0 = +30.0 \text{ V}$	$Y_1 - Y_{160}$		1.0	1.5	kΩ
		$V_0 = +20.0$ V			1.5	2.0	1
Stand-by current	Ізтв	*1	V _{ss}			50.0	μA
Consumed current(1)	IDD1	*2	V _{DD}			2.0	mA
(Deselection)							
Consumed current(2)	IDD2	*3	V _{DD}			8.0	mA
(Selection)							
Consumed current	Ι _ο	*4	V ₀			1.0	mA

[Note]

*1 $V_{DD} = +5.0$ V, $V_0 = +42.0$ V, $V_1 = V_{SS}$

*2 V_{DD} =+5.0 V, V_0 =+42.0 V, f_{xcK} =14 MHz, No-load, EI= V_{DD}

The input data is turned over by data taking clock(4-bit parallel input mode)*3 $V_{DD}=+5.0$ V, $V_0=+42.0$ V, $f_{xc\kappa}=14$ MHz, No-load, $EI=V_{ss}$

The input data is turned over by data taking clock(4-bit parallel input mode)*4 $V_{DD}=+5.0$ V, $V_0=+42.0$ V, $f_{XCK}=14$ MHz, $f_{LP}=41.6$ kHz, $f_{FR}=80$ Hz, No-load

The input data is turned over by data taking clock(4-bit parallel-input mode)

SHARP

(-35 -	• • • • • • • •	B = +2.5 1 10 +5.5	$V, V_0 = +15.0 \text{ to } +$	72.0 1,	1420	10 +05	
Parameter	Symbol	Conditions	Applicable pins	Min.	Typ.	Max.	Uni
Input voltage	V _{IH}		DI _{0~7} ,XCK,LP,L/R	0.8V _{DD}			V
	VIL		FR, MD, S/C, EIO ₁			0.2V _{DD}	V
			EIO2, DISPOFF				
Output voltage	V _{он}	I _{он} =-0.4 mA	EIO1,EIO2	$V_{DD} - 0.4$			V
	Vol	$I_{ol} = +0.4 \text{ mA}$	-			+0.4	V
Input leakage	ILIH	$V_1 = V_{D D}$	DI0-6, LP, L/R, FR			+10.0	μA
current			MD.S/C.DISPOFF				
	ILIL	$V_1 = V_{SS}$	DI0-7, XCK, LP, L/R			-10.0	μA
			FR.MD,S/C.EIO1				
			EIO2, DISPOFF				
Input pull-down	IPD	$V_{I} = V_{DD}$	XCK.EIO1,EIO2			100.0	μ
current			DI1			_	
		$ \Delta V_{0N} V_0 = +40.0$	V		0.7	1.0	
Output resistance	Ron	$=0.5 V V_0 = +30.0 V$	V Y ₁ -Y ₁₆₀		1.0	1.5	k
		$V_0 = +20.0$	v		1.5	2.0	
Stand-by current	Ізтв	*1	Vss			50.0	μ
Consumed current(1)	IDD	*2	V _{DD}			80.0	μ/
Consumed current(2)	I ₀	*2	V ₀			160.0	μA

 $\star 1 V_{DD} = +5.0 V, V_0 = +42.0 V, V_1 = V_{SS}$

*2 V_{DD} =+5.0 V, V_0 =+42.0 V, f_{LP} =41.6 kHz, f_{FR} =80 Hz case of 1/480 duty operation. No-load

20

11-2. AC Characteristics

(Segment Mode 1)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Shift clock period *1	twcк	t,,t,≦10 ns	71			ns
Shift clock "H" pulse width	twcкн		23			ns
Shift clock "L" pulse width	twcki		23			ns
Data setup time	t _{Ds}		10			ns
Data hold time	t _{DH}		20			ns
Latch pulse "H" pulse width	twiph		23			ns
Shift clock rise to	tip		0			ns
Latch pulse <u>r</u> ise time						4
Shift clock fall to	tsi		25			ПS
Latch pulse fall time						
Latch pulse rise to	tis		25			ns
Shift clock rise time						
Latch pulse fall to	tin		25			ns
Shift pulse fall time		ł.				
Input signal rise time *2	tr				50	ns
Input signal fall time *2	t _f				50	ns
Enable setup time	ts		21			ns
DISPOFF removal time	tsp		100			ns
DISPOFF "L" pulse width	twol		1.2			μs
Output delay time (1)	t _D	$C_L = 15 \text{ pF}$			40	ns
Output delay time (2)	tpd1,tpd2	$C_L = 15 \text{ pF}$			1.2	μs
Output delay time (3)	tpdg	$C_L = 15 \text{ pF}$			1.2	μs

[Note]

*1 Take the cascade connection into consideration.

*2 $(t_{c\kappa}-t_{wc\kappa l})/2$ is maximum in the case of high speed operation.

-

Parameter	Symbol	Condition	Min.	 Max.	85 °C) Unit
Shift clock period *1	twcк	t,,t,≦11 ns	125		ns
Shift clock "H" pulse width	twcкн		51		ns
Shift clock "L" pulse width	twckl		51		ns
Data setup time	tos		30		ns
Data hold time	t _{DH}		40		ns
Latch pulse "H" pulse width	twiph		51		ns
Shift clock rise to	tip		0		ns
Latch pulse rise time					
Shift clock fall to	tsi		51		ns
Latch pulse fall time					
Latch pulse rise to	tis		51		ns
Shift clock rise time					
Latch pulse fall to	tıн		51		ns
Shift pulse fall time					
Input signal rise time *2	t,			50	ns
Input signal fall time *2	ti			50	ns
Enable setup time	ts		36		ns
DISPOFF removal time	tsp		100		ns
DISPOFF "L" pulse width	two		1.2		μs
Output delay time (1)	t _D	$C_L = 15 \text{ pF}$		78	ns
Output delay time (2)	tpd1,tpd2	$C_L = 15 \text{ pF}$		1.2	μs
Output delay time (3)	tpdg	$C_L = 15 \text{ pF}$		1.2	μs

[Note]

*1 Take the cascade connection into consideration.

*2 $(t_{c\,\kappa}-t_{w\,c\,\kappa\,H}-t_{w\,c\,\kappa\,L})/2$ is maximum in the case of high speed operation.

LH1560F

$(V_{SS}=0 \ V, \ V_{DD}=+2.$	5 to +5.5	V, $V_0 = +15.0$ to $+42$.	<u>0 V, T</u>	'a=-20	to +8	5 t)
Parameter	Symbol	Condition	Min.	Typ,	Max.	Uni
Shift clock period	twlp	t,,t,≦20 ns	250			ns
Shift clock "H" pulse width	twlph	$V_{DD} = +5.0 \ V \pm 10\%$	15			ns
		$V_{DD} = +2.5 V - +4.5 V$	30			n
Data setup time	tsu		30			n
Data hold time	tн		50			n
Input signal rise time	tr				50	n
Input signal fall time	tr				50	n
DISPOFF removal time	tsp		100			n
DISPOFF "L" pulse width	twol		1.2			μ
Output delay time(1)	tpl	$C_L = 15 \text{ pF}$			200	n
Output delay time(2)	tpd1.tpd2	$C_{L} = 15 \text{ pF}$			1.2	μ
Output delay time(3)	tpd3	$C_L = 15 \text{ pF}$			1.2	μ

(Timing Characteristics of Common Mode)

LH1560F

·

SHARP

13. Example of Typical Characteristic

Parameter	Conditions	Min.	Typ.	Max.	Unit
Typical Fundamental Rating Propagation Delay Time	$Ta = +25$ C, $V_{ss} = 0$ V, $V_{DD} = +5.0$ V		10		ns

26

SHARE

14. PACKAGE AND PACKING SPECIFICATION
1. Package Outline Specification Refer to drawing No. SPN3321-00
2. Markings The meanings of the device code printed on each tape carrier package are as follows.
(1) Date code (example) : $\frac{4}{a}$ $\frac{4}{b}$ $\frac{3}{c}$
a) denotes the last figure of Anno Domini (of production) b) denotes the week (of production)

LH1560F

c) denotes the number of times of alteration

3. Packing Specifications

(1) Packing Materials

Item	Material	Purpose		
Reel	Anti-static treated plastic (405mm dia.)	Packing of tape carrier package.		
Separator	Anti-static treated PET (188 μ mt)	Protects device and prevents ESD (Electro Static Discharge)		
Laminated aluminium bag	$(520 \times 600 \text{mm})$	Keeping dry.		
Adhesive tape paper		Fixing of tape carrier package and sparator.		
Carton	Cardboard(420x420x50mm)			
Label	Paper	Indicates production name, lot.No., and quantity.		
Desiccant	Silica gel	Drying of device		

(2) Packing Form

- a) Tape carrier package(TCP) is wound on a reel with separators 1 and 2 and the ends of them are fixed with adhesive tape.
- b) A label indicating production name, lot no. and quantity is stuck on one side of the reel.
- c) The reel and silica gel is put in a laminated aluminium bag. Nitrogen gas is enclosed in the bag and the bag is sealed. The same label(b) is affixed to the bag. The bag is put in a carton and the same label(b) is affixed to one side of the carton.

* Specification of label

27

ТҮРЕ	PRODUCTION NAME LOT NO.
QUANTITY	QUANTITY
LOT(DATE)	SHIPPING DATE

4. Miscellaneous

- (1) The length of the tape carrier is $34 \sim 46$ meters maximum per reel, and depends on shipping quantity.
- (2) Before unpacking, prepare a work bench equipped with anti-static devices. Also, the operater shoud ware anti-static wrist bands.
- (3) The device, once unpacked, should be stored in a nitrogen gas, room temperature atomosphere and used within 1 week.

ISSUE DATE	OCT.25.1994	APROVE	CHECK	DESIGN	(NOTE)
ISSUE NUMBER	H6X01	a c maki			
S/C NUMBER		A. Suzuki	Cy. Honda	J. Kodoguch	:

;