

LITEMAX LF1745

Sunlight Readable 17" LCD Display

(1st Edition 4/9/2004)

All information is subject to change without notice.

LITEMAX Electronics Inc.

4F, No.131-3, Lane235, Bau-chiau Rd., Shin-dian City, Taipei County, Taiwan R.O.C. Tel : 886-2-8919-1858 Fax: 886-2-8919-1300 Homepage: <u>http://www.litemax.com.tw</u>

Contents

Introduction and Overview...3

General Specifications...4

Functional Block Diagram

Optical Characteristics

Pixel format image.

Electrical characteristics...9

Absolute Maximum Ratings

Connectors

Signal Pin

Signal Description

Signal Electrical Characteristics

Interface Timing

Timing Characteristics

Timing Definition

Power Consumption

Power ON/OFF Sequence

Backlight Characteristics...17

Signal for Lamp connector

Reliability and Lifetime...18

Mechanical Characteristics...19

Litemax LI3601 Inverter...20

INTRODUCTION AND OVERVIEW

This is a product specification that specifies form, fit, and function of the 17" TFT LCD monitor and its options. The LF1745 products are a family of high bright LCD monitors intended for use in a variety of industrial and commercial applications. Some of these applications include automatic teller machines (ATMs), fuel dispensing systems, ticketing and information kiosks, and intelligent vending machines. The LCD panel for LF1745 has a particularly fast response time of 16ms and consequently very well suited for video applications. The LF1745 is a 17" active matrix TFT LCD with a native resolution of 1280X1024. It has a typical luminance of 1000 nits with a +12VDC input. The video interface is through a standard 15 pin analog input with an integrated On-Screen Display (OSD).

OUTLINE

STRUCTURE AND PRINCIPLE

LF1745 module is composed of the driver LSIs for driving the TFT (Thin Film Transistor) array with an amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure and a backlight. The a-Si TFT LCD panel structure is injected liquid crystal material into the narrow gap between a TFT array glass substrate and a color filter glass substrate.

RGB (Red, Green, and Blue) data signals from a source system are modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn address the individual TFT cells.

Working as an electro-optical switch, each TFT cell regulates transmitted light from the backlight assembly when worked by the data source. Color images are created by regulating the amount of transmitted light through the array of red, green and blue dots.

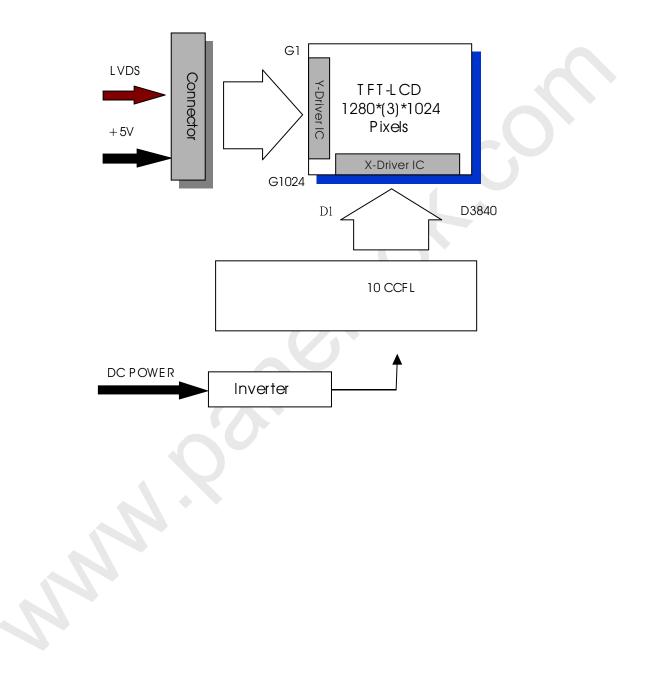
APPLICATIONS

· Kiosk, Public, Health Application, LCD TV, POI, Ticketing, Advertising, Gaming, Industrial Computing, Signage...

FEATURES

- wide viewing angle
- Fast response time
- High luminance
- High contrast
- Wide color gamut
- Luminance control
- Small foot prints

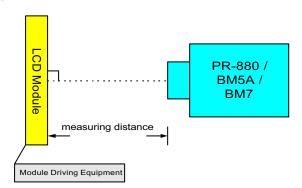
GENERAL SPECIFICATIONS


	337.92 (H) x 270.336 (V) mm		
Drive system	a-Si TFT active matrix		
Display colors	262k		
Number of pixels	1280 (H) x 1024 (V) pixel		
Pixel arrangement	RGB (Red, Green, Blue) vertical stripe		
Pixel pitch	0.264 (H) x 0.264 (V) mm		
Module size	358.5(H) x 296.5 (V) x 29(D) mm		
Weight	1670 g (typ.)		
Contrast ratio	500:1 (typ.)		
Viewing angle	At the contrast ratio 10:1		
	• Horizontal: Left side 80° (typ.), Right side 80° (typ.)		
	• Vertical: Up side 75° (typ.), Down side 75° (typ.)		
Designed viewing direction	• Optimum grayscale (γ =2.2): perpendicular		
Polarizer pencil-hardness	3H (min.) [by JIS K5400]		
Color gamut	At LCD panel center		
	60% (typ.) [against NTSC color space]		
	Ton (black $10\% \rightarrow$ white 90%)		
Response time	16 ms (typ.)		
Luminance	1000 cd/m ² (typ.)		
Backlight	• Backlight unit: AU 1745		
	• Inverter: LI3601		
	At maximum luminance and checkered flag pattern		
Power consumption			

Functional Block Diagram

The following diagram shows the functional block of the 17.0 inches Color TFT-LCD Module:

 $\langle p \rangle$

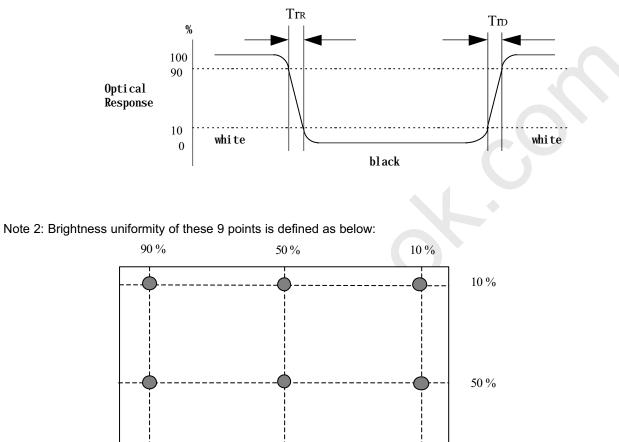


Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature) :

ltem	Unit	Conditions	Min.	Тур.	Max.
		Horizontal (Right) CR = 10 (Left)	60 60	80 80	-
		Vertical (Up) CR = 10 (Down)	60 60	75 75	\sim
Viewing Angle	[degree]	Horizontal (Right) CR = 5 (Left)	70 70	85 85	-
		Vertical (Up) CR = 5 (Down)	70 70	80 80	-
Contrast ratio		Normal Direction	-	500	-
Response Time (Note 1)	[msec]	Raising Time Falling Time Raising + Falling	-	4 12 16	5 20 25
		Red x Red y	0.61 0.31	0.64	0.67
Color / Chromaticity Coordinates (CIE)		Green x Green y	0.26 0.58	0.29 0.61	0.32 0.64
		Blue x Blue y	0.11 0.04	0.14 0.07	0.17 0.10
Color Coordinates (CIE) White		White x White y	0.28 0.30	0.31 0.33	0.34 0.36
White Luminance @ CCFL 7.0mA (center)	[cd/m ²]		-	1000	-
Luminance Uniformity (Note 2)	[%]		75	80	-
TCO99 1.5.2B luminance uniformity (Note 3)					1.7
Crosstalk (in 75Hz) (Note 4)	[%]				1.5

Equipment Aperture Test Point Environment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (PR 880, BM-5A) 1° with 100cm VD or 2° with 50cm viewing distance Center (ISO point 22) < 1 lux


LF1745

Note 1: Definition of Response time:

Uniformity =

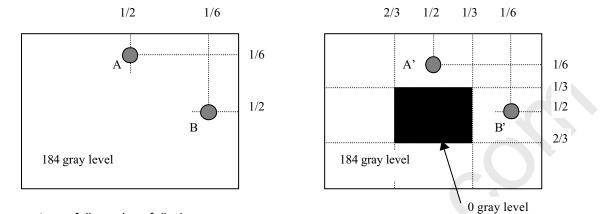
The output signals of photodetector are measured when the input signals are changed from "Black" to "White" (falling time), and from "White" to "Black" (rising time), respectively. The response time is interval between the 10% and 90% of amplitudes.

Note 3: TCO ' 99 Certification Requirements and test methods for environmental labeling of Display Report No. 2 defines Luminance uniformity as below:

((Lmax,+30deg. / Lmin,+30deg.) + (Lmax,-30deg. / Lmin,-30deg.)) / 2

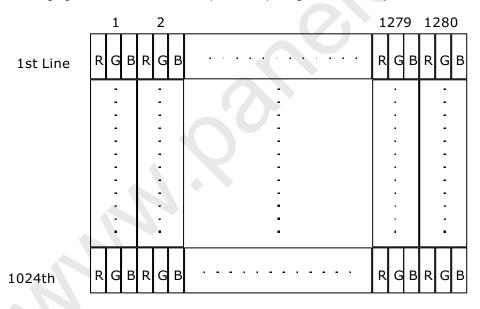
90 %

This panel is compatible with TCO99 approbation in luminance uniformity \leq 1.7, luminance contrast >0.5


Minimum Luminance in 9 Points (1-9)

Maximum Luminance in 9 Points (1-9)

Note 4:

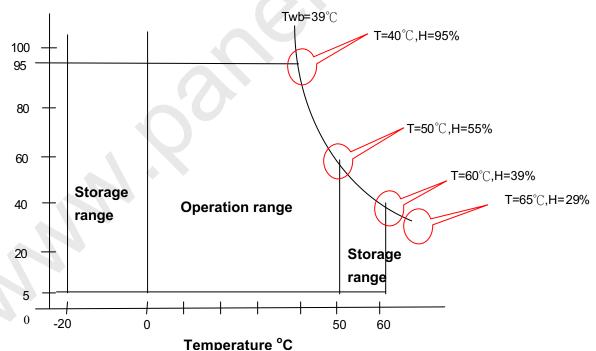


Unit: percentage of dimension of display area

I L_A-L_{A'} I / L_A x 100%= 1.5% max., L_A and L_B are brightness at location A and B I L_B-L_{B'} I / L_B x 100%= 1.5% max., L_{A'} and L_{B'} are brightness at location A' and B'

Pixel format image

Following figure shows the relationship of the input signals and LCD pixel format.


Electrical characteristics


Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VIN	-0.3	+5.5	[Volt]	
Select LVDS data order	SELLVDS	NC	NC	[Volt]	
CCFL Inrush current	ICFLL	-	38	[mA]	
CCFL Current	ICFL	-	7.6	[mA] rms	
Operating Temperature	TOP	0	+50	[°C]	Note 1
Operating Humidity	HOP	8	95	[%RH]	Note 1
Storage Temperature	TST	-20	+60	[°C]	Note 1
Storage Humidity	HST	8	95	[%RH]	Note 1

Note 1 : Maximum Wet-Bulb should be $39^\circ C$ and No condensation.

Connectors

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	Interface Connector / Interface card
Manufacturer	JAE or compatible
Type Part Number	FI-X30S-HF
Mating Housing Part Number	FI-X30S-H

Connector Name / Designation	Lamp Connector / Backlight lamp
Manufacturer	JST
Type Part Number	BHR-04VS-1
Mating Type Part Number	SM04(4.0)B-BHS-1-TB

Signal Pin

Pin#	Signal Name	Pin#	Signal Name
1	RxO0-	2	RxO0+
3	RxO1-	4	RxO1+
5	RxO2-	6	RxO2+
7	GND	8	RxOC-
9	RxOC+	10	RxO3-
11	RxO3+	12	RxE0-
13	RxE0+	14	GND
15	RxE1-	16	RxE1+
17	GND	18	RxE2-
19	RxE2+	20	RxEC-
21	RxEC+	22	RxE3-
23	RxE3+	24	GND
25	NC	26	NC
27	NC	28	Power
29	Power	30	Power

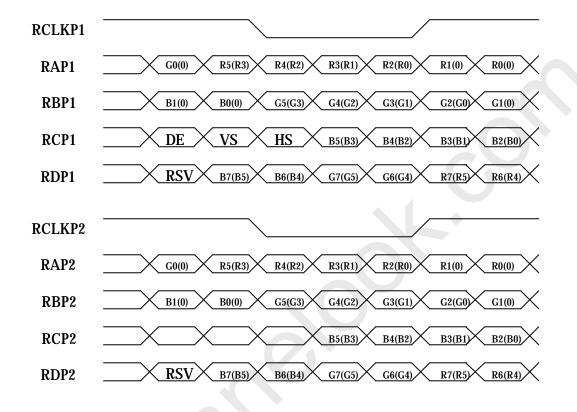
Signal Description

The module using a pair of LVDS receiver SN75LVDS82 (Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN #	SIGNAL NAME	DESCRIPTION				
1	RxO0-	Negative LVDS differential data input (Odd data)				
2	RxO0+	Positive LVDS differential data input (Odd data)				
3	RxO1-	Negative LVDS differential data input (Odd data)				
4	RxO1+	Positive LVDS differential data input (Odd data)				
5	RxO2-	Negative LVDS differential data input (Odd data, HSync, V-Sync, DSPTMG)				
6	RxO2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)				
7	GND	Power Ground				
8	RxOC-	Negative LVDS differential clock input (Odd clock)				
9	RxOC+	Positive LVDS differential clock input (Odd clock)				
10	RxO3-	Negative LVDS differential data input (Odd data)				
11	RxO3+	Positive LVDS differential data input (Odd data)				
12	RxE0-	Negative LVDS differential data input (Even clock)				
13	RxE0+	Positive LVDS differential data input (Even data)				
14	GND	Power Ground				
15	RxE1-	Positive LVDS differential data input (Even data)				
16	RxE1+	Negative LVDS differential data input (Even data)				
17	GND	Power Ground				
18	RxE2-	Negative LVDS differential data input (Even data)				
19	RxE2+	Positive LVDS differential data input (Even data)				
20	RxEC-	Negative LVDS differential clock input (Even clock)				
21	RxEC+	Positive LVDS differential clock input (Even clock)				
22	RxE3-	Negative LVDS differential data input (Even data)				
23	RxE3+	Positive LVDS differential data input (Even data)				
24	GND	Power Ground				
25	NC	-				
26	NC	-				
27	NC	-				
28	POWER	Power				
29	POWER	Power				
30	POWER	Power				

Note: Input signals of odd and even clock shall be the same timing.

LVDS DATA Name	Description
DSP	Display Timing: When the signal is high, the pixel data shall be valid to be displayed
V-S	Vertical Sync: Both Positive and Negative polarity are acceptable
H-S	Horizontal Sync: Both Positive and Negative polarity are acceptable

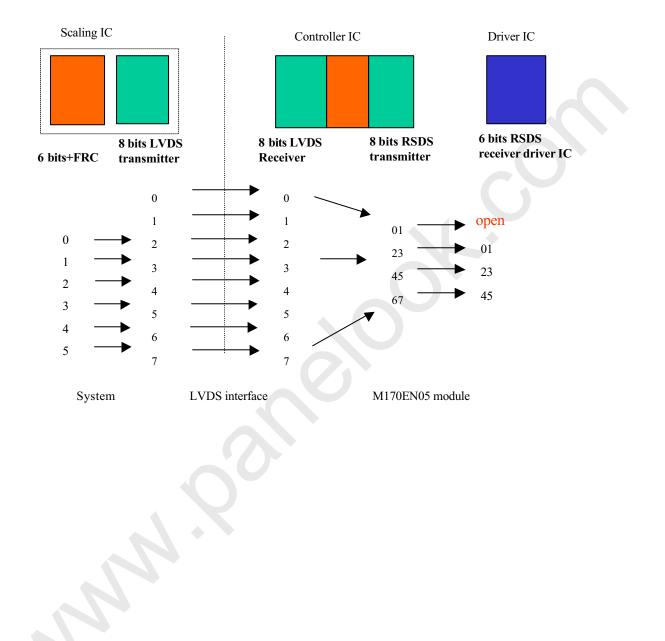

Interface connection

TI LVDS X' mitter SN75LVDS83	Module LVDS signal (interface connector pin7)	
Signal Name	Low(open)	
D0	Red0	
D1	Red1	
D2	Red2	
D3	Red3	
D4	Red4	
D5	Red7	
D6	Red5	
D7	Green0	
D8	Green1	
D9	Green2	
D10	Green6	
D11	Green7	
D12	Green3	
D13	Green4	
D14	Green5	
D15	Blue0	
D16	Blue6	
D17	Blue7	
D18	Blue1	
D19	Blue2	
D20	Blue3	
D21	Blue4	
D22	Blue5	
D23	NA	
D24	H Sync	
D25	V Sync	
D26	Display Timing	
D27	Red6	

8bits input: M170EN05 only catch bit 2 to bit 7 for 6 bit display 6bits input data format marked with ().

Note: R/G/B data 7:MSB, R/G/B data 0:LSB

O = "First Pixel Data"


E = "Second Pixel Data"

LF1745

Page 1 3

Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when Vin is off It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Each signal characteristics are as follows;

Parameter	Condition	Min	Мах	Unit
Vth	Differential InputHigh Voltage(Vcm=+1.2V)		100	[mV]
VtI	Differential Input Low Voltage(Vcm=+1.2V)	-100	([mV]

Interface Timings

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

Timing Characteristics

Signal	Item	Symbol	MIN	TYP	MAX	Unit
DTCLK	Freq.	Fdck	50	67.5	70	MHz
DTCLK	Cycle	Tck	14.2	14.8	20	ns
+V-Sync	Frame Rate	1/Tv	56.25	75	77	Hz
+V-Sync	Cycle	Tv	13	13.33	17.78	ms
+V-Sync	Cycle	Tv	1035	1066	2047	lines
+V-Sync	Active level	Tva	3	3		lines
+V-Sync	V-back porch	Tvb	7	38	63	lines
+V-Sync	V-front porch	Tvf	1	1		lines
+DSPTMG	V-Line	m	-	1024	-	lines
+H-Sync	Scan rate	1/Th	-	80.06	-	KHz
+H-Sync	Cycle	Th	800	844	1023	Tck
+H-Sync	Active level	Tha (*1)	4	56		Tck
+H-Sync	Back porch	Thb (*1)	4	124		Tck
+H-Sync	Front porch	Thf	4	24		Tck
+DSPTMG	Display Pixels	n	-	640	-	Tck

Note: Typical value refer to VESA STANDARD (*1) Tha+Thb should be less than 1024 Tck.

Timing Definition

Power Consumption

Input power specifications are as follows;


Symbol	Parameter	Min	Тур	Max	Units	Condition
VDD	Logic/LCD Drive Voltage	4.5	5	5.5	[Volt]	
IDD	VDD current		950	1200	[mA]	
PDD	VDD Power		4.75	6.6	[Watt]	Vin=5V, All Black Pattern
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	
VDDns	Allowable Logic/LCD Drive Ripple Noise			100	[mV] p-p	

Power ON/OFF Sequence

Vin power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when Vin is off.

Backlight Characteristics

Signal for Lamp connector

Pin #	Signal Name
1	Lamp High Voltage
2	Lamp High Voltage
3	No Connection
4	Ground

Reliability and Lifetime

Monitor Reliability Demostrated MTTF testing in progress

Backlight Reliability and Lifetime

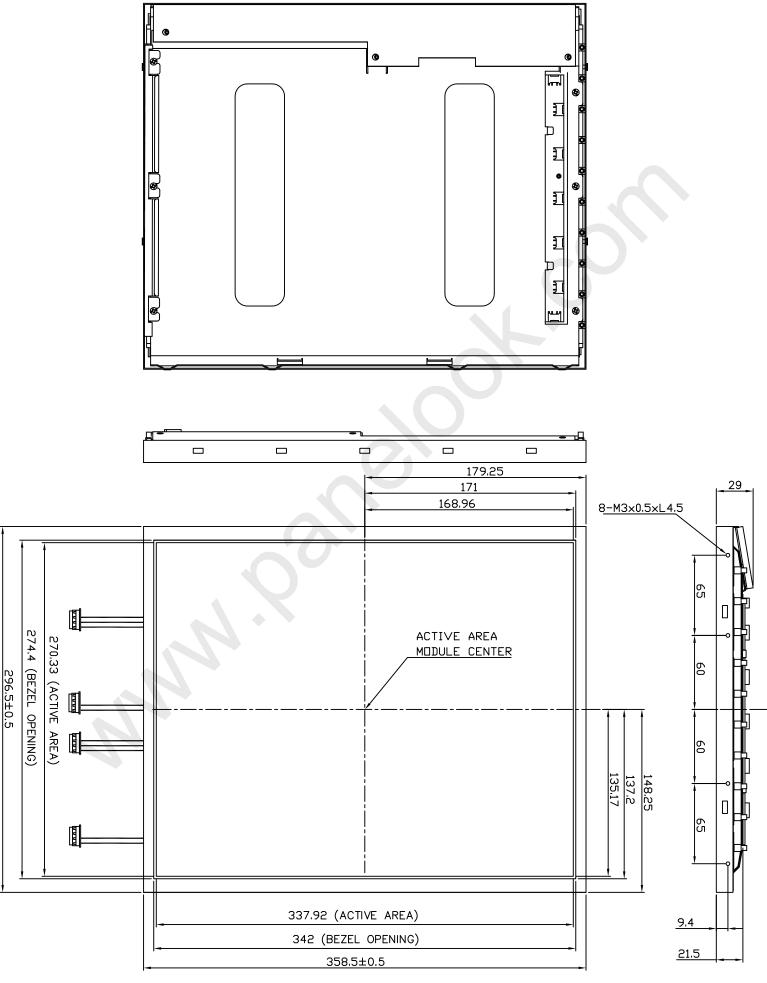
CCF lamps; 40,000 hour rated lifetime @ 25°C CCF lamp life is defined as time to 50% of initial brightness Backlight end-of-life for this 1745 product is defined as 1000 nits center luminance at 25°C

Typical values indicated for luminance and uniformity are indicative of typical steady state values measured at initial use at 25°C after warm-up to steady state. Actual luminance and uniformity values are directly dependent on the environmental usage profile. Repeated cold temperature start-up can cause accelerated aging of the backlight lamps resulting in reduced luminance and uniformity.

Extended High Temperatures and Solar Loading

Extended operation at the upper temperature extreme or in conjunction with extended direct solar loading can cause permanent mura or localized pixel non-uniformity effects. Other side effects could include latent image and flicker. These effects are not covered under Litemax warranty. Please consult Litemax for further guidance on system design to effectively manage environments requiring extended high temperatures or direct sun-loading. Cooling kit and CEG vandal glass options can effectively address these issues.

Reliability Test

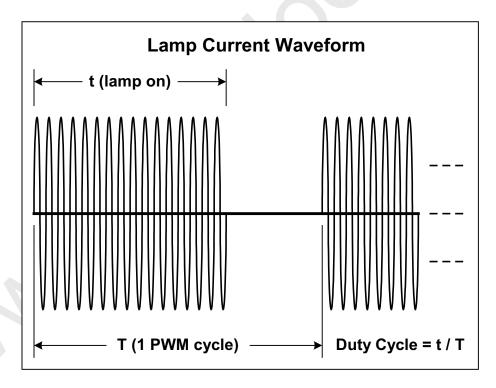

Test ondition	Judgement
1. 60±2°C, RH=60%, 240 hours,	Note 1
2. Display data is white.	
1. 0°C±3°C1 hour	Note 1
2. 55°C±3°C1 hour	
3. 50 cycles, 4 hours/cycle	
4. Display data is white.	
120°C±3°C1 hour	Note 1
2. 60°C±3°C1 hour	
3. 100 cycles, 4 hours/cycle	
4. Temperature transition time is within 5 min.	
5-100Hz, 11.76m/s2, 1 minute/cycle, XYZ direction	Note 1
10 times each direction	
ESD (non-operation) $150 \text{pF}, 150 \Omega, \pm 10 \text{kV}$	
9 places on a panel (Note 3)	
10 times each place at one-second intervals	
Sample dust: No.15	Note 1
Hourly 15 seconds stir, 8times repeat	
53.3 kPa	Note 1
0°C±3°C.24 hours	
55°C±3°C.24 hours	
15 kPa	Note 1
-20°C±3°C.24 hours	
-60°C±3°C.24 hours	
	1. $60\pm2^{\circ}$ C, RH=60%, 240 hours, 2. Display data is white. 1. 0° C±3°C1 hour 2. 55° C±3°C1 hour 3. 50 cycles, 4 hours/cycle 4. Display data is white. 1. -20° C±3°C1 hour 2. 60° C±3°C1 hour 3. 100 cycles, 4 hours/cycle 4. Temperature transition time is within 5 min. 5-100Hz, 11.76m/s2, 1 minute/cycle, XYZ direction 10 times each direction 150pF, 150Ω , ±10kV 9 places on a panel (Note 3) 10 times each place at one-second intervals Sample dust: No.15 Hourly 15 seconds stir, 8times repeat 53.3 kPa 0° C±3°C.24 hours 55°C±3°C.24 hours 15 kPa -20° C±3°C.24 hours

LF1745

 \oslash

Mechanical Characteristics

Description for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com


LITEMAX LI3601 inverter

Introduction

LI3601 is a CCFL inverter to operate LITEMAX high brightness (HB) backlights. The inverter has an on-board pulse width modulation (PWM) dimming circuit for extremely wide range luminance adjustment. Over the entire dimming range, there is no noticeable lamp flickering and the uniformity of the backlight is well maintained. When using LI3601 with LITEMAX LCD modules, it is not necessary to synchronize the PWM circuit to vertical sync signal of the LCD.

Dimming Control

The LI3601 accepts a 0V to 5V analog voltage for dimming control. It has a pulse width modulation (PWM) dimming circuit for luminance adjustment. As the dimming voltage (Vd) decreases from +5V, the lamp current waveform is pulse width modulated at a repetition rate high enough to prevent LCD flicker. Within each PWM cycle, the lamps in the backlight are turned fully 'ON' for a fraction of the cycle time. The human eyes, being very slow with respect to the PWM rate, respond to the average light produced over the PWM cycle. As a result, the luminance of the backlight and/or the LCD screen is approximately to the duty cycle of the PWM waveform.

The lamp current waveform with the PWM circuit set at less than 100%

In general, inverters with PWM dimming have a very wide luminance adjustment range. For most practical cases, the LI3601 inverter can achieve a dimming ratio up to 200:1. Hence, the luminance of the backlight or LCD screen can be adjusted from 100% to 0.5%.

The 0V to 5V dimming voltage can be generated simply by a potentiometer, by a digitally controlled UP/DOWN counter or a digital potentiometer. The inverter provides a regulated +5V supply to power the dimming circuit. However, the maximum current drain from this source should be kept less than 5 mA.

At a Vd input about 0.34V and less, the duty cycle of the PWM waveform is 0% and thus, the lamps are 'OFF'. In order to fully utilize the available dimming voltage, Vd should be biased to about 0.34V and then ramping up to 5.0V.

Electrical Characteristics

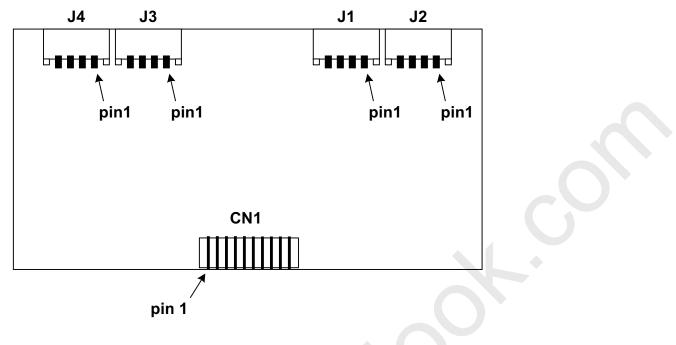
The LI3601 inverter operates at 12V DC and can drive up to 12 lamps for a maximum output power about 63 Watts. In addition, the inverter has a regulated +5V output serving as a voltage source for the dimming control circuit.

B	Electrica	I Character	ristics		
Parameters	Min	Тур	Max	Units	Conditions
Input Voltage (Vin)	11.5	12	12.5	Vdc	
Input current (I)		5.25		Adc	Vin=12, Vd=5 V
Lamp Starting Voltage (Vst)		1300		Vrms	Vin=12, Vd=5 V
Frequency (f)	55	58	60	Khz	
ON/OFF Control -OFF			0.2	Vdc	
-ON		Floating*			
Dimming Voltage(Vd)					
@ 100% Duty Cycle		4.9	5	Vdc	Max brightness
@ 0% Duty Cycle		0.34	0.36	Vdc	Zero brightness
5V Output (+5VOUT)	4.85	5	5.25	Vdc	11.5 <vin<12.5v< td=""></vin<12.5v<>
5V Output Source Current			5	mA	

*Please refer to Application Note AN001 for details of On/Off control and dimming control with an external PWM signal.

Absolute Maximum Rating

Parameters	Min	Max	Units
Inverter Input Voltage (Vin)	11	13	Vdc
Operating Temperature Range	0	50	С
Storage Temperature Range	-20	80	С


LI3601 Inverter

Page2 1

Interface Connector

Input Connector (CN1)

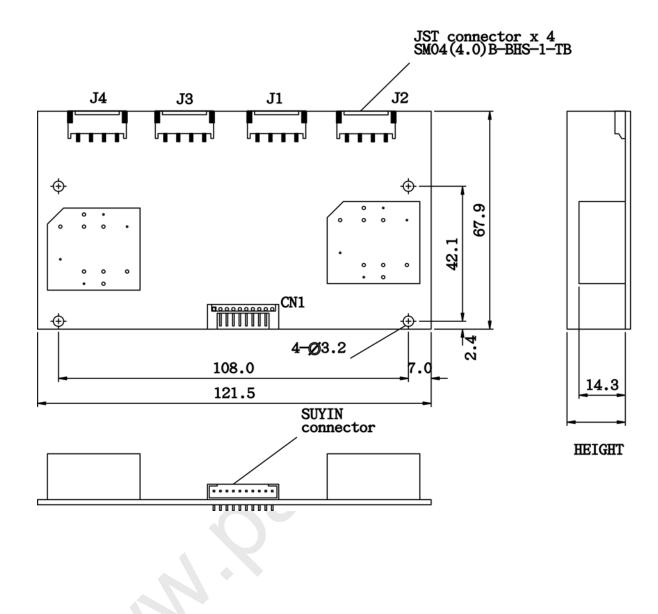
Pin#	Function
1	5V Output
2	12V Input
3	12V Input
4	Dimming Control
5	Ground
6	Ground
7	ON/OFF Control
8	NC
9	PWMCTRL
10	NC

Output Connector (J2, J3)

PIN#	Function
1	Lamp Connection
2	Lamp Connection
3	Lamp Connection
4	NC

Output Connector (J1, J4)

PIN#	Function
1	Lamp Connection
2	Lamp Connection
3	NC
4	Lamp Common


LI3601 Inverter

Page2 2

Mechanical

LITEMAX Electronics Inc. reserves the right to make changes to this document and the product, which it describes without notice. LITEMAX Electronics Inc. also shall not be liable for technical or editorial errors or omissions made herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this product. In addition, LITEMAX Electronics Inc. takes no responsibility for damage caused by improper use of this product, which does not meet the conditions for use specified in this specification sheet.