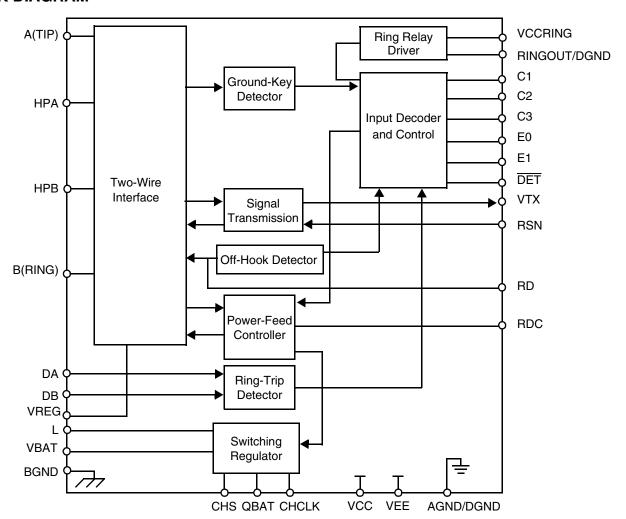
Le79M576A

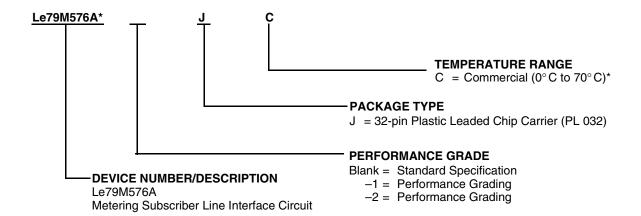

Legerity

Metering Subscriber Line Interface Circuit

DISTINCTIVE CHARACTERISTICS

- Programmable constant-resistance feed
- Programmable loop-detect threshold
- Ground-key detect
- **■** Performs polarity reversal
- Ring relay driver
- Supports 2.2 Vrms metering (12 and 16 kHz)
- Line feed characteristics independent of battery variations
- On-chip switching regulator for low-power dissipation
- Two-wire impedance set by single external impedance
- Tip Open state for ground-start lines
- On-hook transmission

BLOCK DIAGRAM

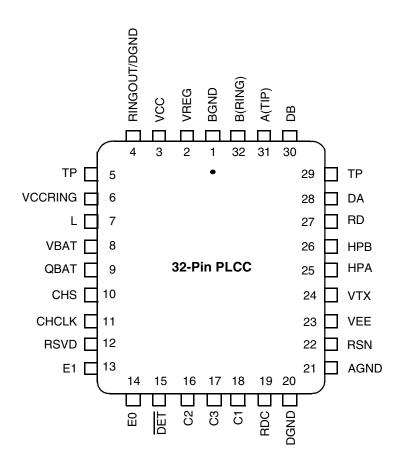

Document ID# 080140 Date: Jun 19, 2002 Rev: E V환화야:DataSheet4U.com Distribution: Public Document

ORDERING INFORMATION

Standard Products

Legerity standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

Valid Co	mbinat	ions
Le79M576A*	-1 -2	S


Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local Legerity sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on Legerity's products.

^{*}Legerity reserves the right to fulfill all orders for this device with parts marked with the "Am" part number prefix, until such time as all inventory bearing this mark has been depleted. It should be noted that parts marked with either the "Am" or the "Le" part number prefix are equivalent devices in terms of form, fit, and function. The only difference between the two is in the part number prefix appearing on the topside mark.

CONNECTION DIAGRAM Top View

Notes:

- 1. Pin 1 is marked for orientation.
- 2. TP is a thermal conduction pin tied to substrate.
- 3. RSVD = Reserved. Do not connect to this pin.

PIN DESCRIPTIONS

Pin Names	Туре	Description
AGND	Gnd	Analog (quiet) ground
A(TIP)	Output	Output of A(TIP) power amplifier
BGND	Gnd	Battery (power) ground
B(RING)	Output	Output of B(RING) power amplifier
C3-C1	Input	Decoder. TTL compatible. C3 is MSB and C1 is LSB.
CHCLK	Input	Chopper clock. Input to switching regulator (TTL compatible). Freq = 256 kHz (Nominal).
CHS	Input	Chopper Stabilization. Connection for external stabilization components.
DA	Input	Ring-trip negative. Negative input to ring-trip comparator.
DB	Input	Ring-trip positive. Positive input to ring-trip comparator.
DET	Output	Detector. When enabled, a logic Low indicates that the selected detector is tripped. Logic inputs C3–C1, E1, and E0 select the detector. Open-collector with a built-in 15 $k\Omega$ pull-up resistor.
DGND	Gnd	Digital ground
E0	Input	A logic High enables DET. A logic Low disables DET.
E1	Input	Ground-key enable. E1 = High connects the ground-key detector to \overline{DET} , and E1 = Low connects the off-hook or ring-trip detector to \overline{DET} .
HPA	Capacitor	High-pass filter capacitor. A(TIP) side of high-pass filter capacitor.
HPB	Capacitor	High-pass filter capacitor. B(RING) side of high-pass filter capacitor.
L	Output	Switching Regulator Power Transistor. Connection point for filter inductor and anode of catch diode. Has up to 60 V of pulse waveform and must be isolated from sensitive circuits. Keep the diode connections short because of the high currents and high di/dt.
QBAT	Battery	Quiet Battery. Filtered battery supply for the signal processing circuits.
RD	Resistor	Detector resistor. Threshold modification and filter point for the off-hook detector.
RDC	Resistor	DC feed resistor. Connection point for the DC feed current programming network, which also connects to the Receiver Summing Node (RSN). V _{RDC} is negative for normal polarity and positive for reverse polarity.
RINGOUT/ DGND	Output	Relay ground for 5 V relays—externally connected to DGND.
RSN	Input	The metallic current (AC and DC) between A(TIP) and B(RING) is equal to 1000 x the current into this pin. The networks that program receive gain, two-wire impedance, and feed current all connect to this node.
TP	Thermal	Thermal pin. Connection for heat dissipation. Internally connected to substrate (QBAT). Leave as open circuit or connected to QBAT. In both cases, the TP pins can connect to an area of copper on the board to enhance heat dissipation.
VBAT	Battery	Battery supply
VCC	Power	+5 V power supply
VCCRING	Input	Ring relay driver (sinks current to RINGOUT).
VEE	Power	-5 V power supply
VREG	Input	Regulated Voltage. Provides negative power supply for power amplifiers, connection point for inductor, filter capacitor, and chopper stabilization.
VTX	Output	Transmit Audio. This output is 0.510 times the A(TIP) and B(RING) metallic voltage. The other end of the two-wire input impedance programming network connects here.

ABSOLUTE MAXIMUM RATINGS

Storage temperature–55° C to +150° C
Ambient temperature, operating $-0^{\circ}C$ to $+70^{\circ}C$
V_{CC} with respect to AGND –0.4 V to +7.0 V
$V_{\mbox{\footnotesize EE}}$ with respect to AGND+0.4 V to -7.0 V
V_{BAT} with respect to AGND+0.4 V to –70 V
Note: Rise time of V_{BAT} (dv/dt) must be limited to 27 V/µs or less when Q_{BAT} bypass is 0.33 µF.
BGND with respect to AGND/DGND +1.0 V to -3.0 V
A(TIP) or B(RING) to BGND:
Continuous
Current from A(TIP) or B(RING) ±150 mA
Voltage on VCCRING0.3 V to +7 V
Current through relay drivers or internal driver catch diodes60 mA
Voltage on ring-trip inputs DA and DB V_{BAT} to 0 V
Current into ring-trip inputs ±10 mA
Peak current into regulator switch (L pin) 150 mA
Switcher transient peak off voltage on L pin+1.0 V
C3–C1, E0, E1, CHCLK to AGND0.4 V to V _{CC} + 0.4 V
Maximum power dissipation (see note) $T_A = 70^{\circ} \text{C}$
In 32-pin PLCC package1.2 W

Note: Thermal limiting circuitry on-chip will shut down the circuit at a junction temperature of about 165°C. The device should never be exposed to this temperature. Operation above 145°C junction temperature may degrade device reliability. See the SLIC Packaging Considerations for more information.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient temperature	0°C to +70°C*
V _{CC}	4.75 V to 5.25 V
V _{EE}	–4.75 V to –5.25 V
V _{BAT}	46.4 V to -54 V
V _{CC} RING	0 V to 5.25 V
AGND/DGND	0 V
BGND with respect to AGND	2 V to +2 V
Load resistance on VTX to ground	10 kΩ min

Operating Ranges define those limits between which device functionality is guaranteed.

^{*} Legerity guarantees the performance of this device over commercial (0 to 70°C) and industrial (-40 to 85°C) temperature ranges by conducting electrical characterization over each range and by conducting a production test with single insertion coupled to periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore TR-TSY-000357 Component Reliability Assurance Requirements for Telecommunications Equipment.

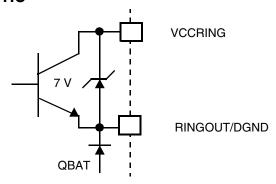
ELECTRICAL CHARACTERISTICS

Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Analog output (V _{TX}) impedance			3	20	Ω	
Analog (V _{TX}) output offset	0° C to +25° C +25° C to +85° C -40° C to 0° C	-40 -35 -45		+40 +35 +45	mV	4 4
Analog (RSN) input impedance Longitudinal impedance at A or B	300 Hz to 3.4 kHz		1	20 35	Ω	4
Overload level 4-wire 2-wire	Z_{IN} = 600 to 900 Ω	-3.1 -5.5		+3.1 +5.5	Vpk	2
Transmission Performance, 2-W	ire Impedance		l .	l .	1	I
2-wire return loss (See Test Circuit D)	300 Hz to 500 Hz 500 Hz to 2.5 kHz 2.5 kHz to 3.4 kHz OHT 300 Hz to 3.4 kHz	26 26 20 14			dB	4
*	d 4-Wire, See Test Circuit C); R _L = 600	Ω				
Longitudinal to metallic L-T, L-4	300 Hz to 3.4 kHz	48				
Longitudinal sum (L-T) + (T-L)	300 Hz to 3.4 kHz	95			dB	
Longitudinal signal generation 4-L or T-L	300 Hz to 800 Hz 800 Hz to 3.4 kHz	40 35				
Longitudinal current capability per wire	Active state, 50 Hz to 200 Hz OHT state, 50 Hz to 200 Hz	17 8			mA peak	4
Dial pulse make or break response time of DET				3	ms	
Insertion Loss (See Test Circuits	A and B)					
2- to 4-wire	$V_{AB} = 0 \text{ dBm}, 1 \text{ kHz}$ 0° C to +70° C -40° C to +85° C	5.70 5.65	5.85 5.85	6.00 6.05		4
4- to 2-wire	$V_{RX} = 0$ dBm, 1 kHz 0° C to $+70^{\circ}$ C -40° C to $+85^{\circ}$ C	-0.15 -0.20		+0.15 +0.20	dB	4
4- to 2-wire (In the presence of 2.2 Vrms metering)				1.5		4
Metering Signal Insertion Loss (See Test Circuit B)					
4- to 2-wire	$R_L = 260, V_{AB} = 2.86 \text{ Vrms}$ $R_{TMG} = 139.5 \text{ k}\Omega$ f = 12 kHz or 16 kHz	-0.8	-0.2	+0.4	dB	4
Insertion Loss vs. Frequency (Se	ee Test Circuits A and B)					
2- to 4-wire or 4- to 2-wire	300 Hz to 3.4 kHz 0° C to +70° C Relative to 1 kHz -40° C to +85° C	-0.1 -0.15		+0.1 +0.15	dB	4
Gain Tracking (See Test Circuits	A and B)					
2- to 4-wire or 4- to 2-wire	+7 dBm to -55 dBm 0° C to +70° C Reference: 0 dBm -40° C to +85° C	−0.1 −0.15		+0.1 +0.15	dB	4
Balance Return Signal (4- to 4-W	ire, See Test Circuit B)		•	•		•
Gain accuracy	0 dBm, 1 kHz 0° C to +70° C -40° C to +85° C	-6.00 -6.05	-5.85 -5.85	-5.70 -5.65		4
Variation with frequency relative to 1 kHz	300 Hz to 3.4 kHz	-0.1 -0.15		+0.1 +0.15	dB	3, 4 4
Gain tracking	+3 dBm to -55 dBm 0° C to +70° C Reference: -4 dBm -40° C to +85° C	-0.1 -0.15		+0.1 +0.15		
Group delay	f = 1 kHz	3.3	5.3	7.3	μs	4

ELECTRICAL CHARACTERISTICS (continued)

Description	Test Condition (See Note 1)	Min	Тур	Max	Unit	Note
Total Harmonic Distortion (2- to	4-Wire or 4- to 2-Wire) without Mete	ring (See	Test Circui	ts A and E	3)	•
0 dBm +9 dBm	300 Hz to 3.4 kHz		-64 -55	-50 -40	- dB	
Total Harmonic Distortion with metering				-35	ub	4, 11
Idle Channel Noise without Met	ering		•		1	
Psophometric weighted noise	2-wire 4-wire			-75 -80	dBmp	7
Psophometric idle channel noise with metering	2-wire 4-wire			-46 -52	dbilip	4, 7, 12 4, 7, 12
Single Frequency Out-of-Band	Noise (See Test Circuit E)		•		1	
Metallic Longitudinal	4 kHz to 9 kHz 9 kHz to 1 MHz 256 kHz and harmonics 1 kHz to 15 kHz		-76 -76 -57		- dBm	4, 5, 9 4, 5, 9 4, 5 4, 5, 9
	Above 15 kHz 256 kHz and harmonics		-85 -57			4, 5, 9 4, 5
Line Characteristics (See Figur	es 1a, 1b, and 1c) BAT = 48 V, V _{BAT} =	-47.3 V, R	_ = 600 Ω a	nd 900 Ω	I	I
Apparent battery voltage	Active state	47	50	53	V	
Loop current accuracy	Active state	-7.5		+7.5	%	
Loop current, Tip Open state Open Circuit state	$\begin{aligned} R_L &= 600 \ \Omega \\ R_L &= 0 \ \Omega \end{aligned}$			1.0	mA	
Loop current limit accuracy	OHT state I _L = 13.5 mA, R _L = 0 Ω	-15		+15	%	10
Loop current—Active state	$R_L = 2.25 \text{ k}\Omega$	14.33				
Loop current—Active state Battery = –48.0 V	$R_L = 1.96 \text{ k}\Omega$ $R_L = 0 \Omega$	17.5 41		50		
Loop current—OHT Battery = -47.0 V	$R_L = 2.25 \text{ k}\Omega$ $R_L = 0 \Omega$	9.35		15.5		
Fault current limit, I _L LIM, A and B shorted to GND in OHT state			56	80	mA	
Fault current limit, I _L LIM, A and B shorted to GND in Active state				110		
Battery Current in Fault Conditi	ion	•	•		•	•
OHT state	A and B to GND			40	mA	
Active state	A and B to GND			55	1 1114	
Power Dissipation		•			•	•
On hook, Open Circuit state On hook, OHT state On hook, Active state Off hook, OHT state	$R_L = 600 \Omega$		40 140 190 350	80 200 300 500	mW	
Off hook, Active state (See Figure 2)	$\begin{aligned} R_L &= 600 \ \Omega \\ R_L &= 220 \ \Omega \end{aligned}$		750 900	900 1100		

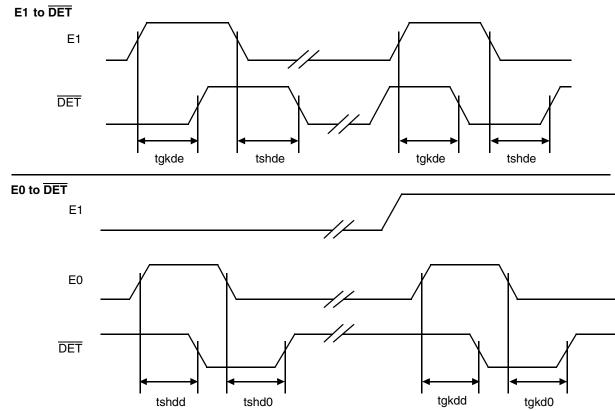
ELECTRICAL CHARACTERISTICS (continued)


Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Supply Currents						
V _{CC} , on-hook supply current	Open Circuit state OHT state Active state		2 5 6	4.0 7.0 9.0		
V _{EE} , on-hook supply current	Open Circuit state OHT state Active state		1.0 2.3 2.3	2.0 4.0 4.5	mA	
V _{BAT} , on-hook supply current	Open Circuit state OHT state Active state		0.4 2.2 3.2	1.0 3.5 5.0		
V _{BAT} , off-hook supply current	OHT state $R_L = 0$ to 2.2 k Ω			15.5		
Power Supply Rejection Ratio	on (V _{RIPPLE} = 50 mVrms, Saturation	n Guard Ina	ctive)	•		
V _{CC}	40 Hz to 3.4 kHz 3.4 kHz to 50 kHz	18 18	35 30			6, 7
V _{EE}	40 Hz to 3.4 kHz 3.4 kHz to 50 kHz	20 13	30 25		dB	6, 7
V _{BAT}	40 Hz to 3.4 kHz 3.4 kHz to 50 kHz	27 20	30 30			6, 7
Off-Hook Detector						
Current threshold	$I_{DET} = 365/R_D$	-15		+15	%	
Ground-Key Off-Hook Detector	or Thresholds, Active State					
Resistance threshold	B(RING) to GND	2.0	5	10.0	kΩ	
Current threshold	B(RING) to GND Midpoint to GND		9		mA	8
Ring-Trip Detector Inputs						
Bias current		- 5	-0.05		μА	
Offset voltage	Source resistance = 0 to 200 k Ω	- 50	0	+50	mV	
Logic Inputs (C3-C1, E0, E1,	and CHCLK) [♦]		•	•	•	•
Input High voltage		2.0			V	
Input Low voltage				0.8	V	
Input High current	All inputs except E1 Input E1	–75 –75		40 45	μА	
Input Low current		-0.4			mA	
Logic Output (DET)	,					
Output Low voltage	I _{OUT} = 0.8 mA			0.4	V	
Output High voltage	I _{OUT} = -0.1 mA	2.4]	
Relay Driver	•		•	•		•
On voltage (VCCRING to RINGOUT)	50 mA to VCCRING, RINGOUT connected to AGND/DGND			1.25	V	*
Off leakage			0.5	100	μΑ	
Zener breakover voltage	100 μΑ	6.0	7.2		V	
Zener On voltage	30 mA		10.0	11.0	V	

Note:

[◆] C3–C1, and E0 have an internal pull up. E1 has an internal pull down.

RELAY DRIVER SCHEMATIC



SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions	Temperature Ranges	Min	Тур	Max	Unit	Note
A - I - I -	E1 Low to DET High (E0 = 1)		0° C to +70° C -40° C to 85° C			3.8 4.0		
tgkde	E1 Low to DET Low (E0 = 1)	Ground-Key Detect state R _I open, R _G connected	0° C to +70° C -40° C to 85° C			1.1 1.6		
tgkdd	E0 High to DET Low (E1 = 0)	(See Figure H)	0° C to +70° C -40° C to 85° C			1.1 1.6		
tgkd0	E0 Low to $\overline{\text{DET}}$ High (E1 = 0)		0° C to +70° C -40° C to 85° C			3.8 4.0		4
	E1 High to DET Low (E0 = 1)		0° C to +70° C -40° C to 85° C			1.2 1.7	μs	4
tshde	E1 High to DET High (E0 = 1)	Switchhoook Detect state	0° C to +70° C -40° C to 85° C			3.8 4.0		
tshdd	E0 High to DET Low (E1 = 1)	$R_L = 600 \Omega R_G \text{ open}$ (See Figure G)	0° C to +70° C -40° C to 85° C			1.1 1.6		
tshd0	E0 Low to DET High (E1 = 1)		0° C to +70° C -40° C to 85° C			3.8 4.0		

SWITCHING WAVEFORMS

Note:

All delays measured at 1.4 V level.

Notes

* When any power supplies to the MSLIC are removed and the MSLIC is not in the Ringing state, the relay driver must not activate when the relay coil connected to VCCRING is supplied by the same V_{CC} used for powering the MSLIC.

If the relay coil connected to VCCRING is supplied by a voltage other than the V_{CC} used for powering the MSLIC, you must: – Provide redundancy of V_{CC} from the supply voltage of the relay

- As an alternative, limit the current flowing to all digital inputs to less than 1 mA.
- 1. Unless otherwise noted, test conditions are BAT = 48 V (voltage at chip VBAT pin = -47.3 V), V_{CC} = +5 V, V_{EE} = -5 V, R_L = $600~\Omega$, C_{HP} = $0.22~\mu$ F, R_{DC1} = R_{DC2} = $18.7~k\Omega$, C_{DC} = $0.15~\mu$ F, R_d = $57.6~k\Omega$, no fuse resistors, two-wire AC output impedance programming impedance (Z_T) = $306~k\Omega$ resistive, receive input summing impedance (Z_{RX}) = $300~k\Omega$ resistive. (See Table 2 for component formulas.) Operation in polarity reverse is tested in production.
- 2. Overload level is defined when THD = 1%.
- 3. Balance return signal is the signal generated at V_{TX} by V_{RX} . This specification assumes that the two-wire AC load impedance matches the impedance programmed by Z_T .
- 4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.
- 5. These tests are performed with a longitudinal impedance of 90 Ω and metallic impedance of 300 Ω for frequencies < 12 kHz and 135 Ω for frequencies >12 kHz. These tests are extremely sensitive to circuit board layout. Refer to application notes for details.
- 6. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.
- 7. When the SLIC is in the anti-sat 2 operating region, this parameter will be degraded. The exact degradation will depend on system design. The anti-sat 2 region occurs at high loop resistances when $|V_{BAT}| |V_{AX} V_{BX}|$ is less than approximately 13 V.
- 8. "Midpoint" is defined as the connection point between two 300 Ω series resistors connected between A(TIP) and B(RING).
- 9. Fundamental and harmonics from 256 kHz switch regulator chopper are not included.
- 10. Calculate loop current limit, which depends upon the programmed apparent open circuit voltage and the feed resistance, is as follows:

 50 VAPPARENT

In OHT state: $I_{LIMIT} = 0.202$ and

 $\frac{R_{DC}}{R_{DC}}$

In Active state: I_{LIMIT} = 0.68

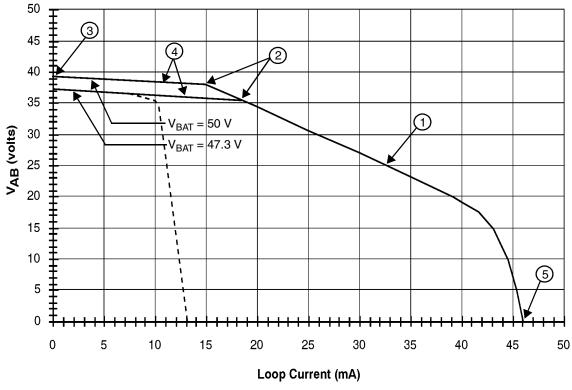
www.DataSheet4U.com

- 11. Total Harmonic distortion with metering is specified with a metering signal of 2.2 Vrms at the two-wire output, and a transmit signal of +3 dBm or receive signal of -4 dBm. The transmit or receive signals are single-frequency inputs, and the distortion is measured as the highest in band harmonic at the two-wire or the four-wire output relative to the input signal.
- 12. Noise with metering is measured by applying a 2.2 Vrms metering signal (measured at the two-wire output) and measuring the psophometric noise at the two-wire outputs over a 200 ms time interval.

Table 1. SLIC Decoding

			DET Output		
State	C3 C2 C1	Two-Wire Status	E0 = 1* E1 = 0	E0 = 1* E1 = 1	
0	0 0 0	Open Circuit	Ring trip	Ring trip	
1	0 0 1	Ringing	Ring trip	Ring trip	
2	0 1 0	Active	Loop detector	Ground key	
3	0 1 1	On-hook TX (OHT)	Loop detector	Ground key	
4	1 0 0	Tip Open	Loop detector	_	
5	1 0 1	Reserved	Loop detector	_	
6	1 1 0	Active Polarity Reversal	Loop detector	Ground key	
7	1 1 1	OHT Polarity Reversal	Loop detector	Ground key	

Note:


Table 2. User-Programmable Components

$Z_{\rm T} = 510(Z_{\rm 2WIN} - 2R_{\rm F})$	Z_T is connected between the VTX and RSN pins. The fuse resistors are $R_{\textrm{F}}$ and Z_{2WIN} is the desired two-wire AC input impedance. When computing Z_T , the internal current amplifier pole and any external stray capacitance between VTX and RSN must be taken into account.
$Z_{\rm RX} = 0.98(Z_{\rm T})$	$Z_{\rm RX}$ is connected from $V_{\rm RX}$ to RSN. $Z_{\rm T}$ is defined above. This equation sets the receive gain to 0 dB when the SLIC terminates with an impedance equal to $Z_{\rm 2WIN}$.
$R_{DC1} + R_{DC2} = 50 \bullet (R_{FEED} - 2R_F)$ $C_{DC} = 1.5 \text{ ms} \bullet \frac{R_{DC1} + R_{DC2}}{R_{DC1} \bullet R_{DC2}}$	$R_{DC1},R_{DC2},$ and C_{DC} form the network connected to the RDC pin. R_{DC1} and R_{DC2} are approximately equal.
$R_{\rm D} = \frac{365}{I_{\rm T}}, \qquad C_{\rm D} = \frac{0.5 \text{ ms}}{R_{\rm D}}$	$\rm R_D$ and $\rm C_D$ form the network connected from RD to –5 V and $\rm I_T$ is the threshold current between on-hook and off-hook.
$Z_{\rm M} = \frac{V_{\rm MG}}{V_{\rm M2W}} \bullet \frac{K_1(\omega)Z_{\rm L} \bullet Z_{\rm T}}{Z_{\rm T} + 0.51 \; {\rm V} \bullet K_1(\omega) \bullet (2R_{\rm F} + Z_{\rm L})}$	$\begin{split} &Z_{M} \text{ is connected from V}_{MG} \text{ (metering source) to the RSN pin,} \\ &V_{M2W} \text{ is the desired magnitude of the metering signal at the} \\ &2\text{-wire output (usually 2.2 Vrms) and K}_{1} \left(\omega\right) \text{ is defined below.} \\ &K_{1}(\omega) = \frac{1000}{1+j\omega\bigg(11.5 \bullet 10^{-9} + \frac{CX}{2}\bigg)(36 + Z_{L} + 2R_{F})} \\ &\text{where: CX = The values of the identical capacitors from} \\ &A \text{ and B to GND} \\ &\omega = 2\pi \bullet \text{ metering frequency} \end{split}$

^{*} A logic Low on E0 disables DET output into the Open Collector state.

DC FEED CHARACTERISTICS

 $R_{DC} = 37.5 \text{ k}\Omega$

Active state OHT state

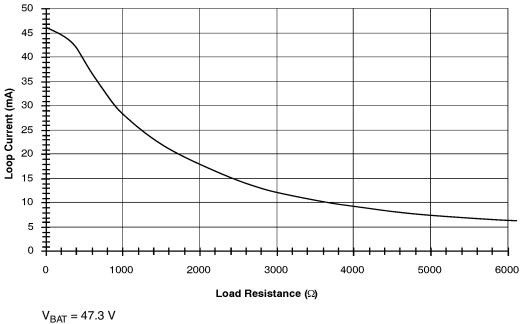
Notes:

1. Constant-resistance read region: $V_{AB} = 49.6 - I_L \left(\frac{R_{DC}}{49.87}\right)$

2. Anti-sat (battery-tracking) turn-on: $V_{AB} = 0.8975 |V_{BAT}| - 6.835$

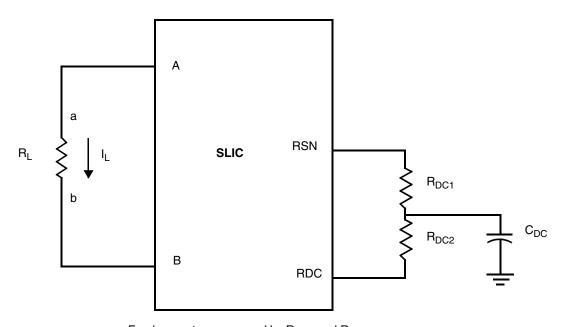
3. Open Circuit voltage: $V_{AB} = 0.7915 \left| V_{BAT} \right| - 0.113 \; , \qquad \qquad \left| V_{BAT} \right| < 62.8 \; V$

 $V_{AB} = 49.6 \text{ V}, \qquad |V_{BAT}| \ge 62.8 \text{ V}$


4. Anti-sat (battery-tracking) region: $V_{AB} = 0.7915 |V_{BAT}| - 0.113 - I_L \left(\frac{R_{DC}}{815}\right)$

5. Current limit: $I_L = \frac{1724}{R_{DC}}$

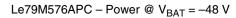
a. V_A-V_B (V_{AB}) Voltage vs. Loop Current (Typical)



DC FEED CHARACTERISTICS (continued)

 $R_{DC} = 37.5 \text{ k}\Omega$

b. Loop Current vs. Load Resistance (Typical)



Feed current programmed by R_{DC1} and R_{DC2}

c. Feed Programming

Figure 1. DC Feed Characteristics

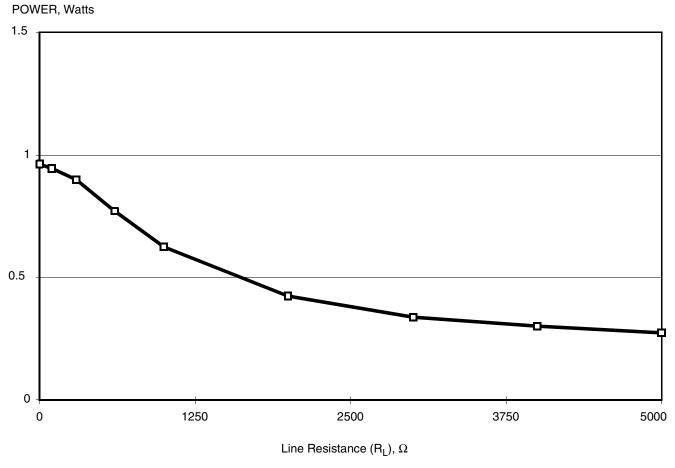
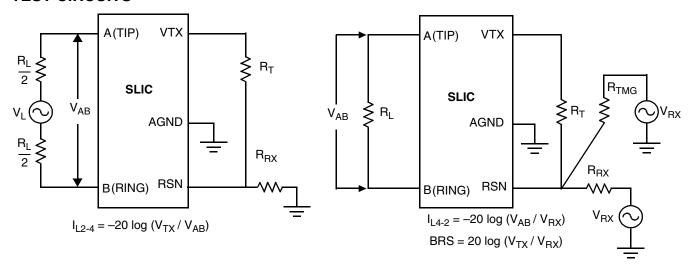
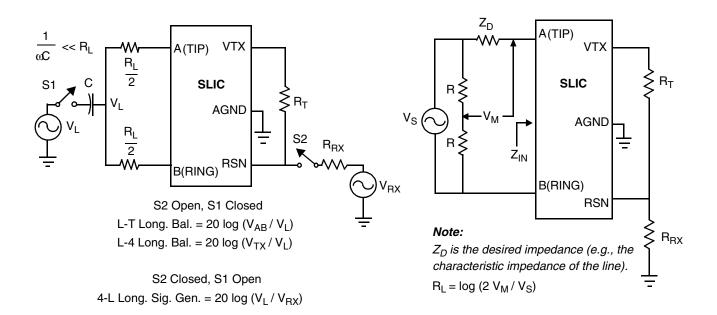



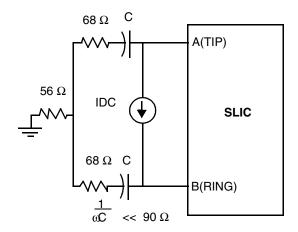
Figure 2. Active State Total Power Dissipation (Typical)



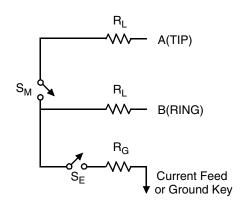
TEST CIRCUITS

A. Two- to Four-Wire Insertion Loss

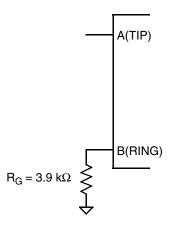
B. Four- to Two-Wire Insertion Loss and Balance Return Signal



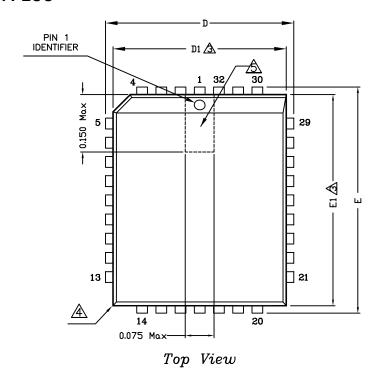
C. Longitudinal Balance

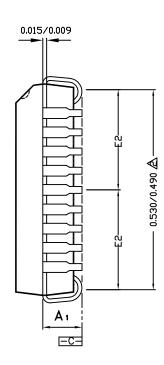

D. Two-Wire Return Loss Test Circuit

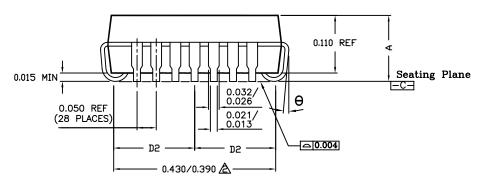

TEST CIRCUITS (continued)


E. Single Frequency Noise

F. Ground-Key Detection


G. Loop-Detector Switching




H. Ground-Key Switching

PHYSICAL DIMENSIONS 32-Pin PLCC

Symbol	Dimension in inch					
Syllibol	Min	Nom	Max			
Α	0.125		0.140			
A1	0.075	0.090	0.095			
D	0.485	0.490	0.495			
D1	0.447	0.450	0.453			
D2	0	0.205 REF				
E	0.585	0.590	0.595			
E1	0.547	0.550	0.553			
E2	0.255 REF					
θ	0.		10°			

NOTE

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14,5M-1994.
- ⚠ TO BE MEASURED AT SEATING PLANE —C = CONTACT POINT.
- △ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTURSION IS 0.010 IN PER SIDE. DIMENSIONS D, AND E, INCLUDE MOLD MISMATCH AND DETERMINED AT THE PARTING LINE; THAT IS D1 AND E1 ARE MEASURED AT THE EXTREME MATERIAL CONDITION AT THE UPPER OR LOWER PARTING LINE.
- A EXACT SHAPE OF THIS FEATURE IS OPTIONAL.
- △ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- 6. SUM OF DAM BAR PROTRUSIONS TO BE 0.007 MAX PER LEAD.
- 7. CONTROLLING DIMENSION: INCH.
- 8. REFERENCE DOCUMENT : JEDEC MS-016

REVISION SUMMARY

Revision A to Revision B

Minor changes were made to the data sheet style and format to conform to Legerity standards.

Revision B to Revision C

- In the Pin Description table, inserted/changed TP pin description to: "Thermal pin. Connection for heat dissipation. Internally connected to substrate (QBAT). Leave as open circuit or connected to QBAT. In both cases, the TP pins can connect to an area of copper on the board to enhance heat dissipation."
- Minor changes were made to the data sheet style and format to conform to Legerity standards.

Revision C to Revision D

- The physical dimensions (PL032) were added to the Physical Dimensions section.
- Deleted the Ceramic DIP and Plastic DIP packages and references to them.
- Updated the Pin Description table to correct inconsistencies.

Revision D to Revision E

- Updated OPN (Ordering Part Number) throughout document.
- Absolute Maximum Ratings: Notes updated to standard.
- Operating Ranges: Temperature statement updated to standard.
- · Updated "Sales Office Listing."
- Updated physical dimension drawings.

	taSheet4U.com
cc or ar	ne contents of this document are provided in connection with Legerity, Inc. products. Legerity makes no representations or warranties with respect to the accuracy or completeness of the intents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estopped otherwise, to any intellectual property rights is granted by this publication. Except as set forth in Legerity's Standard Terms and Conditions of Sale, Legerity assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any tellectual property right.
or	egerity's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support sustain life, or in any other application in which the failure of Legerity's product could create a situation where personal injury, death, or severe property or environmental damage may occur. Superity reserves the right to discontinue or make changes to its products at any time without notice.

© 2002 Legerity, Inc. All rights reserved.

Trademarks

Legerity, the Legerity logo and combinations thereof, and QSLAC, DSLAC, are trademarks of Legerity, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

P.O. Box 18200 Austin, Texas 78760-8200

Telephone: (512) 228-5400

Fax: (512) 228-5508

North America Toll Free: (800) 432-4009

To contact the Legerity Sales Office nearest you, or to download or order product literature, visit our website at www.legerity.com.

To order literature in North America, call:

(800) 572-4859

or email:

americalit@legerity.com

To order literature in Europe or Asia, call:

44-0-1179-341607

or email:

Europe — eurolit@legerity.com Asia — asialit@legerity.com