## LC898217XC

# Auto Focus (AF) Controller & Driver



www.onsemi.com

#### 1. Overview

LC898217XC is an AF control LSI. It consists of 1 system of feedback circuit for AF control. Built-in equalizer circuit using digital operation. Built-in A/D converter, D/A converter, Constant Crrent Driver. This is suitable for small & thinner camera module.

#### 2. Features

- Built-in equalizer circuit using digital operation
  - AF control equalize circuit
  - Any coefficient can be specified by 2-wire serial I/F (TWIF)
- 2-wire serial interface (The communication protocol is compatible with I<sup>2</sup>C.)
- Built-in A/D converter
  - 11-bit
  - Input 1 channel
- Built-in D/A converter
  - 8-bit
  - Output 2-channel (Hall offset, Constant current bias)
- Built-in VGA
  - Hall Amp
  - 1 channel
- Built-in EEPROM
  - 128byte (16byte/page)
- Built-in OSC
  - 24MHz
- Built-in Constant Current Driver
  - 10-bit, 110mA
  - 1-channel
- Package
  - WL-CSP 10-pin
  - Pb-Free, Halogen Free
- Supply voltage
  V<sub>DD</sub> (2.6V to 3.3V)

## ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.



WLCSP10, 1.04x2.04

## LC898217XC

#### 3. Pin Description

| -     |                    |   |                               |                              |  |  |  |  |
|-------|--------------------|---|-------------------------------|------------------------------|--|--|--|--|
|       |                    |   | TYPE                          |                              |  |  |  |  |
| 1     | INPUT              | Р | Power supply, GND             | NC NOT CONNECT               |  |  |  |  |
| 0     | OUTPUT             |   |                               |                              |  |  |  |  |
| В     | BIDIRECTION        |   |                               |                              |  |  |  |  |
|       |                    |   |                               |                              |  |  |  |  |
| 2-wir | e serial interface |   |                               |                              |  |  |  |  |
|       | SCL                | I | 2-wire serial interface clo   | ck pin                       |  |  |  |  |
|       | SDA                | В | 2-wire serial interface data  | a pin                        |  |  |  |  |
|       |                    |   |                               |                              |  |  |  |  |
|       | interface          |   |                               |                              |  |  |  |  |
|       | BIASO              | 0 |                               | D/A output (to Hall element) |  |  |  |  |
|       | OPINP              | I | VGA input (from Hall element) |                              |  |  |  |  |
| (     | OPINM              | I | VGA input (from Hall element) |                              |  |  |  |  |
|       | er interface       |   |                               |                              |  |  |  |  |
|       | OUT1               | 0 | Driver eutrut (te Actuator)   |                              |  |  |  |  |
|       |                    | 0 | Driver output (to Actuator)   | )                            |  |  |  |  |
|       | OUT2               | 0 | Driver output (to Actuator)   | )                            |  |  |  |  |
|       |                    |   |                               |                              |  |  |  |  |
| Powe  | er supply pin      |   |                               |                              |  |  |  |  |
|       | VDD                | Р | Power supply                  |                              |  |  |  |  |
|       | V <sub>SS</sub>    | Р | GND                           |                              |  |  |  |  |
|       | 00                 |   | -                             |                              |  |  |  |  |
| Test  | pin                |   |                               |                              |  |  |  |  |
|       | PORT               | В | Analog test signal input      | /output                      |  |  |  |  |
|       |                    |   | Convergence detection         |                              |  |  |  |  |
|       |                    |   | VSYNC input                   |                              |  |  |  |  |
|       |                    |   |                               |                              |  |  |  |  |

\* Process when pins are not used

PIN TYPE "O" – Ensure that it is set to OPEN. PIN TYPE "I" – OPEN is inhibited. Ensure that it is connected to the V<sub>DD</sub> or V<sub>SS</sub> even when it is unused. (Please contact ON Semiconductor for more information about selection of V<sub>DD</sub> or V<sub>SS</sub>.) PIN TYPE "B" – If you are unsure about processing method on the pin description of pin layout table, please contact us.

Note that incorrect processing of unused pins may result in defects.

#### \* In case of connecting PORT pin with HOST CPU

When LC898217 is power off and HOST CPU is power on, a HOST CPU pin connected with PORT pin have to be fixed "L" level.

## 4. Pin Layout

| Circuit Name | Number of PINs | Circuit Name | Number of PINs |
|--------------|----------------|--------------|----------------|
| Analog       | 4              | Driver       | 2              |
| Logic        | 2              | Power        | 2              |

"PORT" pin has analog function and digital function.

#### BOTTOM VIEW

|   | Α     | В     |
|---|-------|-------|
| 1 | OUT2  | OUT1  |
| 2 | VSS   | VDD   |
| 3 | PORT  | SCL   |
| 4 | BIASO | SDA   |
| 5 | OPINM | OPINP |

#### 5. Block Diagram



## 6. Package Dimensions

unit : mm

WLCSP10, 1.04x2.04 CASE 567LF ISSUE B



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### 7. Electrical Characteristics

#### 1) Absolute Maximum Rating at V<sub>SS</sub>=0V

|                               | • •••                  |           |                                |      |
|-------------------------------|------------------------|-----------|--------------------------------|------|
| Item                          | Symbol                 | Condition | Rating                         | Unit |
| Supply voltage                | V <sub>DD</sub> 33 max | Ta ≤ 25°C | –0.3 to 4.6                    | V    |
| Input/output voltage          | VI33, VO33             | Ta ≤ 25°C | –0.3 to V <sub>DD</sub> 33+0.3 | V    |
| Storage ambient temperature   | Tstg                   |           | –55 to 125                     | °C   |
| Operating ambient temperature | Topr                   |           | -30 to 70                      | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### 2) Allowable Operating Ratings at Ta=-30 to 70°C, VSS=0V

3V power supply (V<sub>DD</sub>)

| Item                | Symbol             | Min | Тур | Max                | Unit |
|---------------------|--------------------|-----|-----|--------------------|------|
| Supply voltage      | V <sub>DD</sub> 33 | 2.6 | 2.8 | 3.3                | V    |
| Input voltage range | VIN                | 0   |     | V <sub>DD</sub> 33 | V    |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### 3) DC Characteristics : Input/Output level at V<sub>SS</sub>= 0V, V<sub>DD</sub>=2.6 to 3.6V, Ta =-30 to 70°C

| Item                      | Symbol | Condition            | Min                  | Тур | Max | Unit | Applicable pins |
|---------------------------|--------|----------------------|----------------------|-----|-----|------|-----------------|
| High-level input voltage  | VIH    | CMOS                 | 1.4                  |     |     | V    | SCL, SDA,       |
| Low-level input voltage   | VIL    | compliant<br>Schmidt |                      |     | 0.4 | V    | PORT            |
| High-level output voltage | VOH    | IOL=–2mA             | V <sub>DD</sub> -0.4 |     |     | V    | PORT            |
| Low-level output voltage  | VOL    | IOL= 2mA             |                      |     | 0.4 | V    | SDA, PORT       |
| Pulldown resistor         | Rdn    |                      | 50                   |     | 220 | kΩ   | PORT            |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

## 4) Driver output (OUT1, OUT2) at $V_{SS}$ = 0V, $V_{DD}$ = 2.8V, Ta = 25°C

| 11                   | 0      |                 |     | <b>T</b> |     | 11.11 |                 |
|----------------------|--------|-----------------|-----|----------|-----|-------|-----------------|
| Item                 | Symbol | Condition       | Min | Тур      | Max | Unit  | Applicable pins |
| Maximum current      | lfull  |                 | 105 |          | 115 | mA    | OUT1, OUT2      |
| Output ON resistance | Ronu   | lo=110mA<br>Pch |     | 1.4      |     | Ω     |                 |
| Compliance voltage   | Vcomp  |                 | 0.5 |          |     | V     |                 |
| Output leak current  | loleak |                 |     | 1        |     | μA    |                 |

#### 5) Non-volatile Memory Characteristics

| Item           | Symbol | Condition | Min | Тур | Max  | Unit   | Applicable circuit |
|----------------|--------|-----------|-----|-----|------|--------|--------------------|
| Endurance      | EN     |           |     |     | 1000 | Cycles | EEPROM             |
| Data retention | RT     |           | 10  |     |      | Years  |                    |
| Write time     | tWT    |           |     |     | 20   | ms     |                    |

#### 8. AC Characteristics

## 8.1 $V_{DD}$ supply timing





It is available to use 2-wire serial interface 5ms later for Power On Reset of  $V_{DD}$ .

| Item                                                | Symbol | Min | Тур | Max | Unit |
|-----------------------------------------------------|--------|-----|-----|-----|------|
| V <sub>DD</sub> turn on time                        | t1     |     |     | 3   | ms   |
| 2-wire serial interface start time from $V_{DD}$ on | t2     | 5   |     |     | ms   |
| V <sub>DD</sub> off time                            | t3     | 100 |     |     | ms   |
| Bottom Voltage                                      | Vbot   |     |     | 0.1 | V    |

#### 8.2 AC specification

.

Figure 8.2 shows interface timing definition and Table 8.1 shows electric characteristics.



Figure 8.2 2-wire serial interface timing definition

| Table 8.1 Electric characteritics for 2-wire serial interface ( | AC characteristics) |
|-----------------------------------------------------------------|---------------------|
|                                                                 |                     |

| ltono                                     | Currence of | Pin        |        | Fast-mode | ;   | Fas    | st-mode Plu | IS   | Linita |
|-------------------------------------------|-------------|------------|--------|-----------|-----|--------|-------------|------|--------|
| Item                                      | Symbol      | name       | Min    | Тур       | Max | Min    | Тур         | Max  | Units  |
| SCL clock frequency                       | FSCL        | SCL        |        |           | 400 |        |             | 1000 | kHz    |
| START condition<br>hold time              | tHD,STA     | SCL<br>SDA | 0.6    |           |     | 0.26   |             |      | μs     |
| SCL clock<br>Low period                   | tLOW        | SCL        | 1.3    |           |     | 0.5    |             |      | μS     |
| SCL clock<br>High period                  | tHIGH       | SCL        | 0.6    |           |     | 0.26   |             |      | μS     |
| Setup time for repetition START condition | tSU,STA     | SCL<br>SDA | 0.6    |           |     | 0.26   |             |      | μS     |
| Data hold time                            | tHD,DAT     | SCL<br>SDA | 0 (*3) |           | 0.9 | 0 (*3) |             |      | μS     |
| Data setup time                           | tSU,DAT     | SCL<br>SDA | 100    |           |     | 50     |             |      | ns     |
| SDA, SCL<br>rising time                   | tr          | SCL<br>SDA |        |           | 300 |        |             | 120  | ns     |
| SDA, SCL falling time                     | tf          | SCL<br>SDA |        |           | 300 |        |             | 120  | ns     |
| STOP condition setup time                 | tSU,STO     | SCL<br>SDA | 0.6    |           |     | 0.26   |             |      | μS     |
| Bus free time between STOP and START      | tBUF        | SCL<br>SDA | 1.3    |           |     | 0.5    |             |      | μS     |

\*3: LC898217XC is designed for a condition with typ. 20ns of hold time. If SDA signal is unstable around falling point of SCL signal, please implement an appropriate treatment on board, such as inserting a resistor.

## LC898217XC

#### **ORDERING INFORMATION**

| Device        | Package                                        | Shipping (Qty / Packing) |
|---------------|------------------------------------------------|--------------------------|
| LC898217XC-MH | WLCSP10, 1.04x2.04<br>(Pb-Free / Halogen Free) | 4000 / Tape & Reel       |

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub\_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harming and antibutors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC and applicable copyright laws and is not for resale in any manner.