CMOS LSI

LC89086M

8 Bit A/D Converter

Preliminary

Overview

The LC89086M is a low-power high-speed 8-bit serialparallel A/D converter fabricated in a high-speed CMOS process.

Features

- Resolution: 8 bits (with an overflow output)
- Maximum conversion rate: 20M samples per second
- Error: Less than ±1.0 LSB
- Power supply: +5-V single-voltage power supply
- Power dissipation: 150 mW (typical)
- Analog input voltage range: V_{SS} to V_{DD}
- Digital output voltage: 3 state TTL level

Package Dimensions

unit: mm

3155-MFP24

Specifications

Absolute Maximum Ratings at Ta = 25° C, DV_{SS} = AV_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		-0.3 to +7.0	V
Input voltage	V _{IN} max		–0.3 to V _{DD} +0.3	V
Operating temperature	Topr		-30 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Recommended Operating Conditions

Parameter	Symbol Conditions Ratings		Ratings		Unit	
	Symbol	Symbol	min	typ	max	Unit
Supply voltage	V _{DD}		4.5	5.0	5.5	V
Operating ambient temperature	Та		-30		+70	°C

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Electrical Characteristics

Electrical DC Characteristics at Ta = -30 to +70 $^{\circ}C$, AV_{DD} = DV_{DD} = 4.5 to 5.5 V, AV_{SS} = DV_{SS} = 0 V

Parameter	Cumhal	Conditions		Linit		
Parameter	Symbol	Symbol		typ	max	Unit
Reference resistance	Rref	VrefH (pin 5) – VrefL (pin 8)	210	300	390	Ω
Analog input capacitance	C _{AIN}			30		pF
Analog input resistance	R _{AIN}			10		MΩ
Reference high-level input voltage	VrefH	When VrefHO (pin 4) and VrefLO (pin 9) are unused.	Vref L + 2.0		V _{DD}	V
Reference low-level input voltage	VrefL	When VrefHO (pin 4) and VrefLO (pin 9) are unuse	d. 0		VrefH-2.0	V
Reference high-level output voltage	VrefH	When VrefHO (pin 4) and VrefLO (pin 9) are used, and $AV_{DD} = DV_{DD} = 5 V$	1.9	2.0	2.1	V
Reference low-level output voltage	VrefL	When VrefHO (pin 4) and VrefLO (pin 9) are used, and AV_DD = DV_DD = 5 V	-0.05	0	+0.05	V
Analog input voltage	VAIN		VrefL		VrefH	V
Digital high-level voltage	VIH		2.2		V _{DD} +0.3	V
Digital low-level voltage	VIL		-0.3		+0.8	V
Digital high-level output current	I _{ОН}	$V_{OH} = V_{DD} - 0.4 V$	-2			mA
Digital low-level output current	I _{OL}	V _{OL} = 0.4 V	2			mA

Electrical AC Characteristics 1 at Ta = -30 to +70 $^\circ C,$ AV_{DD} = DV_{DD} = 4.5 to 5.5 V, AV_{SS} = DV_{SS} = 0 V

Parameter	Symbol	Conditions		Unit			
Falanielei	Symbol		min	typ	max	Offic	
Clock high-level period	T _{WH}		23			ns	
Clock low-level period	T _{WL}		23			ns	
Analog input acquisition time	T _{AP}		10	20	30	ns	
Digital output data delay time	Td	C load = 30 pF	15	30	45	ns	
Digital output data enable time	T _{OE}	C load = 30 pF	2	5	10	ns	
Digital output data disable time	T _{OD}	C load = 30 pF	2	5	10	ns	

The analog signal (AIN) is acquired on the falling edge of the clock input (CLK). The acquired analog signal is converted to a digital code and is output from the digital outputs (D8 to D1, OF) on the clock falling edge delayed three clock cycles from the clock cycle in which the analog signal was acquired.

Electrical AC Characteristics 2

at Ta = 25°C, $AV_{DD} = DV_{DD} = 5$ V, $AV_{SS} = DV_{SS} = 0$ V, VrefH = 2 V, VrefL = 0 V

Parameter	Symbol	Conditions		- Unit			
Farameter	Symbol		min	typ	max	Onit	
Resolution	Res				8	bit	
Maximum conversion rate	Fs				20	MSPS	
Linearity error	LE	DC accuracy			±1.0	LSB	
Differential linearity error	DLE	DC accuracy			±1.0	LSB	
Offset voltage	Voffset	DC accuracy	10	50	90	mV	
Power dissipation	Pd	Fs = 20 MSPS		150	220	mW	

Note: Test circuits must conform to the sample application circuit.

LC89086M

Block Diagram

Pin Assignment

Pin Functions

Pin No.	Pin name	I/O	Function
1	OEB	I	Digital output enable input High: high-impedance Low: Normal operation
2	DV _{SS}		Digital ground
3	AV _{SS}		Analog ground
4	Vref HO	0	Internal reference voltage (high) generation. Shorting this pin to VrefH (pin 5) generates a voltage of 2.0 V. This pin must be left open when the internally generated potential is not used.
5	Vref H	I	Reference voltage input (high)
6	AIN	I	Analog input
7	Vref M	0	Reference voltage intermediate level tap.
8	Vref L	I	Reference voltage input (low)
9	Vref LO	0	Internal reference voltage (low) generation. Shorting this pin to VrefL (pin 8) generates a voltage of 0 V. This pin must be left open when the internally generated potential is not used.
10	AV _{DD}		Analog power supply
11	AV _{SS}		Analog ground
12	DV _{SS}		Digital ground
13	DV _{DD}		Digital power supply
14	D8	0	Digital output (LSB)
15	D7	0	Digital output
16	D6	0	Digital output
17	D5	0	Digital output
18	D4	0	Digital output
19	D3	0	Digital output
20	D2	0	Digital output
21	D1	0	Digital output (MSB)
22	OF	0	Digital output (Overflow)
23	CLK	I	Clock input
24	DV _{DD}		Digital power supply

Note: There must be no potential difference between the digital system and analog system V_{DD} and V_{SS} power supply potentials.

I/O Code Table

The table below lists the relationship between the input and output when VrefH and VrefL are set up so that the zero transient voltage is 0.000 V and the full-scale transient voltage is 2.008V.

Analog input		Digital output							
V _{AIN} (V)	OF	D1	D2	D3	D4	D5	D6	D7	D8
Up to 0.000	0	0	0	0	0	0	0	0	0
Up to 0.008	0	0	0	0	0	0	0	0	0
Up to 0.016	0	0	0	0	0	0	0	0	1
Up to 0.024	0	0	0	0	0	0	0	1	0
Up to 0.032	0	0	0	0	0	0	0	1	1
to									
Up to 0.992	0	0	1	1	1	1	1	1	0
Up to 1.000	0	0	1	1	1	1	1	1	1
Up to 1.008	0	1	0	0	0	0	0	0	0
Up to 1.016	0	1	0	0	0	0	0	0	1
to									
Up to 1.992	0	1	1	1	1	1	1	0	1
Up to 2.000	0	1	1	1	1	1	1	1	0
Up to 2.008	0	1	1	1	1	1	1	1	1
Over 2.008	1	1	1	1	1	1	1	1	1

Sample Application Circuit

- Note 1. The value of the reference resistor is about 300 Ω. When this circuit is used with (VrefH VrefL) = 2 V, a current of 6.7 mA will flow. Use an operational amplifier or emitter follower with at least this current capacity.
 - The analog input impedance is lower for AC inputs. Therefore, an operational amplifier or emitter follower with a high slew rate and a wide bandwidth must be used in the previous stage output, and the impedance must be reduced to under 100 Ω.

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1997. Specifications and information herein are subject to change without notice.