

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

CMOS IC 8K-byte FROM and 256-byte RAM integrated 8-bit 1-chip Microcontroller

Overview

The SANYO LC87FBL08A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 8K-byte flash ROM (On-board-programmable), 256-byte RAM, an On-chip-debugger, sophisticated 16-bit timers/counters (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), two 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, an asynchronous/synchronous SIO interface, two 12-bit PWM channels, a 12-bit/8-bit 11-channel AD converter, a system clock frequency divider, an internal reset and a 17-source 9-vector interrupt feature.

Features

■Flash ROM

- Capable of On-board programming with wide range (2.7 to 5.5V) of voltage source.
- Block-erasable in 128 byte units
- Writable in 2-byte units
- 8192 × 8 bits

■RAM

• 256×9 bits

■Minimum Bus Cycle

- 83.3ns (12MHz at V_{DD}=2.7V to 5.5V)
 - Note: The bus cycle time here refers to the ROM read speed.

* This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network ■Minimum Instruction Cycle Time

• 250ns (12MHz at V_{DD}=2.7V to 5.5V)

■Ports

- Normal withstand voltage I/O ports Ports I/O direction can be designated in 1-bit units Ports I/O direction can be designated in 4-bit units
- Dedicated oscillator ports/input ports
- Reset pin
- Power pins

■Timers

- Timer 0: 16-bit timer/counter with a capture register.
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3: 16-bit counter (with a 16-bit capture register)
- Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

- counter with an 8-bit prescaler (with toggle outputs)
- Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
- Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
- (toggle outputs also possible from the lower-order 8 bits) Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)
 - (The lower-order 8 bits can be used as PWM)
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes

■SIO

- SIO1: 8-bit asynchronous/synchronous serial interface
- Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
- Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
- Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
- Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■AD Converter: 12 bits/8 bits × 11 channels

- 12 bits/8 bits AD converter resolution selectable
- ■PWM: Multifrequency 12-bit PWM × 2 channels

Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)

• Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)

■Clock Output Function

- Capable generating clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.
- Capable generating the source clock for the subclock

■Watchdog Timer

- Capable generating an internal reset on an overflow of a timer running on the low-speed RC oscillator clock or subclock.
- Operating mode at standby is selectable from 3 modes (continue counting/stop operation/stop counting with a count value held).

17 (P1n, P20, P21,P30, P31, P70 to P73, CF2/XT2) 8 (P0n) 1 (<u>CF1/XT1</u>) 1 (<u>RES</u>) 3 (VSS1, VSS2, VDD1)

■Interrupts

- 17 sources, 9 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTO
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/INT5/base timer
5	00023H	H or L	тон
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	None
8	0003BH	H or L	SIO1
9	00043H	H or L	ADC/T6/T7/PWM4, PWM5
10	0004BH	H or L	Port 0

[•] Priority levels X > H > L

• Of interrupts of the same level, the one with the smallest vector address takes precedence.

Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits ÷ 8 bits (8 tCYC execution time)
- 24 bits ÷ 16 bits (12 tCYC execution time)

Oscillation Circuits

• Internal oscillation circuits	
Low-speed RC oscillation circuit :	For system clock (100kHz)
Medium-speed RC oscillation circuit :	For system clock (1MHz)
Frequency variable RC oscillation circuit :	For system clock (8MHz)
• External oscillation circuits	

Hi-speed CF oscillation circuit:

For system clock, with internal Rf For low-speed system clock, with internal Rf

Low speed crystal oscillation circuit: For low-speed system clock, with internal Rf 1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.

2) Both the CF and crystal oscillator circuits stop operation on a system reset. After reset is released, oscillation is stopped so start the oscillation operation by program.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2µs, 2.4µs, 4.8µs, 9.6µs, 19.2µs, 38.4µs, and 76.8µs (at a main clock rate of 10MHz).

■Internal Reset Function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 4 levels (2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use or disuse of the LVD function and the low voltage threshold level (3 levels: 2.81V, 3.79V, 4.28V) can be selected by optional configuration.

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
- 1) Oscillation is not halted automatically.
- 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4 or INT5
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The RC oscillator automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4 or INT5
 - \ast INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
 - (5) Having an interrupt source established in the base timer circuit.

Note: Available only when X'tal oscillation is selected.

- ■Onchip Debugger
 - Supports software debugging with the IC mounted on the target board.
 - Software break point setting for debugger.
 - Stepwise execution on debugger.
 - Real time RAM data monitoring function on debugger. All the RAM data map can be monitored on screen when the program is running.
 - (The RAM & SFR data can be changed by screen patch when the program is running)Two channels of on-chip debugger pins are available to be compatible with small pin count devices.
 - DBGP0 (P0), DBGP1 (P1)

Data Security Function (flash versions only)

- Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.
- ■Package Form
 - QFP36(7×7) : Lead-/Halogen-free type
 - VQLP32(4×4) : Lead-/Halogen-free type (build-to-order)

■Development Tools

- On-chip-debugger : (1) TCB87 TypeB + LC87FBL08A
 - (2) TCB87 TypeC (3 wire version) + LC87FBL08A

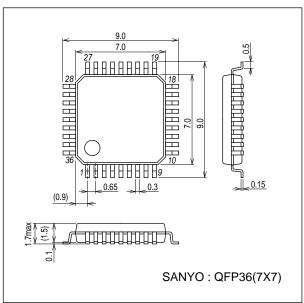
■Flash ROM Programming Boards

Package	Programming boards		
QFP36	W87F24Q		
VQLP32	(build-to-order)		

■Flash ROM Programmer

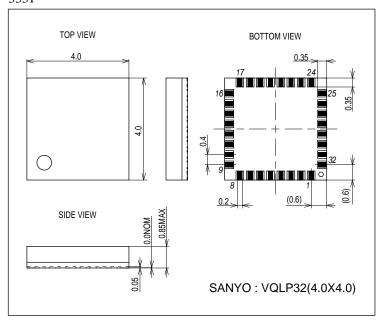
Maker		Model	Supported version	Device	
	Single Programmer	AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev 03.28 or later	87F008SU	
Flash Support Group, Inc. (FSG)	Gang	AF9723/AF9723B(Main body) (Including Ando Electric Co., Ltd. models)	-	-	
	Programmer	AF9833(Unit) (Including Ando Electric Co., Ltd. models)	-	-	
Flash Support Group, Inc. (FSG) +	In-circuit Programmer	AF9101/AF9103(Main body) (FSG models) SIB87(Inter Face Driver)	(Note 2)	-	
Sanyo (Note 1)		(Sanyo model)			
Sanua	Single/Gang Programmer	SKK / SKK Type B / SKK Type C (SanyoFWS)	Application Version 1.06 or later		
Sanyo	In-circuit/Gang Programmer	SKK-DBG Type B / SKK-DBG Type C (SanyoFWS)	Chip Data Version 2.34 or later	LC87FBL08	

For information about AF-Series:

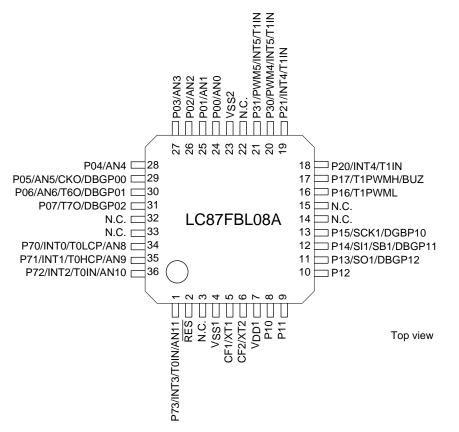

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from SANYO (SIB87) together can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or SANYO for the information.


Package Dimensions

unit : mm (typ) 3162C



Package Dimensions

unit : mm (typ) 3331

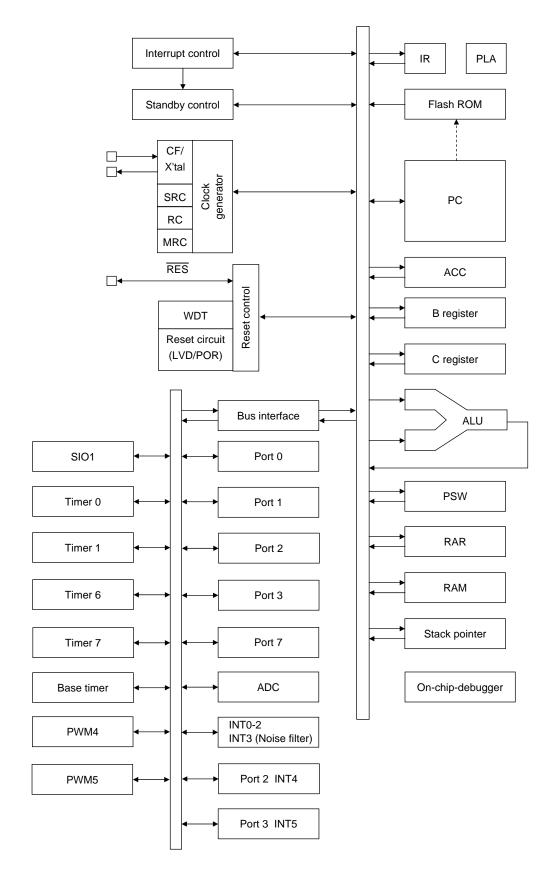
Pin Assignment

SANYO: QFP36(7×7) "Lead-/Halogen-free Type"

QFP36	NAME
1	P73/INT3/T0IN/AN11
2	RES
3	N.C.
4	V _{SS} 1
5	CF1/XT1
6	CF2/XT2
7	V _{DD} 1
8	P10
9	P11
10	P12
11	P13/SO1/DBGP12
12	P14/SI1/SB1/DBGP11
13	P15/SCK1/DBGP10
14	N.C.
15	N.C.
16	P16/T1PWML
17	P17/T1PWMH/BUZ
18	P20/INT4/T1IN

QFP36	NAME
19	P21/INT4/T1IN
20	P30/PWM4/INT5/T1IN
21	P31/PWM5/INT5/T1IN
22	N.C.
23	V _{SS} 2
24	P00/AN0
25	P01/AN1
26	P02/AN2
27	P03/AN3
28	P04/AN4
29	P05/AN5/CKO/DBGP00
30	P06/AN6/T6O/DBGP01
31	P07/T7O/DBGP02
32	N.C.
33	N.C.
34	P70/INT0/T0LCP/AN8
35	P71/INT1/T0HCP/AN9
36	P72/INT2/T0IN/AN10

Note: N.C. pins must be held open (disconnected).


SANYO: VQLP32(4×4) "Lead-/Halogen-free Type" (build-to-order)

VQLP32	NAME
1	RES
2	N.C.
3	V _{SS} 1
4	CF1/XT1
5	CF2/XT2
6	V _{DD} 1
7	P10
8	P11
9	P12
10	P13/SO1/DBGP12
11	P14/SI1/SB1/DBGP11
12	P15/SCK1/DBGP10
13	P16/T1PWML
14	P17/T1PWMH/BUZ
15	N.C.
16	P20/INT4/T1IN

VQLP32	NAME
17	P21/INT4/T1IN
18	P30/PWM4/INT5/T1IN
19	P31/PWM5/INT5/T1IN
20	V _{SS} 2
21	P00/AN0
22	P01/AN1
23	P02/AN2
24	P03/AN3
25	P04/AN4
26	P05/AN5/CKO/DBGP00
27	P06/AN6/T6O/DBGP01
28	P07/T7O/DBGP02
29	P70/INT0/T0LCP/AN8
30	P71/INT1/T0HCP/AN9
31	P72/INT2/T0IN/AN10
32	P73/INT3/T0IN/AN11

Note: N.C. pins must be held open (disconnected).

System Block Diagram

Pin Description

Pin Name	I/O			Des	cription			Option
V_{SS} 1, V_{SS} 2	-	- Power supply pin						No
V _{DD} 1	-	+ Power supply pin						
VDD1 Port 0 P00 to P07 Port 1 P10 to P17		 + Power supply pin 8-bit I/O port I/O specifiable in 4-bit units Pull-up resistors can be turned on and off in 4-bit units. HOLD reset input Port 0 interrupt input Pin functions P05: System clock output P06: Timer 6 toggle output P00(AN0) to P06(AN6): AD converter input P05(DBGP00) to P07(DBGP02): On-chip debugger 0 port 8-bit I/O port I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units. Pin functions P13: SIO1 data output P14: SIO1 data input / bus I/O P15: SIO1 clock I/O P16: Timer 1PWML output 						
Port 2 P20 to P21	I/O	P15(DBGP10) • 2-bit I/O port • I/O specifiable • Pull-up resiste • Pin functions P20 to P21: IN ti	WMH output / be) to P13(DBGP12 e in 1-bit units ors can be turned NT4 input / HOLD mer 0H capture ir owledge types Rising enable): On-chip-debu on and off in 1- reset input / tirr	bit units.	[/] timer 0L capture H level disable	e input / L level disable	Yes
Port 3 P30 to P31	I/O	Pin functions P30: PWM4 c P31: PWM5 c P30 to P31: II t	ors can be turned	reset input / time		timer 0L capture H level disable	input / L level disable	Yes

Continued on next page.

Pin Name	I/O		Description						
Port 7	I/O	 4-bit I/O port 	4-bit I/O port						
P70 to P73	-	I/O specifiable in 1 bit unitsPull-up resistors can be turned on and off in 1 bit units.							
		 Pin functions 							
		P70: INT0 inpu	ut / HOLD reset i	nput / timer 0L c	apture input				
		P71: INT1 inpu	ut / HOLD reset i	nput / timer 0H d	apture input				
		P72: INT2 inpu	ut / HOLD reset i	nput / timer 0 ev	ent input / timer	0L capture inpu	t		
		P73: INT3 inpu	ut (with noise filte	er) / timer 0 ever	t input / timer 0H	l capture input			
		P70(AN8) to P	P70(AN8) to P73(AN11): AD converter input						
		Interrupt acknowledge types							
			Rising	Falling	Rising &	H level	L level		
		-	i tioning	r annig	Falling	1110001	LIOVOI		
		INT0	enable	enable	disable	enable	enable		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
		INT3	enable	enable	enable	disable	disable		
RES	I/O	External reset in	put / internal res					No	
CF1/XT1	1				tor input pin			110	
		Ceramic resonator or 32.768kHz crystal oscillator input pin Pin function						No	
		General-purpo	ose input port						
CF2/XT2	I/O		nator or 32.768kl	Iz crystal oscilla	tor output pin				
		Pin function						No	
		General-purpose I/O port							

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
	-	2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P30 to P31	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
CF2/XT2	-	No	Ceramic resonator/32.768kHz crystal resonator	No
			output Nch-open drain	
			(N-channel open drain when set to general-purpose	
			output port)	

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

User Option Table

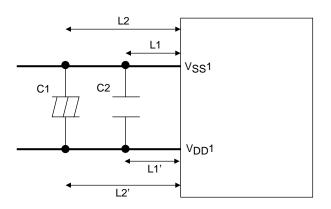
Option Name	Option to be Applied on	Mask version *1	Flash-ROM Version	Option Selected in Units of	Option Selection
Port output type	P00 to P07	0	0	1 bit	CMOS
					Nch-open drain
	P10 to P17	0	0	1 bit	СМОЅ
					Nch-open drain
	P20 to P21	0	0	1 bit	CMOS
					Nch-open drain
	P30 to P31	0	0	1 bit	CMOS
					Nch-open drain
Program start	-	×	0	-	00000h
address		*2			01E00h
Low-voltage	Detect function	0	0	-	Enable:Use
detection reset					Disable:Not Used
function	Detect level	0	0	-	3-level
Power-on reset function	Power-On reset level	0	0	-	4-level

*1: Mask option selection - No change possible after mask is completed.

*2: Program start address of the mask version is 00000h.

Recommended Unused Pin Connections

Port Name	Recommended Unused	Pin Connections
Port Name	Board	Software
P00 to P07	Open	Output low
P10 to P17	Open	Output low
P20 to P21	Open	Output low
P30 to P31	Open	Output low
P70 to P73	Open	Output low
CF1/XT1	Pulled low with a 100k Ω resistor or less	General-purpose input port
CF2/XT2	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port


On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 on-chip debugger installation manual".

Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the VDD1 and VSS1 pins:

- Connect among the V_{DD}1 and V_{SS}1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should approximately 0.1μF.

Note : Be sure to electrically short-circuit between the V_{SS1} and V_{SS2} pins.

	Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	aximum supply Itage	V _{DD} max	V _{DD} 1			-0.3	-0.3 +6.5		
Inp	out voltage	VI	CF1			-0.3		V _{DD} +0.3	v
	out/output Itage	VIO	Ports 0, 1, 2, 3, 7, CF2, RES			-0.3		V _{DD} +0.3	
ent	Peak output current	IOPH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-10			
curre		IOPH(2)	P71 to P73	Per 1 applicable pin		-5			
High level output current	Mean output current (Note 1-1)	IOMH(1)	Ports 0, 1, 2, 3 P71 to P73	CMOS output select Per 1 applicable pin		-7.5			
High le	Total output current	ΣΙΟΑΗ(1)	Ports 0, 1, 2, 3, P71 to P73	Total of all applicable pins		-25			
	Peak output current	IOPL(1)	P02 to P07, Ports 1, 2, 3	Per 1 applicable pin				20	mA
ŧ		IOPL(2)	P00, P01	Per 1 applicable pin				30	
urre		IOPL(3)	Ports 7, CF2	Per 1 applicable pin				10	
Low level output current	Mean output current	IOML(1)	P02 to P07, Ports 1, 2, 3	Per 1 applicable pin				15	
velo	(Note 1-1)	IOML(2)	P00, P01	Per 1 applicable pin				20	
<u>s</u>		IOML(3)	Ports 7, CF2	Per 1 applicable pin				7.5	1
Ľ	Total output current	ΣIOAL(1)	Ports 0, 1, Ports 2, 3, CF2	Total of all applicable pins				70	
		ΣIOAL(2)	Ports 7	Total of all applicable pins				15	1
	wer sipation	Pd max(1)	QFP36 (7×7)	Ta=-40 to +85°C Package only				120	
		Pd max(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				275	mΨ
-	erating ambient	Topr				-40		+85	
	orage ambient nperature	Tstg				-55		+125	°C

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Parameter	Symbol	Pin/Remarks	Conditions			Speci	fication	
i arameter	Gymbol	Tinnteinaiks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage	V _{DD}	V _{DD} 1	0.245µs ≤ tCYC ≤ 200µs		2.7		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode.		1.6			
High level	V _{IH} (1)	Ports 1, 2, 3, 7		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	
input voltage	V _{IH} (2)	Ports 0		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	v
	V _{IH} (3)	CF1, CF2, RES		2.7 to 5.5	0.75V _{DD}		V _{DD}	, i
Low level	V _{IL} (1)	Ports 1, 2, 3, 7		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
input voltage				2.7 to 4.0	VSS		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	VSS		0.15V _{DD} +0.4	
				2.7 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	CF1, CF2, RES		2.7 to 5.5	V _{SS}		0.25V _{DD}	
High level	I _{OH} (1)	Ports 0, 1, 2,	Per 1 applicable pin	4.5 to 5.5	-1.0			
output current	I _{OH} (2)	P71 to P73		2.7 to 4.5	-0.35			
	I _{OH} (3)	Ports 3, P05 (System clock	Per 1 applicable pin	4.5 to 5.5	-6.0			
	I _{OH} (4)	output function used)		2.7 to 4.5	-1.4			
	$\Sigma I_{OH}(1)$	Ports 0, 1, 2, 3, 7	Total of all applicable pins	4.5 to 5.5	-25			1
	$\Sigma I_{OH}(2)$			2.7 to 4.5	-11.2			
Low level	I _{OL} (1)	Ports 0, 1, 2, 3	Per 1 applicable pin	4.5 to 5.5			10	mA
output current	I _{OL} (2)			2.7 to 4.5			1.4	1
	I _{OL} (3)	Ports 7, CF2	Per 1 applicable pin	2.7 to 5.5			1.4	
	I _{OL} (4)	P00, P01	Per 1 applicable pin	4.5 to 5.5			25	
	I _{OL} (5)	-		2.7 to 4.5			4	
	$\Sigma I_{OL}(1)$	Ports 0, 1, 2, 3,	Total of all applicable pins	4.5 to 5.5			70	
	$\Sigma I_{OL}(2)$	CF2		2.7 to 4.5			34.6	
	$\Sigma I_{OL}(3)$	Ports 7	Total of all applicable pins	2.7 to 5.5			5.6	
Instruction cycle time (Note 2-1)	tCYC			2.7 to 5.5	0.245		200	μs
External system clock frequency	FEXCF	CF1	 CF2 pin open System clock frequency division ratio=1/1 External system clock duty=50±5% 	2.7 to 5.5	0.1		12	
			 CF2 pin open System clock frequency division ratio=1/2 External system clock duty=50±5% 	3.0 to 5.5	0.2		24.4	MHz

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Continued on next page.

Deveryorten	Ourseland	Pin/Remarks	Conditions			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Oscillation frequency	FmCF(1)	FmCF(1) CF1, CF2 12MHz ceramic oscillation. See Fig. 1. See Fig. 1.		2.7 to 5.5		12		
range (Note 2-2)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation. See Fig. 1.	2.7 to 5.5		10		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1.	2.7 to 5.5		4		
			4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.7 to 5.5		4		MHz
	FmMRC(1)		Frequency variable RC oscillation. (Note 2-3)	2.7 to 5.5	7.76	8.0	8.24	
	FmMRC(2)		Frequency variable RC oscillation. • Ta=-10 to +85°C (Note 2-3)	2.7 to 5.5	7.80	8.0	8.20	
	FmRC		Internal medium-speed RC oscillation	2.7 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation	2.7 to 5.5	50	100	200	
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 1.	2.7 to 5.5		32.768		kHz
Oscillation stabilization time	tmsMRC		When Frequency variable RC oscillation state is switched from stopped to enabled. See Fig. 3.	2.7 to 5.5			100	μs

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Note 2-3: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the frequency variable RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$,	$V_{SS1} = V$	$V_{SS}2 = 0V$
--	---------------	----------------

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Falameter	Symbol	FIN/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3, Ports 7, RES	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.7 to 5.5			1	
	I _{IH} (2)	CF1, CF2	Input port selected VIN ^{=V} DD	2.7 to 5.5			1	
	IIH(3)	CF1	Reset state VIN=VDD	2.7 to 5.5			15	μA
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3, Ports 7, RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.7 to 5.5	-1			
	I _{IL} (2)	CF1, CF2	Input port selected VIN=VSS	2.7 to 5.5	-1			
High level output	V _{OH} (1)	Ports 0, 1, 2,	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	P71 to P73	I _{OH} =-0.35mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (3)	Ports 3, P05 (System	I _{OH} =-6mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (4)	clock output function used)	I _{OH} =-1.4mA	2.7 to 5.5	V _{DD} -0.4			v
Low level output	V _{OL} (1)	Ports 0, 1, 2, 3	I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)		I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (3)	Ports7, CF2	I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (4)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	
	V _{OL} (5)		I _{OL} =4mA	2.7 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3, Ports 7	V _{OH} =0.9V _{DD} When Port 0 selected	4.5 to 5.5	15	35	80	
	Rpu(2)		low-impedance pull-up.	2.7 to 4.5	18	50	150	kΩ
	Rpu(3)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	2.7 to 5.5	100	200	300	K32
Hysteresis voltage	VHYS	Ports 1, 2, 3, 7, RES		2.7 to 5.5		0.1V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	2.7 to 5.5		10		pF

SIO1 Serial I/O Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$ (Note 4)

	r	Parameter	Symbol	Pin/	Conditions			Speci	fication	
	ſ	arameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK1(P15)	• See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.7 to 5.5	1			tCYC
Serial clock	dul	High level pulse width	tSCKH(3)				1			
erial	k	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected		2			
S	Output clock	Low level pulse width	tSCKL(4)		• See Fig. 5.	2.7 to 5.5		1/2		
	Outp	High level pulse width	tSCKH(4)					1/2		tSCK
Serial input	Da	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	 Must be specified with respect to rising edge of 	0.745.5.5	(1/3)tCYC +0.01			
Serial	Da	ta hold time	thDI(2)		SIOCLK. • See Fig. 5.	2.7 to 5.5	0.01			
Serial output	Ou	itput delay time	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5. 	2.7 to 5.5			(1/2)tCYC +0.05	μs

Note 4: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Deremeter	Symbol	Pin/Remarks	Conditions			Speci	fication	
Parameter	Symbol	FIII/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P21), INT5(P30 to P31)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	2.7 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are nabled. 	2.7 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	2.7 to 5.5	200			μs

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = 0V$

<12bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C >

Parameter	Sumbol	Pin/Remarks	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.7 to 5.5		12		bit
Absolute	ET	AN6(P06),	(Note 6-1)	3.0 to 5.5			±16	LSB
accuracy		AN8(P70) to AN11(P73)		2.7 to 5.5			±20	LOD
Conversion time	TCAD	ANTI(F73)	See Conversion time calculation	4.0 to 5.5	32		115	
			formulas. (Note 6-2)	3.0 to 5.5	64		115	μs
				2.7 to 5.5	134		215	
Analog input voltage range	VAIN			2.7 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH]	VAIN=V _{DD}	2.7 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	2.7 to 5.5	-1			μΑ

<8bits AD Converter Mode/Ta = -40°C to +85°C >

Parameter	Cumhal	Pin/Remarks	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.7 to 5.5		8		bit
Absolute accuracy	ET	AN6(P06), AN8(P70) to	(Note 6-1)	2.7 to 5.5			±1.5	LSB
Conversion time	TCAD	AN11(P73)	See Conversion time calculation	4.0 to 5.5	20		90	
			formulas. (Note 6-2)	3.0 to 5.5	40		90	μs
				2.7 to 5.5	80		135	
Analog input voltage range	VAIN			2.7 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}	2.7 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	2.7 to 5.5	-1			μA

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time) = $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) = $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio		ersion time AD)
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD
	4.0V to 5.5V	1/1	250ns	1/8	34.8µs	21.5µs
CF-12MHz	3.0V to 5.5V	1/1	250ns	1/16	69.5µs	42.8µs
	2.7V to 5.5V	1/1	250ns	1/32	138.8µs	85.5µs
	4.0V to 5.5V	1/1	375ns	1/8	52.25µs	32.25µs
CF-8MHz	3.0V to 5.5V	1/1	375ns	1/16	104.25µs	64.25µs
	2.7V to 5.5V	1/1	375ns	1/32	208.25µs	128.25µs
	3.0V to 5.5V	1/1	750ns	1/8	104.5µs	64.5µs
CF-4MHz	2.7V to 5.5V	1/1	750ns	1/16	208.5µs	128.5µs

Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		Select from option.	2.57V	2.45	2.57	2.69	
voltage			(Note 7-1)	2.87V	2.75	2.87	2.99	
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	V
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to 1.6V.				100	ms

Power-on Reset (POR) Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = 0$ V

Note7-1: The POR release level can be selected out of 4 levels only when the LVD reset function is disabled. Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

						Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		Select from option.	2.81V	2.71	2.81	2.91	
(Note 8-2)			(Note 8-1)	3.79V	3.67	3.79	3.91	V
			(Note 8-3)	4.28V	4.15	4.28	4.41	
LVD hysteresys	LVHYS		• See Fig. 8.	2.81V		60		
width				3.79V		65		mV
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms

Note8-1: The LVD reset level can be selected out of 3 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

Consumption Current Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Parameter	Symbol	Pin/	Conditions	r	Specification				
		Remarks		V _{DD} [V]	min	typ	max	unit	
Normal mode consumption current	IDDOP(1)	V _{DD} 1	 FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC 	2.7 to 5.5		4.8	8.7		
Note 9-1) Note 9-2)			 oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		3.0	5.0		
	IDDOP(2)		CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC	3.0 to 5.5		5.0	9.6		
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	3.0 to 3.6		3.2	6.0		
	IDDOP(3)		FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal low speed and medium speed RC	2.7 to 5.5		4.1	7.8		
			 oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		2.6	4.9		
	IDDOP(4)		 FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC 	2.7 to 5.5		2.2	5.1		
			oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		1.5	2.7	mA	
	IDDOP(5)		 CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side 	2.7 to 5.5		0.95	2.4		
			 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	2.7 to 3.6		0.50	1.1		
	IDDOP(6)		 FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed 	2.7 to 5.5		0.42	1.4		
			RC oscillation. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	2.7 to 3.6		0.25	0.76		
	IDDOP(7)		 FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped. 	2.7 to 5.5		3.2	5.4		
			 System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio 	2.7 to 3.6		2.3	4.2		
	IDDOP(8)		 External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation. 	2.7 to 5.5		55	169		
			 Internal medium speed RC oscillation sopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		39	109		
	IDDOP(9)		 External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation. 	5.0		55	136	μA	
			 Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	3.3		39	103		

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Parameter	Symbol	Pin/	Conditions		Specification					
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit		
Normal mode consumption current	IDDOP(10)	V _{DD} 1	 FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC 	2.7 to 5.5		28	89			
(Note 9-1) (Note 9-2)			oscillation stopped.Frequency variable RC oscillation stopped.1/2 frequency division ratio	2.7 to 3.6		11	38			
	IDDOP(11)		 FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC oscillation stopped. 	5.0		28	78	μA		
			 Frequency variable RC oscillation stopped. 1/2 frequency division ratio Ta=-10 to +50°C 	3.3		11	29			
HALT mode consumption current (Note 9-1)	IDDHALT(1)		 HALT mode FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC 	2.7 to 5.5		2.4	4.5			
(Note 9-2)			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		1.3	2.2			
	IDDHALT(2)		 HALT mode CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC 	3.0 to 5.5		2.7	5.3			
			 Internation speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	3.0 to 3.6		1.6	2.9			
	IDDHALT(3)		HALT mode FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side	2.7 to 5.5		2.0	4.1			
			 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		1.1	2.1			
	IDDHALT(4)		 HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC 	2.7 to 5.5		1.2	3.3	mA		
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		0.50	1.2			
	IDDHALT(5)		 HALT mode CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side 	2.7 to 5.5		0.70	1.8			
			 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	2.7 to 3.6		0.30	0.68			
	IDDHALT(6)		 HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed 	2.7 to 5.5		0.30	0.90			
			 System clock set to internal medium speed RC oscillation Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		0.20	0.44			

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from	preceding page.							
Parameter	Symbol	Pin/	Conditions			Specit	fication	1
		remarks		V _{DD} [V]	min	typ	max	unit
HALT mode consumption current (Note 9-1)	IDDHALT(7)	V _{DD} 1	 HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped. 	2.7 to 5.5		1.3	2.3	mA
(Note 9-2)			 System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio 	2.7 to 3.6		0.90	1.5	
	IDDHALT(8)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	2.7 to 5.5		18	68	
			 oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		11	35	
	IDDHALT(9)		 HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation. 	5.0		18	46	
			 Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio Ta=-10 to +50°C 	3.3		11	27	
	IDDHALT(10)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	2.7 to 5.5		20	85	
			 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		5.6	30	
	IDDHALT(11)		 HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC 	5.0		20	51	μΑ
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio • Ta=-10 to +50°C	3.3		5.6	17	
HOLD mode	IDDHOLD(1)		HOLD mode	2.7 to 5.5		0.012	23	
consumption current			• CF1=V _{DD} or open (External clock mode)	2.7 to 3.6		0.008	11	
(Note 9-1)	IDDHOLD(2)		HOLD mode	5.0		0.012	1.2	
(Note 9-2)			 CF1=V_{DD} or open (External clock mode) Ta=-10 to +50°C 	3.3		0.008	0.59	
	IDDHOLD(3)		HOLD mode	2.7 to 5.5		2.0	26	
			 CF1=V_{DD} or open (External clock mode) LVD option selected 	2.7 to 3.6		1.6	13	
	IDDHOLD(4)		HOLD mode CF1=V _{DD} or open (External clock mode)	5.0		2.0	3.8	
			• Ta=-10 to +50°C	3.3		1.6	2.8	
Timer HOLD	IDDHOLD(5)		LVD option selected Timer HOLD mode	2.7 to 5.5		16	70	
mode	\- <i>\</i>		FsX'tal=32.768 kHz crystal oscillation mode	2.7 to 3.6		4.2	25	
consumption current	IDDHOLD(6)		Timer HOLD mode	5.0		16	42	
(Note 9-1) (Note 9-2)	<u> </u>		 FsX'tal=32.768kHz crystal oscillation mode Ta=-10 to +50°C 	3.3		4.2	11	

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Deremeter	Cumbol	Dia (Desaserius	Conditions		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Onboard programming current	IDDFW(1)	V _{DD} 1	Only current of the Flash block.	2.7 to 5.5		5	10	mA	
Programming	tFW(1)		Erasing time	2.7 to 5.5		20	30	ms	
time	tFW(2)		Programming time	2.7 10 5.5		40	60	μs	

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

• CF oscillation normal amplifier size selected (CFLAMP=0)

Nominal	-			Circuit (Constant		Operating Voltage		lation tion Time	Remarks
Frequency	Туре	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [ms]	max [ms]	
12MHz	SMD	CSTCE12M0G52-R0	(10)	(10)	Open	680	2.7 to 5.5	0.02	0.3	
10MHz	SMD	CSTCE10M0G52-R0	(10)	(10)	Open	680	2.7 to 5.5	0.02	0.3	
	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	680	2.7 to 5.5	0.02	0.3	
01411-	SMD	CSTCE8M00G52-R0	(10)	(10)	Open	1.0k	2.7 to 5.5	0.02	0.3	
8MHz	LEAD	CSTLS8M00G53-B0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.02	0.3	Internal C1, C2
	SMD	CSTCR6M00G53-R0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.02	0.3	01, 02
6MHz	LEAD	CSTLS6M00G53-B0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.02	0.3	
	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.03	0.45	
4MHz	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.02	0.3	

• CF oscillation low amplifier size selected (CFLAMP=1)

■MURATA

Nominal	Tumo			Circuit (Constant		Operating Voltage		lation tion Time	Remarks	
Frequency	Туре	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [ms]	max [ms]	Remarks	
12MHz	SMD	CSTCE12M0G52-R0	(10)	(10)	Open	470	3.9 to 5.5	0.04	0.6		
	SMD	CSTCE10M0G52-R0	(10)	(10)	Open	470	2.9 to 5.5	0.03	0.45		
10MHz	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	470	3.6 to 5.5	0.03	0.45		
	LEAD	CSTLS10M0G53095-B0	(15)	(15)	Open	470	2.7 to 5.5	0.02	0.3		
	SMD	CSTCE8M00G52-R0	(10)	(10)	Open	680	2.7 to 5.5	0.03	0.45		
8MHz	LEAD	CSTLS8M00G53-B0	(15)	(15)	Open	680	3.0 to 5.5	0.03	0.45	Internal	
	LEAD	CSTLS8M00G53093-B0	(15)	(15)	Open	680	2.7 to 5.5	0.02	0.3	C1, C2	
	SMD	CSTCR6M00G53-R0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.03	0.45		
6MHz	LEAD	CSTLS6M00G53-B0	(15)	(15)	Open	1.0k	2.8 to 5.5	0.03	0.45		
	LEAD	CSTLS6M00G53093-B0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.02	0.3		
	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.04	0.6		
4MHz	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.02	0.3		

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in following cases (see Figure 3).

• The time interval that is required for the oscillation to get stabilized after the instruction for starting the mainclock oscillation circuit is executed.

- The time interval that is required for the oscillation to get stabilized after the HOLD mode is reset and oscillation is started.
- The time interval that is required for the oscillation to get stabilized after the X'tal Hold mode, under the state which the main clock oscillation is enabled, is reset and oscillation is started.

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYOdesignated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator ■EPSON TOYOCOM

Nominal	Turne	Oscillator		Circuit C	Constant		Operating Voltage		lation tion Time	Demorko
Frequency		Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [s]	max [s]	Remarks
32.768kHz	SMD	MC-306	9	9	Open	330k	2.7 to 5.5	1.4	4.0	Applicable CL value = 7.0pF

SEIKO INSTRUMENTS

Noi	Nominal Oscillator			Circuit C	Constant		Operating Voltage	Oscillation Stabilization Time		Domotio	
Freq	quency	Туре	Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [s]	max [s]	Remarks
32.7	768kHz	SMD	SSP-T7-F	22	22	Open	0	2.7 to 5.5	0.75	2.0	Applicable CL value = 12.5pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

- The time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed.
- The time interval that is required for the oscillation to get stabilized after the Hold mode, under the state which the subclock oscillation is enabled, is reset and oscillation is started.

(Notes on the implementation of the oscillator circuit)

- Oscillation is influenced by the circuit pattern layout of printed circuit board. Place the oscillation-related components as close to the CPU chip and to each other as possible with the shortest possible pattern length.
- Keep the signal lines whose state changes suddenly or in which large current flows as far away from the oscillator circuit as possible and make sure that they do not cross one another.
- Be sure to insert a current limiting resistor (Rd) so that the oscillation amplitude never exceeds the input voltage level that is specified as the absolute maximum rating.
- The oscillator circuit constants shown above are sample characteristic values that are measured using the SANYOdesignated oscillation evaluation board. Since the accuracy of the oscillation frequency and other characteristics vary according to the board on which the IC is installed, it is recommended that the user consult the resonator vendor for oscillation evaluation of the IC on a user's production board when using the IC for applications that require high oscillation accuracy. For further information, contact your resonator vendor or SANYO Semiconductor sales representative serving your locality.
- It must be noted, when replacing the flash ROM version of a microcontroller with a mask ROM version, that their operating voltage ranges may differ even when the oscillation constant of the external oscillator is the same.

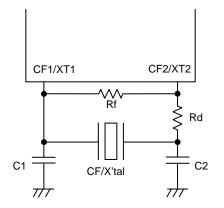


Figure 1 CF and XT Oscillator Circuit

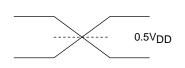
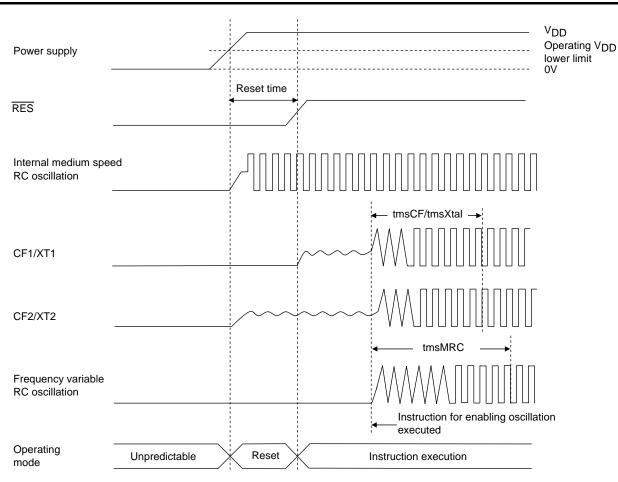
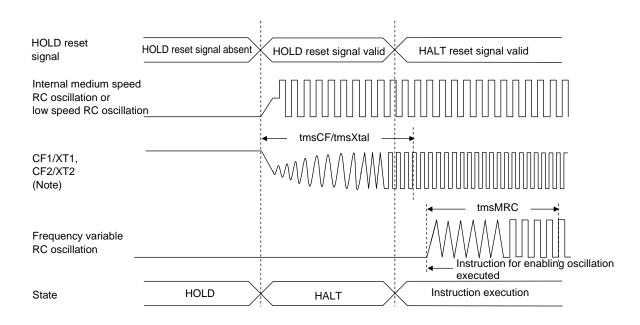
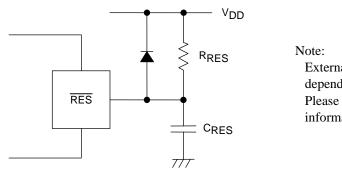




Figure 2 AC Timing Measurement Point


Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Note: External oscillation circuit is selected.

Figure 3 Oscillation Stabilization Times

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information.

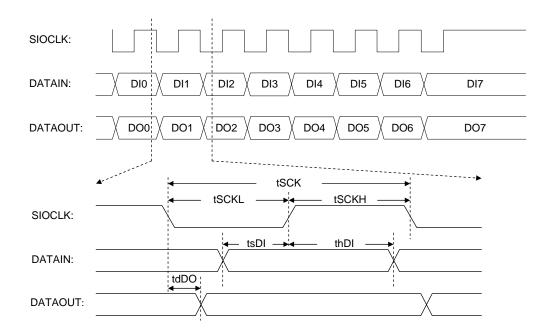


Figure 5 Serial I/O Output Waveforms

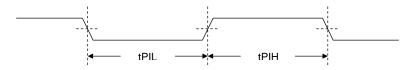


Figure 6 Pulse Input Timing Signal Waveform

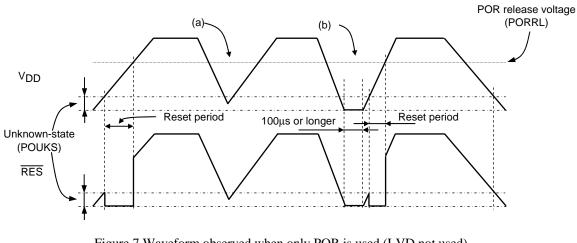


Figure 7 Waveform observed when only POR is used (LVD not used) (RESET pin: Pull-up resistor R_{RES} only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

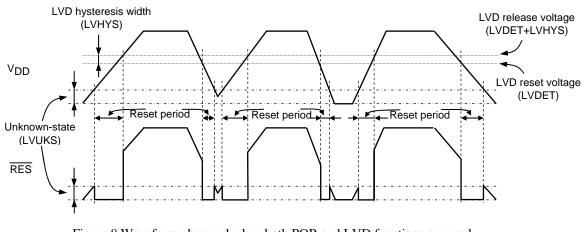


Figure 8 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

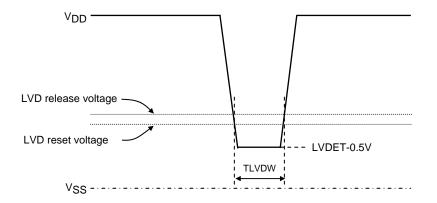


Figure 9 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2011. Specifications and information herein are subject to change without notice.