Overview

Ordering number: EN

4363B

The LC6527N/F/L, LC6528N/F/L belong to our single-chip 4-bit microcomputer LC6500 series fabicated using CMOS process technology and are suited for use in small-scale control-oriented applications. Their basic architecture and instruction set are the same. Application areas include the standard logic circuits and applications where the number of controls is small. The LC6527N/F/L, LC6528N/F/L have relation to the LC6527C/H, LC6528C/H. The C version can be replaced by N version, and the H version by F version (a part of the function is different). The L version is added as a low voltage version. The following show the careful difference of C and N version when you replace C version with N version.

		C version	N version
Operat	ing Temperature	-30°C to +70°C	-40°C to +85°C
1-pin (oscillation	exist	not exist
글 400kH	z MURATA	C1=C2=330pF	C1=C2=220pF
sta		R=0Ω	R=2.2kΩ
800kH	z MURATA	C1=C2=220pF	C1=C2=100pF
		R=0Ω	R=2.2KΩ
lati	KYOCERA	C1=C2=220pF	C1=C2=100pF
scil		R=0Ω	$R = 0\Omega$
CF Oscillation THM1	MURATA	C1=C2=220pF	C1=C2=100PF
		R=0Ω	R=2.2kΩ

2-pin CR fixed-frequency oscillator with small frequency tolerance.

* Other options shown in table on the left.

(Note) The suffix of recommend oscillation is changed C version and N version, but the characteristics are no change.

Features

1) CMOS technology for a low-power operation (with instruction-controlled standby function)

2) ROM/RAM

LC6527N/F/L ROM: 1K x 8bits, RAM: 64 x 4bits

LC6528N/F/L ROM: 0.5K x 8bits, RAM: 32 x 4bits

3) Instruction set : 51 kinds selectable from 80 instructions common to the LC6500 series

4) Wide operationg voltage range form 2.2V to 6.0V (L version)

5) Instruction cycle time of 0.92µs (F version)

Continued on next page.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Continued from preceding page.

- 6) Flexible I/O port
 - Number of ports : 4 ports/13 pins max.
 - All ports : Input/output common
 - Input/output voltage 15V max. (open drain type)

Output current 20mA max. (sink current) (LED direct drivable)

• Option selectable for your intended system

- A. Open drain output, pull-up resistor : Single-bit select for all ports
- B. Output level at the reset mode :4-bit select of H/L level for port C/D

7) Stack level : 4 levels

8) Timer : 4-bit prescaler + 8-bit programmable timer

9) Clock oscillation option selectable for your intended system

• Oscillator option : 2-pin RC oscillaion (N, L version)

- 2-pin ceramic resonator oscillation, 1-pin external clock input (N,F,L version)
- Predivider option : No predivider, 1/3 predivider, 1/4 predivider (N, L version)

Function Table

runcn	ion Jable					
	Item	LC6527N/28N	LC6527F/28F	LC6527L/28L		
>	ROM	1024 x 8 bits (27N)	1024 x 8 bits (27F)	1024 x 8 bits (27L)		
Memory		512 x 8 bits (28N)	512 x 8 bits (28F)	512 x 8 bits (28L)		
Mer	RAM	64 x 4 bits (27N)	64 x 4 bits (27F)	64 x 4 bits (27L)		
		32 x 4 bits (28N)	32 x 4 bits (28F)	32 x 4 bits (28L)		
Instruc- tion	Instruction set	51	51	51		
٩٢	Timer	4-bit prescaler + 8-bit timer	4-bit prescaler + 8-bit timer	4-bit prescaler + 8-bit timer		
On-chip function	Stack level	4	. 4	4		
ŞĘ	Standby function	Standby available	Standby available	Standby available		
		by HALT instruction	by HALT instruction	by HALT instruction		
Input/output port	Number of ports	I/O 13 max.	I/O 13 max.	I/O 13 max.		
T I	I/O voltage	15V max.	15V max.	15V max.		
out	Output current	10mA typ. 20mA max.	10mA typ. 20mA max.	10mA typ. 20mA max.		
otto	I/O circuit configuration	Open drain (N channel) or pull-up resistor-provided output selectable bit by bit.				
dul	Output level at reset mode	"H" or "L" level selectable port by port (port C, D only)				
c ci	Minimum cycle time	2.77μs (VDD≥4V) 6.0μs (VDD≥3V)	0.92µs (VDD≥4.5V)	3.84µs (VDD≥2.2V)		
Charac- teristic	Supply voltage	3 to 6V	4.5 to 6V	2.2 to 6V		
0	Current dissipation	2.5mA typ.	4mA typ.	2.5mA typ.		
no	Resonator	RC (850kHz,400kHz typ.)		RC (400kHz typ.)		
llati		ceramic (400k,800k,1MHz,	ceramic 4MHz	ceramic (400k, 800k, 1MHz,		
Oscillation		4MHz)		4MHz)		
<u> </u>	predivider option	1/1,1/3,1/4	1/1	1/1, 1/3, 1/4		
Other	Package	DIP18, MFP18*	DIP18, MFP18*	DIP18, MFP18*		

(Note) Information on the resonator and oscillation circuit constants will be presented as soon as the recommended circuit is determined.

* MFP18 : under development

Package Dimensions

3007A (unit : mm)

Common to DIP • MFP

-Do not immerse the package in the solder

dip tank when mounting the MFP on the substrate.

SANYO : DIP18

SANYO : MFP18

(Note) The package is the reference figure without the description of the rank. Please inquire us for the formal package.

Pin Name

DSC2	:	C, R or ceramic resonator for OSC	PH 0	:	Input/output common port H 0
	:	Reset	TEST	:	Test
	:	Input/output common port A 0-3			
	:	Input/output common port C 0-3			
	:	Input/output common port D 0-3			
		::	 C, R or ceramic resonator for OSC Reset Input/output common port A 0-3 Input/output common port C 0-3 Input/output common port D 0-3 	: ResetTEST: Input/output common port A 0-3: Input/output common port C 0-3	: Reset TEST : : Input/output common port A 0-3 : Input/output common port C 0-3

System Block Diagram

Note 1.	The PH0 pin or OSC	C2 pin is selected by th	he mask option.
Note 2.	LC6527N/F/L	ROM : 1024 bytes	RAM: 64 words
	LC6528N/F/L	ROM: 512 bytes	RAM : 32 words

ļ

Development Support Tools

The following are available to support the program development for the LC6527, LC6528.

(1) User's Manual

"LC6527, LC6528 User's Manual" No. 24-6016 ('86.10.1.)

Note : Do not use "LC6523 Series User's Manual" No. 16A-7015 and No. 16-9064.

(2) Development Tool Manual

For the EVA-800 or the EVA-850 system, refer to "EVA-800. LC6527, LC6528 Development Tool Manual". (3) Development Tools

A. For program evaluation

1. Piggy back (LC65PG23/26)

2. 23T27 ; The pin-to-pin conversion socket for the piggy back LC65PG23/26.

B. For program evaluation

29 TO 27; The pin-to-pin conversion socket for EPROM built-in microcomputer (LC65E29)

Note. For notes for program evaluation, do not fail to refer to '4-3. Notes when evaluating programs' in "LC6527, LC6528 User's Manual".

2.54mm pitch DIP18

Fig. 1 Evaluation kit terget board (EVA-TB6523C/26C/27C/28C)

Fig. 2 Program evaluation

C. For program development (EVA-800 or EVA-850 system) ----

- 1. MS-DOS for host system (Note 1)
- 2. Cross assembler......MS-DOS base cross assembler : <LC65S. EXE>
- 3. Host control program
- 4. Evaluation chip : LC6596
- 5. Emulator : EVA-800 or EVA-850 emulator and evaluation boards EVA800-TB6527/28

D. For program development (EVA-86000 system) under development

Appearance of Development Support System

(Note 1) MS-DOS : Tradmark of Microsoft Corporation

(Note 2) The EVA-800, EVA-850 are general term for emulator. A suffix (A, B,...) is added at the end of EVA-800 and EVA-850 as they are improved to be a newer version. Do not use the EVA-800 and EVA-850 with no suffix added.

LC6527N/F/L, LC6528N/F/L

Pin Name	Pins	1/0	Function	Option	Reset Mode
VDD	1	_	Power supply		
VSS	1	_	115		
OSC1	1	Input	• Pin for externally connecting RC,	1) 1-pin external clock input	
		I	ceramic resonator for system	2) 2-pin RC OSC	—
			clock generation.	3) 2-pin ceramic resonator	
			• For 1-pin external clock input,	OSC	
			the PH0/OSC2 pin is used as	4) Predivider option	
			I/O port PH0.	1. No predivider	
			• For 2-pin RC OSC, 2-pin ceramic	-	
•			resonator OSC, the PH0/OSC2	3. 1/4 predivider	
			pin is used as OSC pin OSC2.		
PA 0 to PA 3	4	Input/	• I/O port A0 to 3	1) Open drain type output	•"H"output (Ou
		output	4-bit input (IP instruction)	2) With pull-up resistor	put Nch transi
		ourput	4-bit output (OP instruction)	1), 2) : Specified bit by bit	tor:OFF)
			Single-bit decision (BP, BNP		,
			instruction)		
			Single-bit set/reset (SPB, RPB		
			instruction)		
	1		 Standby is controlled by PA3. 		
			• The PA3 pin must be free from		
			chattering during the HALT		
			instruction execution cycle.		
PC 0 to PC 3	4	Input/	• I/O port C0 to 3	1) Open drain type output	• "H" output
10010105	7	output	Same as for PA0 to 3 (Note)	i) open unun type output	• "L" output
		Uniput	• Option permits output at the	2) With pull-up resistor	(Option -
			reset mode to be "H" or "L".	3) Output at reset mode:"H"	selectable)
			(Note) No standby control	4) Output at reset mode:"L"	, venecciable,
			function is provided.	• 1), 2): Specified bit by bit	
			function is provided.	• 3), 4): Specified in a	
				group of 4 bits	
PD 0 to PD 3	4	Input/	• I/O port D0 to 3	Same as for PC0 to 3	Same as for PC
10010100	~	output	Same as for PC0 to 3		to 3
PH0/OSC2	1	Input/	• I/O port H0	Same as for PA0 to 3	Same as for PA
11107 0002	1	output	Same as for PA0 to 3 (Note)		to 3
		ourput	Single-bit configuration		
			• For 2-pin OSC, this pin is used		
			as the OSC2 pin, providing no		
-			function as I/O port.		
			(Note) No standby control		
RES	1	Input	function is provided.		
nL0		mput	 Systen reset input For power-up reset, C is con- 		
			nected externally.		
			• For reset restart, "L" level is		
	1		applied for 4 clock cycles or	ļ.	
		.	more.		
TEST	1	Input	• LSI test pin		
	1		Normally connected to VSS	1	1

.

.

Option Name	Circuit	Conditions , etc.
1. External clock		The PH 0 / OSC2 pin is used as port PH0.
2. 2-pin RC OSC	Cext OSC 1 PHz/OSC2 Rext	The PH 0 / OSC2 pin is used as OSC pin OSC2, providing no function as port.
3. Ceramic resonator OSC	Ceramic PHe /OSC2	The PH 0 / OSC2 pin is used as OSC pin OSC2, providing no function as port.

Oscillator circuit option

Predivider Option

Option Name	Circuit	Conditions, etc.
1. No predivider		 Applicable to all of 3 OSC options.
(1/1)		The OSC frequency, external clock do not
		exceed 1444kHz. (LC6527N, 6528N)
		• The OSC frequency, external clock do not
		exceed 4330kHz. (LC6527F, 6528F)
		• The OSC frequency, external clock do not
	· · · · · · · · · · · · · · · · · · ·	exceed 1040kHz. (LC6527L, 6528L)
2.1/3 predivider		Applicatable to only 2 OSC options of
		external clock, ceramic resonator OSC.
		The OSC frequency, external clock do not
		exceed 4330kHz.
3.1/4 predivider		Applicatable to only 2 OSC options of
	tosc isc isc isc isc isc isc isc i	external clock, ceramic resonator OSC.
		• The OSC frequency, external clock do not
		exceed 4330kHz.

Note : The OSC option and predivider option are summarized below. Full care must be exercised.

Table of OSC, predivider-Option of LC6527N/28N, 27F/28F and 27L/28L

Circuit Configuration	Frequency	Predivider Option	VDD Range	Remarks	
Ceramic resonator OSC	400kHz	(Cycle Time) 1/1 (10 μs)	3 to 6V	Unusable with 1/3, 1/4 predivider	
	800kHz	1/1 (5 μs)	4 to 6V		
		1/3 (15 µs)	4 to 6V		
		1/4 (20 µs)	4 to 6V		
	1MHz	1/1 (4 µs)	4 to 6V		
		1/3 (12 µs)	4 to 6V		
		1/4 (16 µs)	4 to 6V		
	4MHz	1/3 (3 µs)	4 to 6V	Unusable with 1/1 predivider	
		1/4 (4 μs)	4 to 6V	-	
1-pin external clock	200k to 667kHz	1/1 (20 to 6µs)	3 to 6V		
	600k to 2000kHz	1/3 (20 to 6µs)	3 to 6V		
	800k to 2667kHz	1/4 (20 to 6μs)	3 to 6V		
	200k to 1444kHz	1/1 (20 to 2.77µs)	4 to 6V		
	600k to 4330kHz	1/3 (20 to 2.77µs)	4 to 6V		
	800k to 4330kHz	1/4 (20 to 3.70µs)	4 to 6V		
External clock by 2-pin RC OSC circuit	Same as above				
2-pin RC	Used with 1/1pred	livider,recommended	3 to 6V		
	constants. If used with other than 4 to 6V				
	recommended con	stants, the frequency,	predivider		
		e must be the same as			
	external clock.		_		
External clock input to the	The ceramic oscillation circuit cannot be driven by external clock.				
ceramic oscillation circuit	To drive the circuit with external clock, select the external clock option or the 2-pin				
	RC option.			-	

LC6527F, L6528F

Circuit Configuration	Frequency	Predivider Option (Cycle Time)	VDD Range	Remarks
Ceramic resonator OSC	4MHz	1/1 (1µs)	4.5 to 6V	
1-pin external clock	200k to 4330kHz	1/1 (20 to 0.92µs)	4.5 to 6V	
External clock input to the	The ceramic oscill	lation circuit cannot b	e driven by ex	ternal clock.
ceramic oscillation circuit To drive the circuit with external clock, select the external clock option.			ernal clock option.	

Circuit Configuration	Frequency	Predivider Option	VDD Range	Remarks
		(Cycle Time)		
Ceramic resonator OSC	400kHz	1/1 (10 μs)	2.2 to 6V	Unusable with 1/3, 1/4 predivider
	800kHz	1/1 (5 μs)	2.2 to 6V	
		1/3 (15 µs)	2.2 to 6V	
		1/4 (20 μs)	2.2 to 6V	
	1MHz	1/1 (4 μs)	2.2 to 6V	
		1/3 (12 μs)	2.2 to 6V	
		1/4 (16 μs)	2.2 to 6V	
	4MHz	1/4 (4 μs)	2.2 to 6V	Unusable with 1/1, 1/3
				predivider
1-pin external clock	200k to 1040kHz	1/1 (20 to 3.84µs)	2.2 to 6V	
	600k to 3120kHz	1/3 (20 to 3.84µs)	2.2 to 6V	
	800k to 4160kHz	1/4 (20 to 3.84µs)	2.2 to 6V	
External clock by 2-pin	Same as above			
RC OSC circuit			_	
2-pin RC	Used with 1/1pred	livider,recommended	2.2 to 6V	
	constants. If used	with other than recorr	mended	
	constants, the free	juency, predivider opt	ion, VDD	
	range must be the	same as for 1-pin exte	rnal clock.	
External clock input to the	The ceramic oscilla	ation circuit cannot be	driven by ext	ernal clock.
ceramic oscillation circuit	To drive the circuit with external clock, select the external clock option or the 2-pin			
	RC option.			_

Option of ports C, D Output Level at the Reset Mode

For input/output common ports C, D either of the following two output levels may be selected in a group of 4 bits during reset by option.

Option Name	Conditions , etc.
1. Output at the reset mode : "H" level	All of 4 bits of ports C, D
2. Output at the reset mode : "L" level	All of 4 bits of ports C, D

Option of Port Output Configuration

For each input/output common port, either of the following two output configurations may be selected by option.

Option Name	Circuit	Conditions, etc.
1. Open drain output		• Unapplicable to port PH0/OSC2 when 2-pin RC OSC or ceramic resonator OSC is selected.
2. Output with pull-up resistor		

Parameter	Symbol	Conditions	Pins	Limits	unit
Maximum supply voltage	VDD max		VDD	-0.3 to +7.0	V
Output voltage	VO		OSC2	Allowable up to voltage generated	V
Input voltage	VI(1)		OSC1 (*1)	-0.3 to VDD+0.3	v
	VI(2)		TEST, RES	-0.3 to VDD+0.3	v
Input/output	VIO(1)		Port of OD type	-0.3 to +15	v
voltage	VIO(2)		Port of PU type	-0.3 to VDD+0.3	V
Peak output current	IOP		I/O port	-2 to +20	mA
Average output current	IOA	Per pin over the period of 100 ms	I/O Port	-2 to +20	mA
	ΣIOA(1)	Total current of PA0 to 3, (*2)	PA0 to 3	-6 to +40	mA
	∑IOA(2)	Total current of PC0 to 3, PD0 to 3, PH0 (*2)	PC0 to 3 PH0 PD0 to 3	-14 to +90	mA
Allowable power	Pd max(1)	Ta=-40 to +85°C (DIP package)		250	mW
dissipation	Pd max(2)	Ta=-40 to +85°C (MFP package)*	-	150	mW
Operating temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +125	°C

LC6527N, 6528N

1. Absolute Maximum Ratings at Ta=25°C, VSS=0V

* Under development. Do not immerse the package in the solder dip tank when mounting the MFP on the substrate.

Parameter	Symbol	Conditions		Pins	1	Limit	:S	
			VDD [V]		min.	typ.	max.	unit
Operating supply voltage	VDD			VDD	3.0		6.0	v
Standby supply voltage	VST	RAM, register hold (*3)		VDD	1.8		6.0	v
"H"-level input voltage	VIH(1)	Output Nch Tr. OFF		Port of OD type (except H0)	0.7VDD		+13.5	V
0	VIH(2)	Output Nch Tr. OFF		Port of PU type (except H0)	0.7VDD		VDD	V
	VIH(3)	Output Nch Tr. OFF		H0 of OD type	0.8VDD		+13.5	v
	VIH(4)	Output Nch Tr. OFF		H0 of PU type	0.8VDD		VDD	v
	VIH(5)			RES	0.8VDD		VDD	v
	VIH(6)	External clock mode		OSC1	0.8VDD		VDD	V
"L"-level input voltage	VIL(1)	Output Nch Tr. OFF	VDD=4 to 6	Port	VSS		0.3VDD	v
	VIL(2)	Output Nch Tr. OFF	VDD=3 to 6	Port	VSS		0.25VDD	V
	VIL(3)	External clock mode	VDD=4 to 6	OSC1	VSS		0.25VDD	V

Parameter	Symbol	Conditions		Pins		Limits	;	
			VDD [V]		min.	typ.	max.	unit
"L"-level input voltage	VIL(4)	External clock mode	VDD=3 to 6	OSC1	VSS		0.2VDD	V
	VIL(5)		VDD=4 to 6	TEST	VSS		0.3VDD	v
	VIL(6)		VDD=3 to 6	TEST	VSS		0.25VDD	v
	VIL(7)		VDD≈4 to 6	RES	VSS		0.25VDD	v
	VIL(8)		VDD=3 to 6	RES	VSS		0.2VDD	v
Operating fre-	fop	When the 1/3	VDD=4 to 6		200		1444	kHz
quency	(Tcyc)	or 1/4 predivider			(20)		(2.77)	(µs)
(cycle time)		option is selected,			200		667	kHz
		clock must not			(20)		(6.0)	(µs)
		exceed 4.33MHz.						
External clock							· ·	-
conditions		Fig.1.						
Frequency	text	When clock	VDD=4 to 6	OSC1	200		4330	kHz
		exceeds 1.444	3 to 6		200		2667	kHz
Pulse width	textH, textL	MHz, the 1/3	VDD=4 to 6	OSC1	69			ns
		or 1/4 pre-	3 to 6		180			ns
Rise/Fall time	textR, textF	divider option	VDD=4 to 6	OSC1			50	ns
		is selected.	3 to 6				100	ns
Oscillation guar-								
anty constants								
2-pin RC	Cext	Fig.2	VDD=3 to 6	OSC1, OSC2		220±5%		pF
oscillation	Cext	Fig.2	VDD=4 to 6	OSC1, OSC2		220±5%		pF
	Rext	Fig.2	VDD=3 to 6	OSC1, OSC2		12±1%		kΩ
	Rext	Fig.2	VDD=4 to 6	OSC1, OSC2		4.7±1%		kΩ
Ceramic		Fig.3				Table 1		
resonator OSC								

3. Electrical Characteristics at Ta=-40 to +85°C, VSS=0V, VDD=3.0V to 6.0V

Parameter	Symbol	Conditions	Pins	Limits				
				min.	typ.	max.	unit	
"H"-level input current	IIH(1)	Output Nch Tr. OFF (including OFF leak current of Nch Tr.) VIN=+13.5V	Port of OD type			+5.0	μA	
	IIH(2)	External clock mode, VIN=VDD	OSC1			+1.0	μA	
"L"-level input current	IIL(1)	Output Nch Tr. OFF VIN=VSS	Port of OD type	-1.0		-	μA	
	IIL(2)	Output Nch Tr. OFF VIN=VSS	Port of PU type	-1.3	-0.35		mA	
	IIL(3)	VIN=VSS	RES	-45	-10		μA	
	IIL(4)	External clock mode, VIN=VSS	OSC1	-1.0			μA	
"H"-level output voltage	VOH(1)	IOH=-50μA VDD=4.0 to 6.0V	Port of PU type	VDD-1.2			V	
	VOH(2)	IOH=-10μA	Port of PU type	VDD-0.5		-	V	

Parameter	Symbol	Conditions	Pins	Limits				
				min.	typ.	max.	unit	
"L"-level output	VOL(1)	IOL=10mA,VDD=4.0 to 6.0V	Port			1.5	v	
voltage	VOL(2)	IOL=1.8mA, IOL of each port: 1mA or less	Port			0.4	v	
Hysteresis voltage	VHIS		RES, OSC1 of schmitt type(*4)		0.1VDD		V	
Current		Output Nch Tr. OFF at						
dissipation 2-pin RC		operating, Port=VDD						
oscillation	IDDOP(1)	Fig.2 fosc=850kHz (TYP) VDD=4 to 6V	VDD		1.0	2.5	mA	
	IDDOP(2)	Fig.2 fosc=400kHz (TYP)	VDD		0.8	2.5	mA	
Ceramic resonator	IDDOP(3)	Fig.3 4MHz, 1/3 predivider VDD=4 to 6V	VDD		1.2	3	mA	
oscillation	IDDOP(4)	Fig.3 4MHz, 1/4 predivider VDD=4 to 6V	VDD		1.2	2.5	mA	
	IDDOP(5)	Fig.3 400kHz	VDD		0.5	2	mA	
	IDDOP(6)	Fig.3 800kHz VDD=4 to 6V	VDD		1.0	2.5	mA	
External clock	IDDOP(7)	200kHz to 667kHz, 1/1 predivider 600kHz to 2000kHz, 1/3 predivider	VDD		1.0	2.5	mA	
	IDDOP(8)	800kHz to 2667kHz, 1/4 predivider	VDD		1.2	3		
		200kHz to 1444kHz, 1/1 predivider 600kHz to 4330kHz, 1/3 predivider 800kHz to 4330kHz, 1/4 predivider, VDD=4 to 6V			1.4	Ū	mA	
Standby	IDDst	Output Nch Tr.OFF VDD=6V	VDD		0.05	10	μA	
mode		Port=VDD VDD=3V	1 1		0.025	5	μA	
Oscillation characteristics Ceramic OSC								
Frequency	fCFOSC	Fig.3 fo=400kHz	OSC1, OSC2	384	400	416	kHz	
	(*5)	Fig.3 fo=800kHz,VDD=4 to 6V	OSC1, OSC2	768	800	832	kHz	
		Fig.3 fo=1MHz VDD=4 to 6V	OSC1, OSC2	960	1000	1040	kHz	
		Fig.3 fo=4MHz,1/3 predivider 1/4 predivider VDD=4 to 6V	OSC1, OSC2	3840	4000	4160	kHz	
Stable time	tCFS	Fig.4 fo=400kHz				10	ms	
		Fig.4 fo=800kHz,1MHz,4MHz, 1/3 predivider, 1/4 predivider				10	ms	
2-pin RC oscillation Frequency	fMOSC	VDD=4 to 6V Fig.2 Cext=220pF ± 5% Fig.2 Rext=4.7kΩ±1% VDD=4 to 6V	OSC1, OSC2	646	850	1117	kHz	
		Fig.2 Cext=220pF±5% Fig.2 Rext=12kΩ±1% VDD=3 to 6V	OSC1, OSC2	304	400	580	kHz	

Parameter	Symbol	Conditions	Pins	Limits			
				min.	typ.	max.	unit
Pull-up							
resistance							
I/O port pull-up	RPP	VDD=5V	Port of PU		14		kΩ
resistance			type				
External reset							
characteristics							
Reset time	tRST				See Fig.5.		
Pin capacitance	Ср	f=1MHz Other than pins					
-	_	to be tested, VIN=VSS			10		pF

- (*1) When oscillated internally under the oscillating conditions in Fig.3, up to the oscillation amplitude generated is allowable.
- (*2) Average over the period of 100ms.
- (*3) Operating supply voltage VDD must be held until the standby mode is entered after the execution of the HALT instruction. The PA3 pin must be free from chattering during the HALT instruction execution cycle.
- (*4) The OSC1 pin can be schmitt-triggered when the 2-pin RC oscillation option or external clock oscillation option has been selected.
- (*5) fCFOSC: oscillation frequency. There is a tolerance of approximately 1% between the center frequency at the ceramic resonator mode and the nominal value presented by the ceramic resonator supplier. For details, refer to the specification for the ceramic resonator.

- Fig. 1 External Clock Input Waveform
- * External clock can be used at selecting 2-pin RC option or 1-pin external clock option, and cannot be used at ceramic resonator oscillation.

Fig. 2 2-pin RC Oscillation Circuit

Fig. 3 Ceramic Resonator Oscillation Circuit

Fig. 4 Oscillation Stabilizing Period

Ceramic Resonator USC									
4MHz (Murata)	C1	33pF±10%							
CSA4.00MG	C2	33pF±10%							
CST4.00MGW (built-in C)	R	0Ω							
4MHz (Kyocera)	C1	33pF±10%							
KBR4.0MSA	C2	33pF±10%							
KBR4.0MKS (built-in C)	R	0Ω							
1MHz (Murata)	C1	100pF±10%							
CSB1000J	C2	100pF±10%							
	R	2.2kΩ							
1MHz (Kyocera)	C1	100pF±10%							
KBR1000F	C2	100pF±10%							
	R	0Ω							
800kHz (Murata)	C1	100pF±10%							
CSB800}	C2	100pF±10%							
	R	2.2kΩ							
800kHz (Kyocera)	C1	100pF±10%							
KBR800F	C2	100pF±10%							
	R	Ω0							
400kHz (Murata)	C1	220pF±10%							
CSB400P	C2	220pF±10%							
	R	2.2kΩ							
400kHz (Kyocera)	C1	330pF±10%							
KBR400BK	C2	330pF±10%							
	R	Ω0							

 Table 1 Constants Guaranteed for	
Ceramic Resonator OSC	

 (Note) When the rise time of the power supply is 0, the reset time becomes 10ms to 100ms at CRES=0.1µF. If the rise time of the power supply is long, the value of CRES must be increased so that the reset time becomes 10ms or more. RC Oscillation Characteristics of the LC6527N, LC6528N

Fig. 6 shows the RC oscillation characteristics of the LC6527N, 6528N. For the variation range of RC OSC frequency of the LC6527N, LC6528N, the following are guaranteed at the external constants only shown below.

1) VDD=3.0V to 6.0V, Ta=-40°C to +85°C External constants Cext = 220 pF Rext = 12 k Ω 304 kHz ≤ fMOSC ≤ 580 kHz 2) VDD=4.0V to 6.0V, Ta=-40°C to +85°C Cext = 220 pF Rext = 4.7 k Ω 646kHz ≤ fMOSC ≤ 1117kHz

If any other constants than specified above are used, the range of Rext= $3k\Omega$ to $20k\Omega$, Cext=150pF to 390pF must be observed. (See Fig.6.)

(*6): The oscillation frequency at VDD=5.0V, Ta=+25°C must be in the range of 350kHz to 750kHz.

(*7) : The oscillation frequency at VDD=4.0 to 6.0V, Ta=-40°C to +85°C and VDD=3.0V to 6.0V,

Ta=-40°C to 85°C must be within the operation clock frequency range.

Fig. 6 RC Oscillation Frequency Data (Typ.)

LC6527F, LC6528F

Parameter	Symbol	Conditions	Pin	Limits	unit
Maximum supply voltage	VDD max		VDD	-0.3 to +7.0	V
Output voltage	VO		OSC2	Allowable up to voltage generated	v
Input voltage	VI(1)		OSC1 (*1)	-0.3 to VDD+0.3	v
	VI(2)	· · ·	TEST, RES	-0.3 to VDD+0.3	V
Input/output	VIO(1)		Port of OD type	-0.3 to +15	V
voltage	VIO(2)		Port of PU type	-0.3 to VDD+0.3	v
Peak output current	IOP		I/O Port	-2 to +20	mA
Average output current	IOA	Per pin over the period of 100ms	I/O Port	-2 to +20	mA
	ΣIOA(1)	Total current of PA0 to 3, (*2)	PA0 to 3	-6 to +40	mA
	ΣIOA(2)	Total current of PC0 to 3, PD0 to 3, PH0 (*2)	PC0 to 3 PH0 PD0 to 3	-14 to +90	mA
Allowable power	Pd max(1)	Ta=-40 to +85°C (DIP package)	-	250	mW
dissipation	Pd max(2)	Ta=-40 to +85°C (MFP package)*		150	mW
Operating temperature	Topg			-40 to +85	°C
Storage temperature	Tstg			-55 to +125	°C

1. Absolute Maximum Ratings at Ta=25°C, VSS=0V

* Under development. Do not immerse the package in the solder dip tank when mounting the MFP on the substrate.

Parameter	Symbol	Conditions	Pin	Limits			
				min.	typ	max.	unit
Operating supply voltage	VDD		VDD	4.5		6.0	V
Standby supply voltage	VST	RAM, register hold (*3)	VDD	1.8		6.0	V
"H"-level input voltage	VIH(1)	Output Nch Tr. OFF	Port of OD type (except H0)	0.7VDD		+13.5	v
	VIH(2)	Output Nch Tr. OFF	Port of PU type (except H0)	0.7VDD		VDD	v
	VIH(3)	Output Nch Tr. OFF	H0 of OD type	0.8VDD		+13.5	v
	VIH(4)	Output Nch Tr. OFF	H0 of PU type	0.8VDD		VDD	v
	VIH(5)		RES	0.8VDD		VDD	v
	VIH(6)	External clock mode	OSC1	0.8VDD		VDD	v

Parameter	Symbol	Conditions	Pin		Limits		
				min.	typ.	max.	unit
"L"-level input	VIL(1)	Output Nch Tr. OFF	Port	VSS		0.3VDD	v
voltage	VIL(2)	External clock mode	OSC1	VSS		0.25VDD	v
Ū	VIL(3)		TEST	VSS		0.3VDD	v
	VIL(4)		RES	VSS		0.25VDD	v
Operating	fOP	· · · · · · · · · · · · · · · · · · ·		200		4330	kHz
frequency	(Tcyc)			(20)		(0.92)	(μs)
(Cycle time)	_						
External clock							
conditions							
Frequency	text)	OSC1	200		4330	kHz
Pulse width	textH, textL	> Fig. 1	OSC1	69		1	ns
Rise/fall time	textR, textF		OSC1			50	ns
Oscillation guar-							
anteed constants							
ceramic		Fig. 2		Se	e Tabl	e 1.	
resonator OSC		-					

3. Electrical Characteristics at Ta=-40°C to +85°C, VSS=0V, VDD=4.5 to 6.0V

Parameter	Symbol	Conditions	Pin		Limits		-
				min.	typ.	max.	unit
"H"-level input	IIH(1)	Output Nch Tr. OFF	Port of OD type			+5.0	μA
current		(including OFF leak					
		current of Nch Tr.)				1	
		VIN=+13.5V					
	IIH(2)	External clock mode,	OSC1			+1.0	μA
		VIN=VDD					
"L"-level input	IIL(1)	Output Nch Tr. OFF	Port of OD type	-1.0			μA
current		VIN=VSS					
	IIL(2)	Output Nch Tr. OFF	Port of PU type	-1.3	-0.35		mA
		VIN=VSS					
	IIL(3)	VIN=VSS	RES	-45	-10		μΑ
	IIL(4)	External clock mode,	OSC1	-1.0			μA
		VIN=VSS					
"H"-level output	VOH(1)	IOH=-50μA	Port of PU type	VDD-1.2			V
voltage	VOH(2)	IOH=-10μA	Port of PU type	VDD-0.5			V
"L"-level output	VOL(1)	IOL=10mA	Port			1.5	V
voltage	VOL(2)	IOL=1.8mA, IOL of each	Port			0.4	v
_		port : 1mA or less		· · · · · · · · · · · · · · · · · · ·			
Hysteresis	VHIS		RES,		0.1VDD		v
voltage			OSC1 of schmitt]		
-			type (*4)				

Parameter	Symbol	Conditions	Pin		Limits		
				min.	typ.	max.	unit
Current							
dissipation							
Ceramic	IDDOP(1)	Fig. 2 4MHz	VDD		1.5	3.5	mA
resonator OSC		· *1					
External clock	IDDOP(2)	200kHz to 4330kHz	VDD		1.5	3.5	mA
		*1 Output Nch Tr. OFF at					
		Operating mode					
		Port=VDD					
Standby mode	IDDst	Output Nch VDD=6V	VDD		0.05	10	μA
		Tr. OFF					
		Port=VDD VDD=3V	VDD		0.025	5	μA
Oscillation				1			
characteristics							
Ceramic							
resonator OSC							
Frequency	fCFOSC	Fig.2 fo=4MHz (*5)	OSC1, OSC2	3840	4000	4160	kHz
Stable time	tCFS	Fig.3 fo=4MHz				10	ms
Pull-up			5				
resistance				1			
I/O port pull-	RPP	VDD=5V	Port of PU	1	14		kΩ
up resistance			type				
External reset							1
characteristics			1				
Reset time	tRST			ļ	See Fig. 4.		<u> </u>
Pin capacitance	Ср	f=1MHz, other than pins			10		pF
		to be tested, VIN=VSS					

- (*1) When oscillated internally under the oscillating conditions in Fig.2, up to the oscillation amplitude generated is allowable.
- (*2) Average over the period of 100ms.
- (*3) Operating supply voltage VDD must be held until the standby mode is entered after the execution of the HALT instruction. The PA3 pin must be free from chattering during the HALT instruction execution cycle.
- (*4) The OSC1 pin can be schmitt-triggered when the external clock oscillation option has been selected.
- (*5) fCFOSC : Oscillatable frequency.

Fig. 1 External Clock Input Waveform

Fig. 2 Ceramic resonator OSC circuit

Table 1.	Cons	tants	Guaranteed for
	-	_	

Ceramic Resonator OSC						
4MHz (Murata)	C1	33pF ± 10%				
CSA4.00MG	C2	33pF±10%				
CST4.00MGW (built-in C)	R	Ω0				
4MHz (Kyocera)	C1	33pF ± 10%				
KBR4.0MSA	C2	33pF±10%				
KBR4.0MKS (built-in C)	R	Ω0				

Fig. 3 OSC Stabilizing Period

(Note) When the rise time of the power supply is 0, the reset time becomes 10ms to 100ms at CRES=0.1µF. If the rise time of the power supply is long, the value of CRES must be increased so that the reset time becomes 10ms or more.

LC6527L, LC6528L

Parameter	Symbol	Conditions	Pin	Limits	unit
Maximum	VDD max		VDD	-0.3 to 7.0	V
supply voltage					
Output voltage	VO		OSC2	Allowable up to	v
				voltage generated	
Input voltage	VI(1)		OSC1 (*1)	-0.3 to VDD+0.3	V
	VI(2)		TEST, RES	-0.3 to VDD+0.3	V
Input/output	VIO(1)		Port of OD type	-0.3 to +15	v
voltage	VIO(2)		Port of PU type	-0.3 to VDD+0.3	V
Peak output	IOP		I/O Port	-2 to +20	mA
current		·			
Average output	IOA	Per pin over the period of	I/O Port	-2 to +20	mA
current		100ms			
	∑IOA(1)	Total current of PA0 to 3,	PA0 to 3	-6 to +40	mA
		(*2)			
	<u>Σ</u> ΙΟΑ(2)	Total current of PC0 to 3,	PC0 to 3 PH0	-14 to +90	mA
		PD0 to 3, PH0	PD0 to 3		
		(*2)			
Allowable	Pd max(1)	Ta=-40 to +85°C	-	250	mW
power		(DIP package)			
dissipation	Pd max(2)	Ta=-40 to +85°C		150	mW
		(MFP package)*			
Operating	Topr	· · ·		-40 to +85	°C
temperature	-				
Storage	Tstg			-55 to +125	°C
temperature					

1. Absolute Maximum Ratings at Ta=25°C, VSS=0V

* Under development. Do not immerse the package in the solder dip tank when mounting the MFP on the substrate.

2. Allowable Operating Conditions at Ta=-40°C to 85°C, VSS=0V, VDD=2.2 to 6.0V

Parameter	Symbol	Conditions	Pin	Lin	Limits				
				min.	typ.	max.	unit		
Operating supply voltage	VDD		VDD	2.2		6.0	v		
Standby supply voltage	VST	RAM, register hold (*3)	VDD	1.8		6.0	v		
"H"-level input voltage	VIH(1)	Output Nch Tr. OFF	Port of OD type (except H0)	0.7VDD		+13.5	V		
_	VIH(2)	Output Nch Tr. OFF	Port of PU type (except H0)	0.7VDD		VDD	V		
	VIH(3)	Output Nch Tr. OFF	H0 of OD type	0.8VDD		+13.5	v		
ĺ	VIH(4)	Output Nch Tr. OFF	H0 of PU type	0.8VDD		VDD	V		
	VIH(5)		RES	0.8VDD		VDD	v		
	VIH(6)	External clock	OSC1	0.8VDD		VDD	V		
"L"-level input	VIL(1)	Output Nch Tr. OFF	Port	VSS		0.2VDD	v		
voltage	VIL(2)	External clock	OSC1	VSS		0.15VDD	v		
-	VIL(3)		TEST	V5S		0.2VDD	v		
	VIL(4)		RES	VSS		0.2VDD	v		

.

Parameter	Symbol	Conditions	Pin	Limits			
	_			min.	typ.	max.	unit
Operating	fOP	When the 1/3 or 1/4		200		1040	kHz
frequency	(Tcyc)	predivider option is selected,		(20)		(3.84)	(μs)
(cycle time)	_	clock must not exceed		1			
-		4.16MHz.					
External Clock							
conditions							
Frequency	text	Fig.1 When clock exceeds	OSC1	200	1	4160	kHz
Pulse width	textH, textL	1.040MHz, the 1/3 or 1/4	OSC1	100	1		ns
Rise/fall time	textR, textF	predivider option is selected.	OSC1			100	ns
Oscillation							
guaranteed							
constants							
2-pin RC	Cext	Fig.2	OSC1, OSC2	:	220 ± 5	%	pF
oscillation	Rext				12±1	%	kΩ
Ceramic		Fig.3		Se	ee Tabl	e 1.	
oscillation							

3. Electrical Characteristics at Ta=-40°C to +85°C, VSS=0V, VDD=2.2 to 6.0V

Parameter	Symbol	Conditions	Pin		Limits				
			-	min.	typ.	max.	unit		
"H"-level input current	lIH(1)	Output Nch Tr. OFF (including OFF leak current of Nch Tr.) VIN=+13.5V	Port of OD type			+5.0	μA		
	IIH(2)	External clock mode, VIN=VDD	OSC1			+1.0	μA		
"L"-level input current	IIL(1)	Output Nch Tr. OFF VIN=VSS	Port of OD type	-1.0			μA		
	IIL(2)	Output Nch Tr. OFF VIN=VSS	Port of PU type	-1.3	-0.35		mA		
	IIL(3)	VIN=VSS	RES	-45	-10		μA		
	IIL(4)	External clock mode, VIN=VSS	OSC1	-1.0			μA		
"H"-level output voltage	VOH	IOH=-10µА	Port of PU type	VDD-0.5			v		
"L"-level output	VOL(1)	IOL=3mA	Port			1.5	V		
voltage	VOL(2)	IOL=1mA, IOL of each port: 1mA or less	Port			0.4	v		
Hysteresis voltage	VHIS		RES, OSC1 of Schmitt type (*4)		0.1VDD		v		

.

Parameter	Symbol	Conditions	Pin		Limits		
				min.	typ.	max.	unit
Current		Output Nch Tr. OFF at					
dissipation		operating, Port=VDD					
2-pin RC OSC	IDDOP(1)	Fig.2 fOSC=400kHz (TYP)	VDD		0.8	2.5	mA
Ceramic OSC	IDDOP(2)	Fig.3 4MHz, 1/4predivider	VDD		1.2	2.5	mA
	IDDOP(3)	Fig.3 4MHz, 1/4predivider	VDD		0.5	1	mA
		VDD=2.2V					
	IDDOP(4)	Fig.3 400kHz	VDD		0.5	2	mA
	IDDOP(5)	Fig.3 800kHz	VDD		1.0	2.5	mA
External clock	IDDOP(6)	200kHz to 667kHz,	VDD		1.0	2.5	mA
		1/1 predivider	1		}		
		600kHz to 2000kHz,					
		1/3 predivider					
		800kHz to 2667kHz,					
		1/4 predivider			ł		
Standby mode	IDDst	Output Nch Tr. OFF			1		
·····, ····		VDD=6V	VDD		0.05	10	μА
		Port=VDD VDD=2.2V	VDD		0.025	5	μΑ
Oscillation				-			
characteristics							ł
Ceramic OSC							1
Frequency	fCFOSC	Fig.3 fo=400kHz	OSC1, OSC2	384	400	416	kHz
,	(*5)	Fig.3 fo=800kHz	OSC1, OSC2	768	800	832	kHz
		Fig.3 fo=1MHz	OSC1, OSC2	9 60	1000	1040	kHz
		Fig.3 fo=4MHz,	OSC1, OSC2	3840	4000	4160	kHz
		1/4 predivider					
Stable time	tCFS	Fig.4 fo=400kHz			<u>† </u>	10	ms
otuble time		Fig.4 fo=800kHz, 1MHz,				10	ms
		4MHz, 1/4 predivider					
2-pin RC OSC					+		
Frequency	fMOSC	Fig.2 Cext=220pF±5%	OSC1, OSC2	281	400	580	kHz
requency	INCOC	Fig.2 Rext= $12k\Omega \pm 1\%$	0001,0001	201			
Pull-up		11g.2 Rext=128221170					
resistance	1						
I/O port pull-	RPP	VDD=5V	Port of PU type		14		kΩ
	NTT .		1 on on o type		17		
up resistance External reset		·····			l	I	
characteristics							
	1DCT				Saa Eir	5	
Reset time	tRST		· · · · · · · · · · · · · · · · · · ·		See Fig.	J. T	
Pin capacitance	Ср	f=1MHz, Other than pins			10		pF
		to be tested, VIN=VSS					<u> </u>

(*1) When oscillated internally under the oscillating conditions in Fig.3, up to the oscillation amplitude generated is allowable.

(*2) Average over the period of 100ms.

(*3) Operating supply voltage VDD must be held until the standby mode is entered after the execution of the HALT instruction. The PA3 pin must be free from chattering during the HALT instruction execution cycle.

- (*4) The OSC1 pin can be schmitt-triggered when the 2-pin RC oscillation option, or external clock oscillation option has been selected.
- (*5) fCFOSC : Oscillatable frequency. There is a tolerance of approximately 1% between the center frequency at the ceramic resonator mode and the nominal value presented by the ceramic resonator supplier. For details, refer to the specification for the ceramic resonator.

Fig. 1 External Clock Input Waveform

* External clock can be used at selecting 2-pin RC option or 1-pin external clock option, and cannot be used at ceramic resonator oscillation.

Fig. 2 2-pin RC Oscillation Circuit

Fig. 3 Ceramic Resonator Oscillation Circuit

Ceramic Reso		
4MHz (Murata)	C1	33pF±10%
CSA4.00MGU	C2	33pF±10%
CST4.00MGWU (built-in C)	R	0Ω
1MHz (Murata)	C1	100pF±10%
CSB1000J	C2	100pF±10%
	R	2.2kΩ
1MHz (Kyocera)	C1	100pF±10%
KBR1000F	C2	100pF±10%
	R	0Ω
800kHz (Murata)	C1	100pF±10%
CSB800J	C2	100pF±10%
	R	2.2kΩ
800kHz (Kyocera)	C1	100pF±10%
KBR800F	C2	100pF±10%
	R	0Ω
400kHz (Murata)	C1	220pF±10%
CSB400P	C2	220pF±10%
	R	2.2kΩ
400kHz (Kyocera)	C1	330pF±10%
KBR400BK	C2	330pF±10%
	R	Ω0

Table 1	Constants Guaranteed for
	Ceramic Resonator OSC

Fig. 5 Reset Circuit

RC Oscillation Characteristic of the LC6527L, 6528L

Fig. 6 shows the RC oscillation characteristic of the LC6527L, 6528L. For the variation range of RC OSC frequency of the LC6527L, 6528L, the following are guaranteed at the external constants only shown below.

VDD=2.2V to 6.0V, Ta=-40°C to +85°C

External constants Cext = 220 pF Rext = 12 k Ω 281 kHz \leq fMOSC \leq 580 kHz

If any other constants than specified above are used, the range of Rext=3k Ω to 20k Ω , Cext=150pF to 390pF must be observed. (See Fig. 6.)

- (*6): The oscillation frequency at VDD=5.0V, Ta=+25°C must be in the range of 350kHz to 500kHz.
- (*7): The oscillation frequency at VDD=2.2 to 6.0V and Ta=-40°C to +85°C must be within the operation clock frequency range.

Fig. 6 RC Oscillation Frequency Data (Typ.)

Notes for Program Evaluation

.

• When evaluating the LC6527/28 with the evaluation chip (LC6596, LC65PG23/26), the following must be observed.

ion Lon	ltem	Fu	nction	
Classi- fication	rtetti	Mass-production chip	Notes for evaluation	
	2-pin OSC	PHO and OSC2 share one pin (PHO/OSC2). Either of them is selected exclusively by user option. When 2-pin OSC is selected, PHO/OSC2 pin provides OSC2 and performs no function as PHO port. Data input to PHO/OSC2 by mistake is always read as "O".	Evaluation chip has PHO and OSC2 separately. Pin required for option is selected as required. Even when OSC2 pin is selected by option, PHO circuit is present and functions as complete port PHO.	Since input/output at PH0 on evaluation chip results in difference between evaluation chip operation and mass-produc- tion chip operation, input/ output at PH0 is prohibited.
	OSC predivider	3 selections (1/1, 1/3, 1/4) by option.	3 selections (1/1, 1/3, 1/4) available by 2 pins of DIV pin, 30R4 pin.	DIV pin, 30R4 pin must be set according to option specified for mass-production chip.
Notes for option	Ports C, D output level at reset mode	Ports C, D can be brought to "H" or "L" in a group of 4 bits.	Port C and port D can be brought to "H" and "L" by CHL pin and DHL pin respectively.	CHL pin and DHL pin must be set according to option specified for mass-production chip.
Note	Port output configura- tion PU/OD	PU or OD can be selected bitwise.	Only OD without PU.	[LC6596-applied evaluation] External resistor (15kohms) on evaluation board must be con- nected to necessary port. [Piggyback-applied evaluation] Resistor must be connected to necessary port on application board.
	PU resistor configu- ration	PU resistor brought to Hi-Z (Pch Tr to turn OFF) at "L" output mode.	PU resistor, being external resistor, whose impedance remains unchanged at "L" output mode.	For mass-production chip, leakage current only flows in Pch Tr at "L" output mode; for evaluation chip, current continues flowing in PU resistor at "L" output mode.
	OSC constants -1	[2-pin RC OSC] Catalog-guaranteed constants provide OSC at frequency specified in catalog.	[2-pin RC OSC] Different from mass-produc- tion chip in circuit design and characteristic.	[2-pin RC OSC] Frequency must be adjusted to OSC frequency of mass-produc- tion chip by adjusting variable resistor.
Notes for OSC		[2-pin ceramic resonator OSC] Catalog-guaranteed constants provide OSC at frequency specified in catalog.	[2-pin ceramic resonator OSC] Different from mass-produc- tion chip in circuit design and characteristic. Wiring capacitance may provide unstable OSC.	[2-pin ceramic resonator OSC] External constants must be fine-adjusted according to service conditions.
	OSC constants -2 (Note)	[2-pin ceramic resonator OSC] Feedback resistor is contained.	[2-pin ceramic resonator OSC] No feedback resistor is contained.	[2-pin ceramic resonator OSC] For evaluation chip, feedback resistor of 1Mohm must be connected externally.

Continued on next page.

edina page.	
1	eding page.

-u	Item	Fu	Notes for evaluation			
Classi- fication	TUBIN	Mass-production chip	Evaluation chip			
	OSC frequency	OSC frequency characteristic as indicated in catalog.	Different from mass-produc- tion chip in circuit design, and characteristic.	ES, CS must be used to evaluate characteristic in detail.		
Notes for electrical characteristics	Operating current, standby current	Current characteristic as indicated in catalog.	Different from mass-produc- tion chip in circuit design, characteristic.			
notes	Type No. setting	LC6527/28 differ in ROM, RAM.	ROM, RAM to be used according to Type No. are set by INSTC, MEMC.	INSTC, MEMC are set according to Type No. of mass-production chip.		
Other	Evaluation chip pin setting		Input pin RSTC, which is not provided in mass-production chip, is provided.	SW4 on evaluation board must remain turned OFF.		

Note) When the evaluation chip is used in the 2-pin ceramic resonator OSC mode, no feedback resistor is contained unlike the mass-production chip. Connect a feedback resistor of 1Mohm externally as shown below. Since constants R, C are also differ from those for the mass-production chip, refer to Table 1 and adjust the capacitor value according to the stray capacitance of the circuit.

Fig. 1 2-Pin Ceramic Resonator OSC Circuit for Evaluation Chip and Mass-production Chip

LC6527N/F/L, LC6528N/F/L

	<u></u>	Mass-production	Evaluation chip (*)					
Ceramic resonator		chip C1=C2		pacitance of e(FAS-20-03B)	Including no capacitance o standard cable(FAS-20-03B			
			C1=C2	R	C1=C2	R		
	CSA4.00MG (Murata)		8pF	Ω0	33pF	0Ω		
4MHz	KBR4.0MS (Kyocera)	33pF	8pF	Ω0	33pF	0Ω		
	CSB1000K (Murata)	(UsingCS81000D) 100pF	82pF	2.2kΩ	100pF	2.2kΩ		
1MHz	KBR1000H (Kyocera)	100pF	82pF	2,2kΩ	100pF	2.2kΩ		
	CSB800K (Murata)	(Using CSB800D) 100pF	120pF	2.2kΩ	150pF	2.2kΩ		
800kHz	KBR800H (Kyocera)	100pF	120pF	2.2kΩ	150pF	2.2kΩ		
400k Hz	CSR400D (Museta)	330pF	220pF	3,3kΩ	270pF	3 .3kΩ		
	KBR400B (Kyocera) KBR400H	150pF	330pF	1.0kΩ	330pF	1.0kΩ		

Table 1 Reference Values of Constants R, C

- (*) Standard cable (FAS-20-03B) is a cable attached to target board EVA-TB6523C/26C/27C/28C. Table 1 shows two cases where the capacitance of the cable is included and no capacitance of the cable is included.
 - Example where the capacitance of the cable is included The capacitance of the cable is included when the resonator is connected to the user's application board through the cable from the EVA-TB6523C/26C/27C/28C.
 - Example where no capacitance of the cable is included No capacitance of the cable is included when the resonator is placed near the evaluation chip (on the EVA-TB6523C/26C/27C/28C).

When using any other cable than the attached cable, adjust the capacitor value according to the stray capacitance.

LC6527, 6528 INSTRUCTION SET (BY FUNCTION)

Symbol	Description
DAILIDOI.	001010101

E

M M(DP)

AC ACt CF DP : Accumulator : Accumulator bit t : Carry flag

: Data pointer : E register

; Memory

- : Input/output port addressed by DP_L : Program counter : Stack register
- PIDP_L) PC STACK
- TM TMF

; Timer ; Timer (internal) interrupt request flag

ZF

: Zero flag

: Memory addressed by DP

--+ : Addition : Subtraction -

(), [] : Contents

: Exclusive OR ¥

: Transfer and direction

		Magnonia	Instruction code		표 분 Evertion		Function	Description	Status flag	Remarke
dnous		Mnemonic		D3D2D1D0	ž	δ	, senserativ		affected	. <u>. </u>
	CLA	Clear AC	1100	0000	1	1	AC - O	The AC contents are cleared.	ZF	*!
f	CLC	Clear CF	1110	0001	1	1	CF ←0	The CF contents are cleared.	CF	
ł	STC	Set CF	1111	0001	1	1	<u>CF 1</u>	The CF is set.	CF	
ŀ	CMA	Complement AC	1110	1011	1	1	AC - (AC)	The AC contents are complemented.	ZF	
instructions	INC	Increment AC	0000	1 1 1 0	1	1	AC -(AC) +1	The AC contents are incremented +1.	ZF CF	
instructions	DEC	Decrement AC	0000	1111	1	þ.	AC ←(AC) - 1	The AC contents are decremented -1.	ZF CF	
Ē		Transfer AC to E	0000	0011	1	1	E ←(AC)	The AC contents are transferred to the E.		
- F	XAE	Exchange AC with E	0 0 0 0	1101	1	1	(AC) ≒(E)	The AC contents and the E conents are exchanged.		
	INM	Increment M	0010	1 1 1 0	1	1	M(DP) ← (M(DP)) +1	The M(DP) contents are incremented +1.	ZF CF	
ŀ	DEM	Decrement M	0010	1111	1	1	M(DP) ← (M(DP)) +1	The M(DP) contents are decremented -1.	ZF CF	
instructions	SMB bit	Set M data bit	0000	1 0 8,8 ₀	1	1	M(DP, B+Bo) -1	A single bit of the M(DP) specified with B ₁ B ₀ is set.		
matruct	RMB bit	Reset M data bit	0010	1 O B 1 B 0	1	1	M(DP, B₁B₀) ←0	A single bit of the M(DP) specified with B ₁ B ₀ is reset.	ZF	
	AD	Add M to AC	0110	0000	1	1	AC -(AC) + (M(DP))	Binery addition of the AC contents and the M(DP) contents is performed and the result is stored in the AC. Binery addition of the AC, CF contents	ZF CF	
	ADC	Add M to AC with CF	0010	0000	1	1	AC (AC) + [M(DP)] +(CF)	and the M(DP) contents is performed and the result is stored in the AC.	ZF CF	
şuo	DAA	Decimal adjust AC in addition	1 1 1 0	0110	1	1	AC -(AC) + 6	6 is added to the AC contents.	ZF	
natructi	DAS	Decimal adjust AC in subtraction	1110	1010	, 	1	AC ←(AC)+10	10 is added to the AC contents. The AC contents and the M(DP) contents	ZF	
arizon i	EXL	Exclusive or M to AC	ļ	0101		Ļ	AC ←(AC) ¥ (M(DP))	are exclusive-Offed and the result is stored in the AC. The AC contents and the M(DP) contents	ZF ZF CF	
Arithmetic operation/comparizon instructions	СМ	Compare AC with M	1 1 1 1 				(M(DP))+(AC)+1	are compared and the CF and 2F are set/rest. Comparison result CF ZF $[M(DP)] \ge (AC) = 0 = 0$ [M(DP)] = [AC) = 1 = 1 $[M(DP)] \le (AC) = 1 = 0$		
Arithm	C1 data	Compare AC with immediate data	00100	1 1 0 0 1312110	2	2	1312110 +(AC)+1	The AC contents and the immediate data $[a_1a_1]_1[a$ are compared and the ZF and CF are set/reset. Comparison result CF ZF $1_3 1_2 1_1 1_0 > (AC) = 0$ $1_3 1_2 1_1 1_0 = (AC) = 1$ $1_3 1_2 1_1 1_0 < (AC) = 1$	ZF CF	
Load/store instructions	LI data	Load AC with immediate data	1100	13121110	1	1	AC -13121110	The immediate data 13121110 is loaded in the AC.	2+	* 1
Ϋ́́	\$	Store AC to M	0000	0010	1	ĩ	M(DP) + (AC)	The AC contents are stored in the M(DP)		_
<u>s</u> ĕ	i.	Load AC from M	0010	0001	1	1	AC ← (M(DP))	The M(DP) contents are loaded in the AC	ZF	_ _
	LDZ data	Load DPH with Zero an DPL with immediate data respectively	d 1 0 0 0	13 12 11 10	1	1	DP+ ←0 DP1 ←13121110	The DP _H and DP _L are loaded with 0 and the Immediate data 1 ₃ 1 ₂ 1 ₁ 0 respectively.		
pointer manipulation actions	LHI data	Load DPH with immediate data	0100	0 0 1 1 10	1	۱	DPH - 11 IO	The DP_H is loaded with the immediate date 1_1I_0 .		
ter n	IND	Increment DPL	1110	1110	1	1	$DP_L \leftarrow (DP_L) + 1$	The DPL contents are incremented +1.	ZF	
Date pointer instructions	DED	Decrement DPL	1 1 1 0	1111	J	1	$DP_L \leftarrow (DP_L) - 1$	The DPL contents are decremented -1.	ZF	
at a	TAL	Transfer AC to DPL	1111	0 1 1 1	1	1	$DP_{L} \leftarrow (AC)$	The AC contents are transferred to the DI		
0.9	TLA	Transler DPL to AC	1110	1001]	1	AC ←(DPL)	The DPL contents are transferred to the A	Y ZF	
uctions	JMP addr	Jump	0 1 1 0 P7P6P5P	1 0 Pg Pi 4 Pg Pg Pi Po		2	PC - P9 P8 P7 P8 P5 P4 P3 P2 P1 P0	A jump to the address specified with immediate data $P_9P_8P_7P_6P_5P_4P_3P_1P_0$ occurs.	2	
Jump/subroutine instructions	CZP addr	Call subroutine in the zero page	1011				PC 9~6 PC 1 ~0 ←0 PC 5~2 ← P3 P2 P1 P0	A subroutine in page 0 is called,		
nduz/gmu	CAL addr	Call subroutine	1 0 1 0 P7P6P5P) 1 0 Pg P 4 1P3 P2 P1 P	9 0	2	2 STACK ← (PC) + 2 PC 9~0 ← P6P5P4P3P2P1P0	A subroutine is called.		
Ť	RT	Return from subroutin	0 1 1 0	0010	t	, †	PC + (STACK)	A return from a subroutine occurs.		

Instruction group		Mnemonic	Instruct	ion code	Bytes	<u>ie</u>	Function	Description	Status flag	Remarks
			D 7 D 6 O 5 D 4	D3 D2 D1 D0	é	δ			affected	
	BA1 addr	Branch on AC bit	0 1 1 1 P;P6P5P4	0 0 1110 P3P2P1P0	2	2	$PC7 \sim 0 \leftarrow P \gamma P_6 P_5 P_4$ $P \exists P_2 P_1 P_0$ $if ACi = 1$	If a single bit of the AC specified with the immediate date $t_1 t_0$ is 1, a branch to the address specified with the immediate date $P_7 P_8 P_8 P_3 P_2 P_1 P_0$ within the same		Mnemonic is BA0 to BA3 according to the value of t.
	BNA1 addr	Branch on no AC bit	00)1 P7P6P5P4		2	2	$PC_{2} \sim_{0} \leftarrow P_{2} P_{6} P_{5} P_{4}$ $P_{3} P_{2} P_{1} P_{0}$ $11 AC_{1} = 0$	page occurs. If a single bit of the AC specified with the immediate date $t_1 t_0$ is 0, a branch to the address specified with the immediate date $P_7 P_8 P_6 P_4 P_3 P_2 P_1 P_0$ within the seme page occurs.		Mnemonic is BNAD to BNA3 according to the value of 1.
	BMt addr	Branch on M bit	0 1 1 1 ₽7₽6₽5₽₫	0 1 t 1 t 0 P3 P2 P1 P0	2	2	$PC_{7\sim0} \leftarrow P_{7}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ $P_{1}(M(DP, t_{1}t_{0})) = 1$	If a single bit of the M(DP) specified with the immediate data $t_1 t_0$ is 1, a branch to the address specified with the immediate data $P_7 P_6 P_6 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		Mnemonic is BMO to BM3 according to the value of 1.
	BNMt addr	Branch on no M bit		0 1 tito P3 P2 P1 Po	2	2	$PC_{7 \sim 0} = P_7 P_5 P_5 P_4$ $P_3 P_2 P_1 P_0$ $rt (M(DP, t_1 t_0^1) = 0$	If a single bit of the M(DP) specified with the immediate date t_1t_0 is 0, a branch to the address specified with the immediate date $P_2P_6P_6P_4P_3P_2P_1P_0$ within the same page occurs.		Mnemonic is BNMO to BNM3 according to the value of 1.
	BPi addr	Branch on Port bit		1 Otito PjPzPiPo	2	2	$PC_7 \sim_0 \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ if $(P(DP_1 i t_0)) = 1$	If a aling is bit of port $P(DP_L)$ specified with the immediate data $t_1 \tau_0$ in 1, a branch to the address specified with the immediate data $P_7 P_8 P_5 A_2 P_2 P_1 P_0$ within the same page occurs.		Mnemonic is BPO to BP3 scoording to the value of 1.
	BNP1 addr	Branch on no Port bit		1 Otsto P3 P2 P1 P0		2	$PC_{7} \sim_{0} \leftarrow P_{7} P_{6} P_{5} P_{4}$ $P_{3} P_{2} P_{1} P_{0}$ $if (P(DP_{1}, t_{1} t_{0})) = 0$	If a single bit of port $P(DP_L)$ specified with the Immediate data $_{170}$ is 0, a branch to the address boostified with the Immediate data $P_7 a_7^P a_7^P a_7^P a_7^P a_7^P a_7^P$ within the same page occurs.		Mnemonic is BNPD to BNP3 according to the velue of 1,
	BTM addr	Branch on timer	O 1 1 1 P7P6P5P4	1 1 0 0 P3P2P1P0	2	2	$PC_{2} \sim_{0} \leftarrow P_{1}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ (1 TMF = 1 then TMF $\leftarrow 0$	If the TMF is 1, a branch to the address specified with the immediate data $P_7P_6P_6P_4P_3P_2P_1P_0$ within the same page occurs. The TMF is reset.		
	BNTM addr	Branch on no timer	0 0 1 1 P7P6P5P4	1 1 0 0 P3P7P1P0	2	2	$PC_{7\sim0} \leftarrow P_{7}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ if TMF = 0 then TMF $\leftarrow 0$	If the TMF is 0, a branch to the address specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs. The TMF is reset.	TMF	
	BC addr	Branch on CF		1 1 1 1 P3P2P1P0	2	2	$PC_7 \sim_0 \leftarrow P_7 P_8 P_5 P_4$ $P_3 P_2 P_1 P_0$ $H CF = 1$	If the CF is 1, a branch to the address specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs.		
	BNC addr	Branch on no CF.	0 0 1 1 P7P6P5P4	1 1 1 1 P3P2P1P0	2	2	$PC_{7 \rightarrow 0} \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ $(f CF = 0$	If the CF is 0, a branch to the address specified with the immediate data P7P6P5P4P3P2P1P0 within the same page occurs.		
	BZ addr	Branch on ZF	0 1 1 1 P7P6P5P4	1 1 1 0 P3P2PiP0	2		$\begin{array}{c} PC_{7} \sim_{0} \sim P_{7} P_{6} P_{5} P_{4} \\ P_{3} P_{2} P_{1} P_{0} \\ cl ZF = 1 \end{array}$	If the ZF is 1, a branch to the address specified with the immediate data $P_7 P_8 P_5 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		
	BNZ addr	Branch on no ŻF	0 0 1 1 P7P6P5P4	1 1 1 0 P3P2P1P0			$PC7\sim_0 \leftarrow PTP6P5P4$ $P3P2P1P0$ $I1 ZF = 0$	If the ZF is 0, a branch to the address specified with the immediate date $P_7 P_6^{P} F_6^{P} A_7^{P} 2^{P} 1^{P} 0$ within the same page occurs.		
1 SE	1P	Input port to AC	0000	1 1 0 0	<u> </u>	+	AC ← (P(DPU)	Port P(DPL) contents are loaded in the AC.		
put instructions	OP SPB bit	Output AC to port		0 0 0 1 0 1 B1B0	1	1	$P(DP_L) \leftarrow (AC)$ $P(DP_L B B B) \leftarrow 1$	The AC contents are outputted to port P{D A single bit in port P{DP} + specified with the immediate data B_1B_0 is set.		When this instruction is secured, the E contents are destroyed.
Input/Output ins	RPB bit	Reset port bit	0010	O 1 B1 B0	1	2	P(DPL.B1B0) ←0	A single bit in port $P(DP_L)$ specified with the immediate data B_1B_0 is reset.	ZF	When this Instruction is executed, the E contents are destroyed
tions	WTTM	Write timer	1 1 1 1	1001	1	1	TM←(Ê).(AC) TMF ←0	The E and AC contents are loaded in the timer. The TMF is reset.	TMF	
Other instructions	HALT	Halt	111	0110	1	1	Hał1	All operations stop.		Only when all pins of port PA are set at L, stop.
ð	NOP	No operation	0000	0000	1	1	No operation	No operation is performed, but 1 mechine cycle is consumed.		

*1 If the CLA instruction is used continuously in such a menner as CLA, CLA, -----, the first CLA instruction only is effective and the following CLA instructions are changed to the NOP instructions. This is also true of the L1 instruction.

(The following instructions, which are included in the instruction set of the LC6523, 6526, are excluded) AND, BFn, BI, BNFn, BNI, CLI, JPEA, OR RAL, RCTL, RFB, RTI, RTBL, SCTL, SFB, X, XAH, XAO, XA1, XA2, XA3, XD, XH0, XH1, XI, XL0, XL1, XM

LC6527N/F/L, 6528N/F/L Option Code Specifying Method

General Description

It is requested that you should submit to us various mask options of the LC6527N/F/L, LC6528N/F/L together with the program code which are stored in an EPROM.

By using our cross assembler for the LC6527, 6528, the option code can be specified interactively and stored in the EPROM.

If our cross assembler is not used, specify the option code as shown below. (This is the same as the method where the cross assembler is created automatically.)

The Type No. of the EPROM to be submitted is 2732 or 2764.

Notes for Standby Function Application

The LC6527N/F/L, 6528N/F/L provide the standby function called HALT mode to minimize the current dissipation when the program is in the wait state.

The standby function is controlled by the HALT instruction, PA pin, RES pin.

A peripheral circuit and program must be so designed as to provide precise control of the standby function. In most applications where the standby function is performed, voltage regulation, instantaneous break of power, and external noise are not negligible. When designing an application circuit and program, whether or not to take some measures must be considered according to the extent to which these factors are allowed. This section mainly describes power failure backup for which the standby function is mostly used. A sample application circuit where the standby function is performed precisely is shown below and notes for circuit design and program design are also given below.

When using the standby function, the application circuit shown below must be used and the notes must be also fully observed.

If any other method than shown in this section is applied, it is necessary to fully check the environmental conditions such as power failure and the actual operation of application equipment.

1. HALT mode release conditions

The HALT mode setting, release conditions are shown in Table 1.

HALT mode setting conditions	HALT mode release conditions
HALT instruction	① Reset (Low level is applied to RES.)
Provided that PA3 is at high level.	2 Low level is applied to PA3.

Table 1 HALT mode setting, release conditions

Note) HALT mode release condition (2) is available only when the RC mode is used for system clock generation; and unavailable when the ceramic resonator mode is used because the OSC circuit may not operate normally.

2. Proper cares in using standby function

When using the standby function, an application circuit and program must be designed with the following in mind. (1) The supply voltage at the standby state must not be less than specified.

- (2) Input timing and conditions of each control signal (RES, PA3) must be observed at the standby initiate/release state.
- (3) Release operation must not be overlapped at the time of execution of the HALT instruction.

A sample application where the standby function is used for power failure backup is shown below as a concrete method to observe these notes. A sample application circuit, its operation, and notes for program design are given below.

Sample application where the standby function is used for power failure backup.

Power failure backup is an application where power failure of the main power source is detected and the HALT instruction is executed to cause the standby state to be entered. The power dissipation is minimized and a backup capacitor is used to retain the contents of the internal registers for a certain period of time. After power is restored, a reset occurs automatically and the execution of the program starts at address 000H of the program counter (PC). Shown below are sample applications where the program selects or not between power-ON reset and reset after power is restored, notes, measures for instantaneous break of AC power.

- 2-1. Sample application 1 where the standby function is used for power failure backup Shown below is a sample application where the program does not select between power-ON reset and reset after power is restored.
- 2-1-1, Sample application circuit (1)

Fig. 2-1 shows a sample application where the standby function is used for power failure backup.

(Note) Normal input ports other than PA3

- 2-1-2. Operating waveform in sample application circuit (1)The operating waveform in the sample application circuit in Fig. 2-1 is shown in Fig. 2-2. The mode is roughly divided as follows:
 - (a) Power-ON reset
 - (b) Instantaneous break of main power source
 - (c) Return from power failure backup

Fig. 2-2 Operating waveform in sample application circuit - (1)

- 2-1-3. Operation of sample application circuit -- (1)
 - (a) At the time of power-ON reset
 - After power rises, a reset occurs automatically and the execution of the program starts at address 000H of the program counter (PC).
 - Note –

This sample application circuit provides an indeterminate region where no reset occurs before the operating VDD range is entered.

- (b) At the time of instantaneous break
 - (i) When the PXX input voltage does not meet VIL (the PXX input level does not get lower than input threshold level VIL) and the RES input voltage only meets VIL:
 A reset occurs in the normal mode, providing the same operation as power-ON reset.
 - (ii) When both of the PXX input voltage and $\overline{\text{RES}}$ input voltage do not meet VIL:
 - The program continues running in the normal mode.
 - (iii) When both of the PXX input voltage and RES input voltage meet VIL:

When two pollings do not regard the P_{XX} input voltage as "L" level, the HALT mode is not entered and reset occurs.

When two pollings regard the P_{XX} input voltage as "L" level, the HALT mode is entered and after power is restored a reset occurs, releasing the standby mode.

- (c) At the time of return from power failure backup After power is restored, a reset occurs, releasing the standby mode.
- 2-1-4. Notes for design of sample application circuit -(1)
 - V⁺ rise time and C2

Make the time constant (C2, R) of the reset circuit 10 times as long as the V^+ rise time. (R: ON-chip resistor, 200kohms typ.)

Make the V^+ rise time shorter (up to 20ms).

R1 and C1
 Make the R1 vs

Make the R1 value as small as possible. Make the C1 value as large as possible according to the backup time calculated. (Fix the R1 value so that the C1 charging current does not exceed the power source capacity.)

R2 and R3

Make the "H"-level input voltage applied to the P_{XX} pin equal to V_{DD} .

• R4

Fix the time constant of C2 and C4 so that C2 can discharge during the period of time from when V⁺ gets lower than V⁺TRON(TR OFF) at the time of instantaneous break until the P_{XX} input voltage gets lower than V_{IL} (because release by reset is not available after the HALT mode is entered by instantaneous break).

R5 and R6

Make V⁺ (V_{BE} \neq 0.6V is obtained by R5 and R6) when the reset circuit works (Tr ON) more than (operating V_{DD} min + V_F of diode D1).

Observing this note, make V^+ as low as possible to provide a reset early enough after power-ON.

Backup time

The normal operation continues with a relatively high current dissipation from when power failure is detected by the P_{XX} until the HALT instruction is executed. Fix the C1 value so that the standby supply voltage is held during backup time of set + above-mentioned time.

2-1-5. Notes for software design

- Design the program so that port A3 is brought to "H" level at the standby mode.
- Check a standby request by polling the input port twice.

(Exam	ple) !		
	BP1	AAA	; 1st polling
	BP1	AAA	; 2nd polling
	HALT		; Standby
AAA:			

- 2-2. Sample application 2 where the standby function is used for power failure backup Shown below is a sample application where the program selects between power-ON reset and reset after power is restored.
- 2-2-1. Sample application circuit -- (2) (No instantaneous break in power source) Fig. 2-3 shows a sample application where the standby function is used for power failure backup.

- 2-2-2. Operating waveform in sample application circuit (2)
 The operating waveform in the sample application circuit in Fig. 2-3 is shown in Fig. 2-4. The mode is roughtly divided as follows:
 - (1) Power-ON reset
 - (2) Return from power failure backup

V⁺TRON: V⁺ value when TR1 is turned ON/OFF.

Fig. 2-4 Operating waveform in sample application circuit - (2)

- 2-2-3. Operation of sample application circuit (2)
 - (a) At the time of power-ON reset The operation and notes are the same as for sample application circuit -(1), except that after reset release
 - PXX="L" is program-detected to decide program start after initial reset.
 - (b) Standby initiation When one polling regards the PXX input voltage as "L" level, the HALT mode is entered.
 - (c) At the time of return from power failure backup
 - After power is restored, a reset occurs, releasing the standby mode.

After standby release $P_{XX}="H"$ is program-detected, deciding program start after power is restored.

– Note –

If power is restored after VDD during power failure backup gets lower than VIH on the PXX, PXX="L" may be program-detected, deciding program start after initial reset.

- 2-2-4. Notes for design of sample application circuit -(2)
 - R2 and R3

Fix the R2 value so that R2 \gg R1 is yielded and fix the R3 value so that IB of TR2 is limited.

- R4 There is no severe restriction on the R4 value, but fix it so that C2 can discharge quickly. Other notes are the same as for sample application circuit — (1).
- 2-2-5. Notes for software design
 - Dsign the program so that port A3 is brought to "H" level at the standby mode.
 - Check a standby request by polling the input port once.

(Example)

+		
BP1	AAA	; Polling
HALT		; Standby
1		

AAA:

- 2-3. Sample application 3 where the standby function is used for power failure backup
- 2-3-1. Sample application circuit (3) (There is an instantaneous break in power source.)
 Fig. 2-5 shows a sample application where the standby function is used for power failure backup.

Fig. 2-5 Sample application - (3) where the standby function is used for power failure backup

- 2-3-2. Operating waveform in sample application circuit -- (3)
 The operating waveform in the sample application circuit in Fig. 2-5 is shown in Fig. 2-6. The mode is roughly divided as follows:
 - (1) Power-ON reset
 - (2) Instantaneous break of main power source
 - (3) Return from power failure backup

- 2-3-3. Operation of sample application circuit (3)
 - (a) At the time of power-ON reset
 - The operation and notes are the same as for sample application circuit (2)
 - (b) At the time of instantaneous break
 - (i) When the P_{XX} input voltage does not meet V_{IL} (the P_{XX} input level does not get lower than input threshold level V_{IL}) and the \overline{RES} input voltage only meets V_{IL} :
 - A reset occurs in the normal mode. After reset release $P_{XX}="H"$ is program-detected, deciding program start after instantaneous break.
 - (ii) When both of the PXX input voltage and RES input voltage do not meet VIL: The program continues running in the normal mode.
 - (iii) When both of the PXX input voltage and RES input voltage meet VIL:
 - When two pollings do not regard the P_{XX} input voltage as "L" level, the HALT mode is not entered and a reset occurs.
 - When two pollings regard the P_{XX} input voltage as "L" level, the HALT mode is entered and after power is restored a reset occurs, releasing the standby mode. After standby release P_{XX} ="H" is program-detected, deciding program start after instantaneous break.
 - (c) At the time of return from power failure backup The operation and notes are the same as for sample application circuit -(2)
- 2-3-4. Notes for design of sample application circuit (3)
 - R3
 - Bias resistance of TR2
 - R7 and R8
 - Fix the R7 and R8 values so that TR3 is turned ON/OFF at approximately 1.5V of V⁺. Other notes are the same as for sample application circuit (1)
- 2-3-5. Notes for software design

Same as for sample application circuit -(1)

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

- ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production, SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.