		CMOS LSI
	No. 3117B	LC65204A
SANYO		(A∕D Converter, FLT drivers, PWM Output, and On-chip 4Kbyte ROM) 4-bit Single Chip Microcomputer for Control Applications

The LC65204A is a 52-pin CMOS 4-bit single chip microcomputer. It consists of a high-speed core CPU with the minimum cycle time = 0.92 microsecond, 8-bit AD converter with 8 input channels, 4Kbyte ROM and a 1Kbit RAM (256 x 4 bits).

The LC65204A has a total of 41 input/output (I/O) port pins; 29 for high withstand outputs (Drivers for fluorescent display tubes and LEDs), and 12 for input/output (common with interrupt inputs and serial input.)

In addition, this single-chip microcomputer has a two-channel timer. This timer circuit block can be used as a general-purpose timer, watchdog timer, time base timer, PWM type DA converter, melody tone generator and the like within application products.

It is designed based on two types of oscillation circuits. This allows various standby operation modes. As a result, the LC65204A microcomputer can be embedded into many kinds of home appliances as, for example, display control and timer control in audio visual products.

There is another microcomputer with almost all the LC65204A functions but oscillation circuit design and ambient operating temperature range. Its chip name is LC65404A. This single chip device has no subclock function and its operating temperature range is from minus 30 °C (-30) to plus 85 °C (+85). For detailed information, refer to its catalog.

Features:

- Seventy-seven instructions
- On-chip storage capacity; 4Kbyte ROM and 1Kbit (256 x 4 bits) RAM
- Minimum instruction cycle time: 0.92us (4.33MHz at VDD = 4.5V or greater)
 - 1.84 μ s (2.17MHz at VDD = 4.0V or greater)
 - 61us (32.768KHz at VDD = 2.7V or greater)
- Reduced power dissipation mode through system clock selection by software
 - (Main) system clock = 4.19MHz : 0.95us, 1.9us and 30.6us
- (Sub) system clock = 32.768KHz : 61µs
- Operating temperature: Ta = -30 $^{\circ}$ C to +70 $^{\circ}$ C
- Working register/Flag function
 - (16 flags + 8 working registers) x 4 banks
- Stacks : 8 levels
- I/O ports : 41 (Total)
 - · High-voltage withstand output ports : 21
 - · High-voltage withstand input/output ports : 8
 - · Medium-voltage withstand input/output ports : 3
 - Input/output ports: 9
- AD converter (sequential comparison type)
 - 8-bit Accuracy x 8 channels
- Timer : 2 channels
 - Timer 1 (interval timer) : Also used as the PWM DAC and applicable to a divider at melody tone generation.
 - Time base timer for clock generation : 14-level divider on-chipped
- Internal wake-up function
 - Wake-up function: Restart from a standby operation mode by using the time base timer overflow. The wake-up function together with the standby operation mode would enable a clock operation at extremely low power dissipation during a battery backed-up mode.
- PWM DAC output : Also used as timer 1.
 - 6-bit PWM DAC + 8-bit PWM DAC or 14-bit PWM DAC

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

- Serial input/output interface (LSB first)
- 8-bit input/output
- AC zero cross detection circuit
 - The AC zero cross detection circuit is allowed to internally connected to the PF3/INT0 pin through
 option data specification.
- Interrupt function: 5 Interrupt sources and 4 vector addresses
 - External interrupt sources: 2
 - . Timer interrupt sources: 2
 - Serial input/output interrupt source; 1
- On-chip oscillation stabilization period wait function: Effective at the reset.
- Oscillation circuits: 2 types
 - · Main clock: 4.19MHz Crystal oscillation or 4.0MHz Ceramic oscillation
 - · Sub clock: 32.768KHz Crystal oscillation
- Standby function: two modes; HALT mode and HOLD mode
- Supply voltage: 2.7V to 6.0V
- Package: DIP-52S
- Evaluation Tools: LC65999 (evaluation chip) + EVA800/850-TB651XX/2XX/3XX/4XX LC65PG20X/40X (piggyback)

System Block Diagram

Development Support

The development support tools for the LC65204A are as follows:

- (1) User's Manual
- [LC65204A/404A User's Manual]
- (2) Development Tool Manual

[EVA800/850-LC651XX/2XX/3XX/4XX Development Tool Manual]

- (3) Development Tools
 - 3-1. Program development tools
 - i. MS-DOS Host Computer System and Cross Assembler (note 1)
 - ii. Cross Assembler --- MS-DOS-based Cross Assembler ; LC65S,EXE
 - 3-2. Program evaluation tools
 - i. Evaluation Chip: LC65999
 - ii. Piggyback Microcomputer : LC65PG20X/40X
 - iii. Emulator : EVA-800 main unit and EVA chip board, or EVA-850 main unit and EVA chip board

(note 2)

Outline of the Development Support System

(Note 1) MS-DOS: A trademark of Microsoft Corporation.

(Note 2) The EVA-800 and EVA-850 are general names given to emulators. They are qualified with suffixes (A, B, ...) because the emulators are updated very often. So use the latest version of the emulators by checking the suffixes carefully prior to program debug.

LC65204A Pin Assignment

SANYO : DIP52S

Pin Description

Pin Name	No.Of Pins	1/0	Functional Description	Output Driver	Option	Reset Status	Unused Pin Handling
Vdd	1		Power supply pin	<u> </u>	_	_	-
Vss	1	_					
TEST	1	Ι	LSI test pin. This pin should be con- nected to the Vss pin during operation and has an internal pull-down resistor.	-	_	_	Always con- nected to the Vss pin,
RES	1	Ι	System reset input. This pin has an internal pull-up resis- tor.		~=	-	_
AV+	1		Reference voltage input pin for A/D conversion	_			Always con- nected to the
AV-	1	_					VSS pin.
OSC1	1		Oscillation circuit component pins for system main clock generation. If exter- nal clock input is used, leave the OSC2 pin open and connect the external clock generator to the OSC1 pin. Feed-back	— · "	ia —	_	_
OSC2	1	0	resistor is internally provided.	1			
×1	1	ł	Oscillation circuit component pins for system sub clock generation. If external clock input is used, leave the X2 pin open and connect the external clock			_	X1:connected to the VDD pin. X2: left
X2	1	0	generator to the X1 pin. If not used, the X2 pin open and connect the X1 pin to the VDD pin. Feed-back resistor and limiting resistor internally provided.				OPEN.
Vp	1		Load power for FLT output internal pull- down resistor	·		_	Connected to the VDD pin.
PAO to 3	4	1/0	Input/output port pins PA0 to PA3 - Port function 4-bit data input (IP instruction) 1-bit input decide operation (BP/BNP instruction) 1-bit output set and reset opera- tions (SPB and RPB instructions) - Low-level threshold input - All these four port pins can be used for two or more purposes: PA0/AD0: Also used as AD converter input pin AD0 PA1/AD1: Also used as AD converter input pin AD1 PA2/AD2: Also used as AD converter input pin AD2 PA3/AD3/INT1: Also used as AD converter input pin AD3 and as external interrupt signal input pin INT1	Normal-volt- age withstand Medium-level current type	Each port pin can be set to output type (1) or (2): (1) Open Drain (OD) output (2) Pull-up resistor output Same as PA0	Output transistor OFF (H- level out- put)	Should be set to the open drain output type and then connected to the VSS pin.
			 These port pins have the same function as port pins PAO to PA3. Low-level threshold input All these four port pins can be used for two or more purposes: PBO/AD4/DAC0: Also used as AD converter input pin AD4 and 6-bit PWM output pin DAC0 PB1/AD5/DACT: Also used as AD converter input pin AD5 and 8-/14-bit PWM output pin DAC1 PB2/AD6/SQR: Also used as AD converter input pin AD6 and square waveform signal output pin SQR. PB3/AD7/START: Also used as AD converter input pin AD7 and standby control input pin START 	Same as PA0 to PA3	to PA3	Same as PA0 to PA3	Same as PAO to PA3.

Continued from the preceding page.

Pin Name	No.Of Pins	1/0	Functional Description	Output Driver	Option	Reset Status	Unused Pin Handling
PC0 to 3	4	1/0	Input/output port pins PC0 to PC3 - Same as port pins PA0 to PA3 In function. - High-level threshold input - The output level of these four port pins can be set to 'H' or 'L' by option data at the same time. - FLT segment drive output	VDD-45 High-voltage withstand Medium cur- rent type	The output type of each port pin can be set to either (1) or (2) by option data. (1) Open Drain (OD) output (2) Pull-down resistor output (2) Pull-down resistor output (2) Pull-down resistor output specification option: The output level of all the four port pins can be simultaneously set to 'H' or 'L' at the reset by option data.	The output level at the reset can be set to 'H' or 'L' by option data.	Set the pin(s) to the open drain output type by option data and then connect it (or them) to the Vss pin through the resistance of some kohms. In addition, be sure to set the port output level at the reset to 'L'.
PD0 to 3	4	1/0	Input/output port pins PD0 to PD3 - Same as port pins PA0 to PA3 in function and characteristic.	Same as port pins PC0 to PC3		Same as port pins PC0 to PC3	Same as port pins PC0 to PC3
PF0 to3	4	1/0	Input/output port pins PF0 to PF3 - Same as port pins PA0 to PA3 in function. - Schmitt input - All these four port pins can be used for two purposes: PF0/SI: Also used as 8-bit serial input pin SI. PF1/SO: Also used as 8-bit serial output pin SO. PF2/SCK: <u>Also</u> used as 8-bit serial clock pin SCK PF3/INTO: Also used as external interrupt request input INTO. The AC zero cross detection circuit can be internally added to this pin by option data (AC zero cross interrupt function available).	PF0 to PF2 Open Drain (OD) output type: With- stand voltage +15V Pull-up out- put type: Normal-volt- age withstand PF3 Normal-volt- age withstand Medium cur- rent type	 Output type option: Same as port pins P A0 to PA3. The AC zero cross detection circuit can be internally added to the INTO pin by option data. 	Same as port pins PAO to PA3	Set the pin(s) to the open drain output type by option data and then connect it (or them) to the Vss pin.
PK0to3	4	0	Output port pins PK0 to PK3 - Port functions 4-bit data output (OP instruction) 1-bit set and reset operation (SPB and RPB instructions) 1-bit decide operation (BP and BNP instructions) - FLT segment drive output	Same as port pins PC0 to PC3	The output type of each port pin can be set to either (1) or (2). (1) Open Drain (OD) output (2) Pull-down resistor output	Output transistor OFF ('L' level out- put)	Set the pin(s) to the open drain output type by option data and then connect it (or them) to the VDD pin
PL0to3	4	0	Output port pins PLO to PL3 - Same as port pins PKO to PK3 in function. - FLT digit drive output	VDD-45V High-voltage withstand Large current type	Same as port pins PKO to PK3	Same as port pins PKO to PK3	РКЗ
PM0 to 3	4	0	Output port pins PMO to PM3. - Same as port pins PLO to PL3 in function and characteristic	Same as port pins PLO to PL3	Same as port pins PK0 to PK3	Same as port pins PKO to PK3	РКЗ
PN0 to 3	4	0	Output port pins PN0 to PN3. - Same as port pins PL0 to PL3 in function and characteristic	Same as port pins PLO to PL3	Same as port pins PKO to PK3	Same as port pins PKO to PK3	Same as port pins PKO to PK3
PO0 to 3	4	0	Output port pins PO0 to PO3. - Same as port pins PL0 to PL3 in function and characteristic	Same as port pins PLO to PL3	Same as port pins PKO to PK3	Same as port pins PKO to PK3	Same as port pins PKO to PK3
PP()	1	0	Output port pin PP0 - Same as port pins PLO to PL3 except for 1-bit configuration.	Same as port pins PLO to PL3	Same as port pins PK0 to PK3	Same as port pins PKO to PK3	Same as port pins PKO to PK3

User Option types

1) Oscillation circuit options

The main clock oscillation circuit and the sub clock oscillation circuit can be selected from the following optional circuits:

Option name	Optional oscillation circuit
Main clock oscillation circuit	Two-pin CF oscillation circuit
	Two-pin X'tal (crystal) oscillation circuit
	External clock input
Sub clock oscillation circuit	Two-pin X'tal oscillation circuit
	Unused

2) Output level option

This option is provided to set the output level of input/output ports C and D to either 'H' or 'L' at the reset.

Option name	Conditions
1. 'H' level output at the reset	Simultaneous 4-bit setting (input/output ports C and D)
2. 'L' level output at the reset	Simultaneous 4-bit setting (input/output ports C and D)

3. Watchdog reset option

The watchdog reset option is used to select the watchdog reset function. Note that the watchdog reset function utilizes the time base timer.

Option name	Conditions
1. Watchdog reset function select	An additional program routine is required in order for the time base interrupt request flag to be reset at a certain interval. This prevents the watchdog reset circuit from being activated in cases but a program upset.
2. Watchdog reset function non-select	

4) AC zero cross detection input circuit option

The AC zero cross detection input circuit option is used to permit the INTO pin to internally have an AC zero cross detection circuit or Schmitt input circuit.

Option name	SW1	SW2
INTO input	а	a
AC zero cross input	b	b

5) Normal-voltage withstand/Medium-voltage withstand port output type option

This user option is used to allow the output circuit type of each normal-voltage withstand and mediumvoltage input/output port pin to be set to either the open drain output or the pull-up resistor output (bit-by-bit setting only).

Option name	Circuit type	Applied ports
Open Drain (OD) output		Ports A, B and F
Pull-up resistor output		Ports A, B and F

6) High-voltage withstand port output type option

This user option is used to allow the output circuit type of each high-voltage input/output and high-voltage output port pin to either the open drain output or the pull-down resistor output (bit-by-bit setting only).

Option name	Circuit type	Applied ports
Open Drain (OD) output		Ports C and D
		Ports K, L, M, N, O and P
Pull-down resistor output		Ports C and D
		Ports K, L, M, N, O and P

Major LC65204A Characteristics

Parameter	Symbol	Applied Pins and Remarks	Conditions	Vop(V)	Limits	Unit	
Maximum Supply Voltage	Voo max	Voo			-0.3to+7.0		
Input Voltage	Vi(1)	OSC1,X1	At self-oscillation		Up to the voltage produced		
	V1(2)	TEST, RES, OSC1 X1	OSC1 and X1: at external clock input		-0.3toV _{DD} +0.3		
	VI(3)	AV+			-0.3toVpp+0.3		
	VI(4)	AV-			-0.3toVDD+0.3		
ĺ	V _I (5)	Vp			VDD-45toVDD+0.3		
Output Voltage	Vo(1)	OSC2,X2	At self-oscillation	·	Up to the voltage produced	V.	
	Vo(2)	Ports K, L, M, N, O and port pin PO	·		VDD-45toVDD+0.3		
Input/output Voltage	VIO(1)	Port pins F2 to F0	At open drain output		-0.3to+15		
	V10(2)	Port pins F2 to F0	At pull-up resistor output		-0.3to VDD+0.3		
	VIO(3)	Ports C and D			VDD-45toVDD+0.3		
	VIO(4)	Ports A and B port pin F3			-0.3toVpp+0.3		
Peak Output Current	10P(1)	Ports A, B, and F			- 2 to +10		
Current	IOP(2)	Ports, L, M, N, O and port pin PO			—30 to 0	1	
	IOP(3)	Ports C, D and K			—10to0]	
Average Output Current	IOA(1)	Ports A, B, and F	Average value per		— 2 to +10	1	
Current	IOA(2)	Ports L, M, N, O and port pin PO			-30to0		
	IOA(3)	Ports C, D, and K			—10to0	mA	
	$\Sigma I_{OA}(1)$	Ports A and B	Total current value	*	-16to+80		
	ΣIOA(2)	Port F	100ms		- 8 to +40]	
	$\Sigma I_{OA}(3)$	Ports L, M, N, O and port pin PO	-		—50 to 0	ļ	
	$\Sigma I_{OA}(4)$	Ports C, D and K			50 to 0		
Maximum Power Dissipation	Pd max	DIP52S	Ta=-30to+70℃		800	mW	
Ambient Operating Temperature	Topr				30 to +70	-	
Ambient Storage Temperature	Tstg				-55to+125		

1. Absolute Maximum Ratings at Ta = 25 °C, Vss = 0V

2. Allowable Operating Range at Ta = -30 °C to +70 °C, Vss = 0V

Parameter	Symbol	Applied Pins	O			Limits		
Parameter	Symbol	and Remarks	Conditions	VDO(V)	Min	Тур	Max	Unit
Operating Power Supply Voltage (including a	V _{DD} (1)	VDD	0.92 µs≨ Tcyc<67 µ s		4.5		6.0	
standby mode)	V _{DD} (2)	VDD	1.84µs≦ Tcyc<67µs		4.0		6.0	v
	V _{DD} (3)	VDD	29.4µs≦ Tcyc<67µs		3.0		6.0	v
	V _{DD} (4)	VDD	4.19MHz OSC oscil- lation = stop 32kHz OSC oscil- lation = active		2.7		6.0	
Memory backed-up Power Supply Voltage	Vst	VDD	Full standby mode (HOLD mode)		1.8		6.0	V

Continued from the preceding page.

Allowable Operating Range at Ta = -30 °C to +70 °C, Vss = 0	Allowable	Operating	Range	at	Та	=	-30 °C	to	+70	Ъ.	Vss	= 0	v
---	-----------	-----------	-------	----	----	---	--------	----	-----	----	-----	-----	---

Parameter		Symbol	Applied Pins	Conditions			Limits		
Input 'H'-level Voltage		Symbol	and Remarks	Conditions	VDD(V)	Min	Тур	Max	Unit
		Vн(1)	OD type port pins F2 to F0	Output Nch (N-channel) Tr.(transistor)OFF	3.0to6.0	0.80Vod		13.5	
Volt	tage	V/H(2)	PU type port pins F2 to F0	Output Nch Tr. OFF	3.0to6.0	0.80Vod		VDD	
		ViH(3)	Ports A and B	Output Nch Tr. OFF	3.0to6.0	1.9		VDD	
		ViH(4)	Ports C and D	Output Nch Tr. OFF	4.5to6.0	0.80VDD		VDD	
					3.0to6.0	0.85Vpd		VDD	
		V⊮(5)	OSCI,START,PF3/ INT0, INT1 (Note 1)	See Fig. 5 (applies to OSC1 only). Output Nch Tr. OFF (applies to other pins than OSC1).	3.0to6.0	0.80Vdd		Voo	
		ViH(6)	RES		1.8to6.0	0.80Vod		VDD	
	ıt 'L'-level	Vi∟(1)	Port pins F2 to F0	Output Nch Tr. OFF	3.0to6.0	Vss		0.20Vod	
Vol	tage	Vµ_(2)	Ports A and B	Output Nch Tr. OFF	4.5to6.0	Vss		0.5	
					3.0to6.0	Vss		0.35	
		VIL(3)	Ports C and D	Output Nch Tr. OFF	3.0to6.0	Vss		0.40VDD]
		VIL(4)	TEST		4.5to6.0	Vss		0.30Vdd	V
					3.0to6.0	Vss		0.25Vpp	
		Vi∟(5)	OSC1, RES, PF3/ INT(), INT1 (Note 1)	See Fig. 5 (applies to OSC1 only). Output Nch Tr. OFF (applies to other pins than OSC1).	3.0to6.0	Vss		0.20Vpd	
		Vi∟(6)	START		1.8to6.0	Vss		0.20VDD	
linst Tim	ruction Cycle e	Тсус		(Note 2)	(Note 2)	0.92		67	μS
nput	Frequency	Fxosc	OSC1	(Note 2)	3.0to6.0	2.0		4.33	MHz
External Input	Pulse Width	Twoscch TwosccL		See Fig. 5.	4.5to6.0	70			
					3.0to6.0	140			ns
Main Clock Conditions	Rise and Fall Times	Toscr Toscf	1	See Fig. 5.	3.0to5.0			30	ns

(Note 1) This does not apply to the case where the AC zero cross detection circuit has been internally added to the INTO pin by the user option data.

(Note 2) Frequencies are closely related to power supply voltages and instruction cycle times. So they should be studied in connection with supply voltages and cycle times.

Parameter	Symbol	Applied Pins	Conditions		••••••••	Limits		
(aramotor	oy moor	and Remarks		Vod(V)	Min	Тур	Max	Unit
Input 'H'-level Current	F2 to F0 (t		Output Nch (N channel) Tr. (transistor) OFF (including Nch Tr. OFF leakage current). Vin=+13.5V	2.7to6.0			+5.0	
	l⊩(2)	OD type ports A and B, and OD type port pin F3 (including multi-functional port pins INTO, INTT and START) (Note 1)	Output Nch (N channel) Tr. (transistor) OFF (Including Nch Tr. OFF leakage current), Vin=VDD	2.7to6.0			+1.0	μΑ
	hн(3)	RES	Vin=VDD	2.7to6.0			+1.0	
	liH(4)	OSC1,X1	Vin=V _{DD}	2.7to6.0			+10	
	hн(5)	OD type ports C and D	Output Pch Tr OFF. Vin = VDD	2.7to6.0		+30	+100	
Input 'L'-level Current	I <u>R</u> (1)	OD type ports A, B and F (including multi-functional port pins INTO, INTT and START) (Note 1)	Output Nch Tr. OFF. Vin = Vss	2.7to6.0	-1.0			μΑ
	, հլ_(2)	PU type ports A, B and F (including multi- functional port pins INTO, INTT and START) (Note 1)	Output Nch Tr. OFF. Vin = Vss	2.7to6.0	-1.0	-0.5		√mA
	lı∟(3)	RES	Vin=Vss	2.7to6.0	-60	-25		
	lı∟(4)	OSC1,X1	Vin=Vss	2.7to6.0	10			
	lı <u>ı</u> (5)	OD type ports C and D	Output Pch (P channel) Tr. (transistor) OFF (including Pch Tr. OFF leakage current), Vout = VDD ~ 40V	2.7to6.0	-30			μA
Output 'H'-level Voltage	Voн(1)	PU type ports A, B and F	$I_{OH} = -50 \mu A$	4.5to6.0	VDD-1.2			
	Vон(2)	PU type ports A, B and F	Iон=-10µА	3.0to6.0	VDD-0.5			
	VOH(3)	Ports L, M, N and O, and port pin PO	I _{ОН} = -20mA	4.5to6.0	VDD-2.1			
	VoH(4)	Ports L, M, N and O, and port pin PO	I _{OH} = -1.0mA I _{OH} s of other ports < -1mA	3.0to6.0	V _{DD} -1.0			V
	Voh(5)	Ports C, D and K	I _{ОН} =5 mA	4.5to6.0	VDD-1.8			1
	Von(6)	Ports C, D and K		3.0to6.0	1			1
			IOHs of other H ports < -1mA					
Output 'L'-level	VoL(1)	Ports A, B and F	$I_{OL} = 5 \text{ mA}$	4.5to6.0			1.5	1
Voltage	Vol.(2)	Ports A, B and F	IOL=1.0mA IOLs of other ports < 1mA	3.0to6.0			0.5	v

3. Electrical Characteristics at Ta = -30 $^{\circ}$ C to +70 $^{\circ}$ C, Vss = 0V

To be continued on the next page.

.

Continued from the preceding page.

Parameter Output 'L'-level		Symbol	Applied Pins	Conditions r			Limits		
	Farameter	Symbol	and Remarks	Conditions	VDD(V)	Min .:	Тур	Max	Unit
Cur curr pull	put 'L'-level rent (the rent produced by -down stors)	IOL	PD type ports C, D, K, L, M, N and O, and PD type port pin PO	Output Pch (P channel) Tr. (transistor) OFF Vout=3.0V Vp=-35V	5.0	190	362	844	
Outr Curr	out OFF Leakage ent	loff(1)	OD type ports K, L, M, N and O, and OD type port pin P0	Output Pch (P channel) Tr. (transistor) OFF Vout=VDD	3.0to6.0			30	μA
	·	loff(2)	OD type ports K, L, M, N and O, and OD type port pln P0	Output Pch (P channel) Tr. (transistor) OFF Vout=VDD-40V	3.0to6.0	30			
	-up MOS Tr. istance	Rtru	PU type ports A, B and F	$ \begin{array}{l} Output \ Nch \ (N \ channel) \\ Tr. \ (transistor) \ OFF \\ V_{IN} = 0 \ V \end{array} $	5.0	8	12	30	kΩ
Pull	-up Resistor	Ru	RES	VIN=0V	5.0	100		400	kΩ
Pull	-down Resistor	Rd	PD type ports C, D, K, L, M, N and O, and PD type port pin PO	Output Pch (P channel) Tr. (transistor) OFF Vout=3.0V Vp=-35V	5.0	45	105	200	kΩ
Hys	teresis Voltage	VHYS	Port F and port pins INTO, INT1 RES and START (Note 1)		3.0to6.0		0.1Vpp		v
	Input Clock Cycle	TCKCY(1)	SCK	See Figure 7.	4.0to6.0	0.8			
	Output Clock Cycle	Тсксү(2)	SCK	See Figure 7.	4.0to6.0	2.0× Tcyc			
	Input Clock 'L'-level Pulse Width (Note 5)	T _{CKL} (1)	SCK	See Figure 7.	4.0to6.0	0.3			
Serial Clock	Output Clock 'L'- level Pulse Width	Т _{СКL} (2)	SCK	See Figure 7.	4.0to6.0	Тсус			
Ж	Input Ciock 'H'-level Pulse Width (Note 5)	Тскн(1)	SCK	See Figure 7.	4.0to6.0	0.3			μs
	Output Clock 'H'-level Pulse Width	Тскн(2)	SCK	See Figure 7.	4.0to6.0	Тсүс			
Input	Data Setup Time	Тіск	SI	With reference to the rising edge of the SCK signal.	4.0to6.0	0.2			
Serial	Data Hold Time	Тскі	SI	-See Fig. 7.	4.0to6.0	0.2			
Serial Output	Output Delay Time	Тско	SO	With reference to the falling edge of the SCK signal. External resistance: 1 kohm. External capaci- tance: 50pF. See Fig. 7.	4.0to6.0			0.5	

Electrical Characteristics at Ta = -30 °C to +70 °C, Vss = 0V

.

Continued from the preceding page.

Electrical Characteristics at Ta = -30 °C to +70 °C, Vss = 0V

	Parameter	Symbol	Applied Pins	Conditions			Limits		
	arameter		and Remarks	Conditions	VDD(V)	Min	Тур	Max	Unit
istics	Input Frequency	Fzin	Apply to the case where the AC zero cross detection circuit has been internally added to	 At open drain output At self-bias ON See Fig.8. 		40		1000	Hz
aractei	Input Voltage	Vzin	the PF3/INTO pin by the user option data.	(1),(2),(3) Coupl- ing capacitance = luF		1.0		2.4	Vp-p
put Ch	Detection Error	Vza		(1),(2),(3) 60Hz sinewave signal input				±100	mν
ction Ir	Input Current	IIHZ		(Û, (Ĉ, (Ĵ) ViN≂VDD	4.5to6.0			+40	
Cross Detection Input Characteristics		l⊪_Z		(1), (2), (3) Vin=Vss		-40			μA
o Cros	Threshold Voltage	Vt ≭ Асм		①, ②, ③	-	0.3VDD		0.7Vpp	
AC Zero	'L'-level Input Threshold Voltage	Vt*AcL		①, ②, ③			Vт*Асм —0.2		V
	Comparison D Accuracy	VCECON	AD0 to AD7	AV+=VDD AV-=VSS			± 1	± 2	LSB
1	E Threshold O Voltage	VTHCON				AV-		AV+	
5	e Input F Voltage	VINCON				AV-		AV+	v
stic	Reference	AV+	AV+			AV-		Vdd	
teri	unput Voltage	AV-	AV-		5.0 ±10%	Vss		AV+	
Comparator Characteristics	Conversion Time			Comparator speed 1/1. At 12 x T _{CYC} ,	210/0	11 (Tcyc≕ 0.92µs)		96 (T _{CYC} = 8µs)	
Compara			Comparator speed 1/2. At 23 x TCYC.		21 (T _{CYC} = 0.92µs)		92 (T _{CYC} = 4µs)	μS	
	Resolution						8		Bit
	Absolute Accuracy			AV+=VDD	1		±1	± 2	
mode)	Zero Scale Error	Ezs		AV-=Vss				± 1	LSB
۵/۹ u	Full Scale Error	EFS						± 1	
onverter i	Conversion Time	TCAD		AD speed 1/1. At 26 × TCYC		24 (Tcyc= 0.92µs)		208 (T _{CYC} = 8µs)	
Conversion Characteristics (AD converter in				AD speed 1/2. At 51 x TCYC.	5.0 ±10%	$47 (T_{CYC} = 0.92 \mu s)$		204 (T _{CYC} = 4μs)	μς
eris	Reference Input	AV+	AV+]	AV-		Vad	
ract	Voltage	AV-	AV-			Vss		AV+	V
on Cha	Reference Input Current Range	IRIF	AV+, AV-	$AV^+ = V_{DD}$ $AV^- = V_{SS}$	-	75	150	300	μA
onversi	Analog Input Voltage Range	VAIN	AD0 to AD7		1	AV-		AV+	v
AD C	Analog Port Input Current	IAIN	Port pins AD0 to AD7 (with the output circuit of the input/output multi-functional	Including output OFF leakage cur- rent. VAIN == VDD				1	μA
			port pins set to OD						•

Continued from the preceding page.

Electrical Characteristics at Ta = -30 °C to +70 °C, Vss = 0V

Parameter Dissipated Current		meter	Symbol	Applied Pins	Conditions			Limits		
		Symbol	and Remarks		VDD(V)	Min	Тур	Max	Unit	
n No	rmal	Operation	IDDOP(1)	Vod	4.19MHz x 1/1: High-speed opera- tion mode (TCYC = 0.95 us). And at sub clock oscil- lation	4.5to6.0		3	6	
			IDDOP(2) VDD		4.19MHz x 1/2: High-speed opera- tion mode (TCYC = 1.9 microseconds). And at 32kHz sub clock oscillation	4.5to6.0		2	4	
Dissipated Current In Standby Opera- tion Mode (Note 4)			IDDOP(3) VDD		4.19MHz × 1/32: Low-speed opera- tion mode (TCYC = 30.5 microseconds). And at 32kHz sub clock oscillation	3.0		0.3	1	mΑ
			IDDOP(4)	VDD	32kHz: Low-speed operation mode (TCYC=61 us). 4.19MHz main clock = stop	2.7		0.15	0.5	
		/ Opera-	IDDST(1)	VDD	4.19MHz main clock = stop. 32kHz sub clock oscillation (HALT mode)	6.0		120	400	
			IDDST(2)	Vod		2.7		4	40	μA
in F	Fulls	ed current standby n mode	IDDST(3)	VDD	Full standby mode (HOLD mode)	1.8			1	- Ari
(No	te 4)		I _{DDST} (4)	VDD	Full standby mode (HOLD mode)	6.0			10	
tion	al ation	Oscillation Frequency	foscx	OSC1 OSC2	See Fig. 1. (Note 2)	3.0to6.0		4.19		MHz
Self-oscillation	Oscill Oscill	Oscillation Frequency Oscillation Stabilizing Period	tmxs	(Note 3)	See Fig. 3.				20	ms
ock Self		Oscillation Frequency	fosccf		See Fig. 1. (Note 2)		3.92	4.0	4.08	MHz
Main Clo Conditio	Ceramic Oscillation	Oscillation Stabilizing Period	TMCFS	-	See Fig. 3.				10	ms
elf-oscillation Oscillation		OscIllation Frequency	fx	X1, X2 (Note 3)	See Fig. 2.	2.7to6.0		32.768		kHz
	Crystal O	OscIllation Stabillzing Period	tsxs		See Fig. 4.		-		10	s

(Note 3) For oscillation constants, refer to Tables 1 and 2.

(Note 4) The 'dissipated current' does not include the current flowing into the I/O port transistors, pullup/pull-down resistors.

(Note 5) When the internal clock is used, although according to the specifications TCKL(2) and TCKH(2)(=TCYC) are output from the SCK pin with the minimum clock width, there are cases where their clock widths become shorter than TCYC due to the value of the pull-up resistor. However, it is necessary to select a value for the pull-up resistor so that even at the minimum, these clock widths exceed the 0.3 us stipulated for TCKL(1) and TCKH(1).

Fig. 1 Main clock oscillation circuit

Table	1.	Guaranteed	constants for
		Main clock	

Oscillation type	Supplier	Oscillator	CO1	CO2	
4.194304MHz	Kinseki	HC-49/U CL=13.2pF	15pF	15pF	
crystal osc	Nippon Denpa	AT-51 C∟≕16pF	22pF	22pF	
	M	CSA4.00MG	33pF	33pF	
4.0MHz	Murata	CST4.00MGW	Not required	Not required	*1
ceramic resonator osc	Kunner	KBR-4.0MS	33pF	33pF	
	Kyocera	KBR-4.0MES	Not required	Not required	*1

CO1 and CO2 tolerance: Within $\pm 10\%$ (including wire capacitance) CL: Internal load capacitance of a crystal oscill-

*1: Three-pin (C internally provided) ceramic
resonator

Fig. 3. Main clock oscillation stabilizing period

Fig.5. Input waveform of input clock (for main clock)

Fig. 2 Sub clock crystal oscillation circuit

Table 2. Guaranteed constants for sub clock oscillation

Oscillation type	Supplier	Oscillator	CX1	CX2
32.768kHz crystał osc	Kyocera	KF-38G- 12P0200 CL=12pF	15pF	15pF

CL: Internal capacitance of a crystal oscillator CX1 and CX2 tolerance: Within ±10% (including wire capacitance)

Fig.4. Sub clock oscillation stabilizing period

(Note) If power stabilizing time is zero, the reset time will be 10ms to 100ms with the CRES = 0.1μ F.

.

If the power stabilizing period is rather long, the C_{RES} value should be set properly so that the reset time period can be longer than the main clock oscillation stabilizing period.

Serial output load

Fig. 7 Serial clock timing

LC65204A Instruction Set (by Function)

Conventio	n		
AC	: ACcumulator	PC	: Program Counter
ACt	: ACcumulator bit t	STACK	: STACK register
CF	: Carry Flag	bAt, bHa.	
CTL	: ConTroL register	bLa	: Working register
MSTEN	: MaSTerinterrupt ENable flag	ZF	: Zero Flag
DP ·	: Data Pointer	()	: Indicates the content.
E	; E register	←	: Transfer operation and its direction
bFn	: Flag bit n	+	: Addition
м	: Memory	-	: Subtraction
M (DP)	: Memory address specified by DP	^	: And
P (DPL)	: Input/output port specified by DPL	v	: Or
GP (DP)	: Pseudo port specified by DP	¥	: Exclusive Or

Instruction group type		Mnemonic	Operatio	on Code	5	<u>1</u> 22	Operations	Operating Description	Alter STS	cted	Remarks
			D7D6D5D4	D3D2D1D0	8	õ			flag(s	8)	
Instructions	CLA	Clear AC	1100	0000	1	1	AC 0	Resets AC to 0.	ZF		• 1
Ĩ	CLC	Clear CF	1110	0001	1	۱	CF ←0	Resets CF to 0.		CF	
I≣	SIC	Set CF	1111	0001	Ľ	1	CF ← 1	Sets CF to 1.		CF	
Ē	СМА	Complement AC	1110	1011	1	1	AC ← (AC)	Inverte ell AC bits.	ZF		
pulation	INC	Increment AC	0000	1110	1	1	AC -(AC) +1	Increments AC by 1.	ZF	CF	
Mani	DEC	Decrement AC	0000	1111	1	1	AC ←(AC) -1	Decrements AC by I.	ZF	CF	
Accumulator A	RAL	Rotate AC left through CF	0000	0001	1	1	ACo +(CF), AC+++++++ (AC+), CF + (AC3)	Rotates AC left through CF.	ZF	ĊF	
Ē	TAE	Transfer AC to E	0000	0011	1	1	E ← (AC)	Transfers AC to E.			
Į	XAE	Exchange AC with E	0 0 0 0	1101	ī	1	(AC) =(E)	Exchange the contents of AC and E.			
8	INM	Increment M	0010	1110	ī.	1	M(DP)+(M(OP))+1	Increments M(DP) by I.	ZF	CF	
i a	DEM	Decrement M	0010	1111	fi	1	M(DP) ← (M(DP)) - 1	Decrements M(DP) by 1.	2F	CF	
Manripuli ons	SMB Ы1	SeiM data bii	0000	1 O B, Bo	 —	1	M(DP, B1 B₀) ↔ 1	Sets the M(DP) bit specified by B180.			
Memory	ЯМВ Бі1	Resei M dala bit	0010	1 0 8 i 8 o	1	1	M(DP, B1 B₀) ← 0	Resets the M(DP) bit specified by B180.	ZF		
	AD	Add M to AC	0110	0000	1	1	AC-(AC)+(M(DP))	Adds AC and M(DP) in binary and sets its sum in AC.	ZF	CF	
	ADC	Add M to AC with CF	0010	0000	1	١	AC+(AC)+(M(DP)) +(CF)	Adds AC and M(DP) with CF in binary and sets its sum in AC.	ZF	CF	
	DAA	Decimal adjust AC in addition	1110	0110	1	1	AC -1 ACI + 6	Adds 5 to AC.	ZF		
ions	DAS	Decimal adjust AC in subtraction	1110	1010	ı	1	AC -(AC)+10	Adds 10 to AC.	ZF		
Instruct	EXL	Exclusive or M to AC	1111	0101	۱	1	A0⊷(AC)∀(M(DP))	Logically exclusive-Ors AC and M(DP) and sets its logical exclusive sum in AC.	ZF		
pare li	AND	And M to AC	1110	0111	,	,	AC+(AC)^(M(DP))	Logically Ands AC and M(DP) and sets its logical product in AC.	ZF		,
d Con	OR	Or M to AC	1110	0101	۱	•	AC←(AC)∨(M(DP))	Logically Ors AC and M(DP) and sets its logical sum in AC.	ZF		
Operation and	СМ	Compare AC with M	1111	1011	1	1	(M(DP))+(AC)+1	$\begin{array}{c} \text{Compares AC with M(DP), and sets or resets (C and ZF according to the result. \\ \hline Comparison result CF ZF \\ \hline (M(DP)) > (AC) 0 0 \\ \hline (M(DP)) = (AC) 1 1 \\ \hline (M(DP)) > (AC) 1 0 \\ \hline \end{array}$	ZF	CF	
	CI dala	Compare AC with Immediale dala	00100	3 1 0 0 1312110	2	2	121110 +(AC)+1	Compares AC with Immediate data [3/2] IIO, and sets or resets CF and ZF according to the result. Comparison result CF ZF $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $$	ZF	CF	
	CLI dala	Compare DPs with immediate data		1 1 0 0 3 2 1 0		Z	{DP _i }¥ljljlio	Compares DPL with Immediate data 13121110-	ZF		
	LI data	Load AC with Immediate date	1100	13 12 11 10	 	1	AC -13121110	Load immediate data isiziiio into AC.	ZF		• T
	S	Store AC to M	0000	0010	1	1	M(DP) (AC)	Store AC to M(DP).			
¥	ι	Load AC from M	0010	0001	1	۱	AC+(M(DP))	Load M(DP) Into AC.	ZF		
Instructions	XM data	Exchange AC with M then modily DPH with immediate data.	1010	0 M2M1M0	1	2	(AC)⇔(M(DP)) DPH←(DPH)∀ 0 M2 M1 M0	Exchanges the contents of AC and M(DP), then logically exclusive-Ora (DPH) and immediate data 0M/2M (Mg and finally replaces DPH with the logical exclusive sum.	ZF		Whather or not 2F is affected depends on the result of sk- clusive-Oring bet- tween (DPH) and DM2M1M0.
and Store	x	Exchange AC with M	1010	0000	1	2	(AC)= (M(DP))	Exchanges the contents of AC and M(DP).	ZF		Whather or not 2F is alfected depends on the DPH content at the time when the instruction is an- ecuted.
Load an	xı	Exchange AC with M then increment DPL	1 1 1 1	1110	1	2	(AC) = (M(DP)) $DP_L \leftarrow (DP_L) + 1$	Exchanges the contents of AC and M(DP) and then increments DPL by 1.	ZF		whether or not 2F is affected depends on the DPL increment.
[XD	Exchange AC with M then decrement DPL	1 1 1 1	1111	1	2	(AC)⇒(M(DP)) DPL←(DPL)-1	Exchanges the contents of AC and M(DP) and then decrements DPL by 1.	ZF		Whether or not 2F is alfected depends on the DPL decrement.
	RTOL	Read table data from program ROM	0110	0011	1	2	AC. E - ROM (PCh. E. AC)	Replaces the PC low-order 8 bits with E and AC, and then leads the contents of the ROM address specified by the new PC contents into AC and E.			

Instruction		Mnemonic		on Code D3 D2 D1 D0	Bytes	Cycles	Operations	Operating Description	Affected STS Flag(s)	Romarka
5	LDZ data	Load DPH with Zero and DPL with immediate data respectively	1000	13 12 11 10	1	1	DPH ←0 DPL ←13121110	Loads zero and immediate data [3]2[] [0 into DPH and DPL, respectively.		
Manipulation	LHI data	Load DPH with Immediate data	0100	13 12 11 10	,	ŀ	DPн ← 13121110	Loada immediate data 13121110 Into DPH.		
≥ `	IND	Increment DPL	1110	1110	1	1	DPL ← (DPL)+1	increments DPL content by 1.	ŻF	
	DED	Decrement DPL	1110	1 1 1 1	T	ī	DPL - (DPL) - 1	Decrements DPL content by 1.	ZF	
1 1 8 1	TAL	Transfer AC to DPL	1 1 1 1	0 1 1 1	1	Γ	DPL + (AC)	Transfers AC content to DPL,		
Š	TLA	Transfer DPL to AC	1110	1001	1	1	AC + (DPL)	Transfers DPL content to AC.	ZF	
	ХАН	Exchange AC with DPH	0010	0011	1	1	(AC) = (DPH)	Exchanges the contents of AC and		
Instructions	XAL XAO XAI	Exchange AC with working register bAt	1110	11 10 0 0 0 0 0 1 0 0	1	1 1	(AC) ≒ (bAO) (AC) ≒ (bA1)	DPH- Exchanges the contents of AC and a specified working register in re- gister bank b (already selected). Note that bits tj and to are used to		
Manipulation Is	XAZ XA3 XHa	Exchange DPH with		1 1 0 0	1	1	$(AC) \rightleftharpoons (bA2)$ $(AC) \rightleftharpoons (bA3)$	apecify working registers bA0, bA1, bA2 and bA3. Exchanges the contents of DPH and a specified working register in re-		
	ХНО ХН1 ХLа	working register bHa Exchange DPL with	1111		1	1 1	(DPн) ≒(bH0) (DPн) ≒(bH1)	gister bank b (already selected). Note that bit a is used to specify working registers bHO and bH1. Exchanges the contents of DPL and a specified working register in re-		
ng Register	XL0 XL1	working register bLa	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01100		<u> </u>	(DPいち(bLO) (DPいち(bL1)	gister bank b (already selected). Note that bit a is used to specify working registers bL0 and bL1.	 	
Working	SRBA SFB 11ag	Set Register Bank Address Set flag but	0101	0 0 1 0 B382B+Bo	L		BBF ← 1110 of SB	Sets the bank value given by the SB Instruction in the register bank fisg. Sets a specified fisg in register	ļ	
Instructions	31 0 11 9 0	Set flag bit		01010100	Ľ		w n⊷ r	bank b (already selected). Note that immediate data 83828180 is used to specify the flags.		
Fiag Manipulation Instru-	Afð Ilag	Reset (lag bit	0001	B3 B2 B1 B0	1	1	bFn-O	Resets a specified flag in register bank b (aireedy selected). Note that immediate data BJ3B2BBO is used to specify the flags.	ZF	Fisgs are divided into 16 provos: OF3 to OF0, OF4 to OF7, 3F11, 3F12 to OF7, 3F11, 3F12 to JF15, Whethe ZF is set or reset depends on the con- tent of the specified flag belongs.
	JMP addr	Jump in the current bank	0 1 1 0 P7P6P5P4	1 P10P9P8' P3P2P1P0	2	2	PC ← PC11 or (inverted PC11) PioPsPsPsPzPs P4PsPzPiPo	Makes program jump to the address specified by PC11 (or inverted PC11) and immediate data $P_{10}P_{9}P_{8}P_{7}P_{6}P_{5}P_{4}P_{3}P_{2}P_{1}P_{0}$.		If executed imma acely after the BA Instruction, I current bank va will be changed PCII is inverted
ŧ	JPEA	Jump in the current page modified by E and AC	1111	1010	1	1	PC7100 ←[E.AC)	Replaces lower- order 8 bits of PC with E and AC and then jumps to the address specified by the new PC content.		
e Instructions	CZP addr	Call subroutine in the zero page	1011	P3P2P1P0	1	1	STACK+ (PC) + 1 PO ₁₁₁₀ 8, PO ₁₁₀ 0+0 PO ₅₁₀ 2+P3 P2 P1 P0	Catla a subroutine in page 0 of bank 0.		
Subroutine	CAL addr	Call subroutine in the zero bank	1 0 1 0 P7P5P5P4	1 PioPaPa PaPaPiPo	2	2	STACK++ (PC) ++ 2 PC11100++00 P10P9P8P7 + P8P6P4P3P2P1P0	Calls a subroutine in bank D.		
ž	RT	Return from subroutine	0110	0010	1	1	PC - (STACK)	Returns to main routine from a sub- routine.		<u> </u>
E S	ATI	Return from interrupt	0010	0010	1	1	PC +- (STACK)	Returns to main routine from an in-	ZF CF	1
3		routine					CF ZF + CSF.ZSF	terrupt servicing routine.		<u> </u>
	BANK	Change bank	1111	1101	1	1	PC11 (PC11) GP(DP)	Specifies new ROM banks or pseudo ports.		1
	SB	Set bank	0110	O 1 II 10	1	1	RBF⊷hlø	Specifies working register and flag banks.		
	BAt addi	Branch on AC bit	0 1 1 1 P7P6P5P4	O O tito P3P2PiPo	2	2	PC100 ← P) P6P5P4 P3 P7P1P0 if AC1=1	Makes program branch to a specified addreas in the same page if a specified AC bit is set to 1. Note that immediate data PTPSP5P4P3 P2PTPO is used to specify addresses and another immediate data thio used to specify AC bits.		The mnemonic is change from BAO GAO oppending on value of immedi data tito.
	BNAi addr.	Branch on no AC bit	0 0 1 1 P7P6P5P4	0 0 t 1 t o P 3 P 2 P 1 P 0	2	2	$PC_{7100} \leftarrow P_1 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ $i1 AC1 = 0$	Makes prooram branch to a specified address in the same page if a speci- lifed AC bit is reset to D. Note that immediate data PTRPGP3 a3P2P1P0 is used to specify addresses and mother immediate data the used to specify the desired bit.		The mnemonic to change from BNAI BNAJ depending the value of i mediate data tat
Instructions	BM1 addı	Bianch on M bil	0 1 1 1 P;P&P5P4	0 1 tito P3P2P1P0	2	2	$PC_{100} \leftarrow P_1 P_6 P_5 P_4 \\P_3 P_2 P_1 P_0 \\II (M(DP, (10)) = 1$	Makes program brench to a specified address, in the same page if a speci- tist MCD bit is apply by the Not- that immediate data ??php.tpp?php is used to specify addresses and another immediate data tito used to specify the desired bit.		The mnemonic s change from BMD BM3 depending on value of Immedi dete tato-
Branch Ins	BNMI addi	Branch on no M bit	0 0 1 1 P7P5P5P4	0 1 tito Pg Pg Pi Po	2	2	$PC_{1 \ 100} \leftarrow P_{1} P_{6} P_{5} P_{4}$ $P_{3} P_{2} P_{1} P_{0}$ $P_{1} (M(DP, t_{1} t_{0})) = 0$	Makes program branch to a specified address in the same page if a speci- fied MICP bit is reset to Q. Note that immediate data PPEPSPAT3PP iPo is used to specify addresses and enother immediate data tito used to specify the decised bit tito		The mnemonic w change from BNMO BNM3 depending the value of 1/ mediate data [1]
	8Pi addi .	Branch on Port bit	0 1 1 1 P1 P6 P5 P4	1 0 1 1 to P3P2P+P0	2	2	$PC_{7to0} \leftarrow P_7 P_8 P_8 P_4$ $P_3 P_2 P_1 P_0$ $i(P(DP_1, t_1 t_0)) = 1$ $or(OP(DP, t_1, t_0)) = 1$	Makes program Dranch to a specified address in the same page if a speci- fied port P(DPL) or pseudo port dP(DP) bit is ect to 1. Note that immediate data Prepara P2P1P0 is used to pacify addresses and another immediate data tito used to specify the desired bit.		The memonic y change from BPO BP3 dopending on I value of Immodi deta L(10-
	BNP: addr	Branch on no Port bit	0 0 1 1 P2 P6 P5 P4	1 0 1 + to Pa P2 P1 P0	2	2	$PC_{7to0} \sim P_7 P_8 P_6 P_4$ $P_3 P_2 P_1 P_0$ if (P(DPL, t ₁ t ₀)) = 0 or (OP(DP, t ₁ t ₀)) = 0	Makes propriet brach to a specified address the same page of specified port PIDPLJ or peaked port GPIDPJ bit is reset to 0. Note that immediate dela 1190384092 PIPD is peed to specify address and another immediate dela 110 used to specify the desired bit.		The mnemonic e change from BNPC BNP3 depending the value of i modiate data tit

p type		Mnemonic	Operatio		rtes		Operations	Operating Description	Allected STS flag(s)	Remarks
			D7D6D5D4	$D_3 D_2 D_1 D_0$	æ	0 C			(18 9 (3)	
- Q ,	BC addr	Branch on CF		1 1 1 0 P3P2P1P0	2	2	$PC_{1=0} - P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ $\parallel CF = 1$	Makes program branch to a specified address in the same page if CF is set, Noto that immediate data P798 P5F4P372P1P6 is used to specify ad- dresses.		
	BNC addr	Branch on no CF	0011 P7P6P5P4	1 1 1 1 P3P2P1P0	2	2	$\begin{array}{c} PC_{7100} \leftarrow P_7 P_6 P_5 P_4 \\ P_3 P_2 P_1 P_0 \\ H CF = 0 \end{array}$	Makes program branch to a specified address in the same page if is reset, blote that immediate data P7F8P5P4P3F2P1P0 is used to specify addresses.		
Instructions	BZ addı	Branch on ZF	0 1 1 1 P7P6P5P4	1 1 1 0 P3P2P1P0	2	2	PC710~P7P6P5P4 P3P2P1P0 If ZF=1	Makes program branch to a specified address in the same page if ZF be set. Noie that immediate data P7 P6P5P4P92P1P0 is used to specify addresses.		
_	BNZ addr	Branch on no ZF	0 0 1 1 P7P6P5P4	1 1 1 0 P3P2P1P0	2	2	PC71∞0 ← P7 P6 P5 P4 P3 P2 P1 P0 II ZF ≕ 0	Makes program branch to a specified address in the same page IP ZF is respt. Note that immediate data P7F8P5P4P372P1P0 is used to specify addresses.		
	8Fn addr	Branch on Ilag bli	1 1 0 î P7P6P5P4	n 3n 2n 1n 0 P3P2P1P0	2	2	PC7100 ← P7P6P5P4 P3P2P1P0 If bFn = 1	Wakes program branch to a specified eddress in the same page if a sopei- lied ling bit tone of the 16 flag bits) in register bank b taiready selectedia sech which theil immediate desired flag bit and another im- mediate date PrEpsPaPaPa Pip Pip oused to specify the desired address. Lakes program branch to a specified		The mnemonic changes from BF0 to BF15 according to the values of n.
	BNZ addr	Branch on no flag bit	1 0 0 1 P7P6P5P4	n 3 n 2 n n 0 P 3 P 2 P P 0		2	PC7000-P7P6P5P4 P3P2P1P0 # bFn=0	to specify the desired address. Makes program branch to a specified address in the same page it a speci- fied flag bit (one of the 1F flags selected) for reset. Note that im- mediste data enganging is used to specify the desired flag bit and specify the desired flag bit and another immediate data Prefiging address.		The mnemonic changes from BNF0 to BNF15 according to the values of n.
-	1P	Input port to AC	. 0 0 0 0	1100	1	1	AC (P(DPL)) or (GP(DP))	Inputs date to AC from the port P(DPL) or pseudo port GP (DP).	ZF	
Instructions	0P	Oviput AC to port	0110	0001	1	1	P(DPL) or ← (AC) GP(DP)	Outputs data to the port P(DPL) or pseudo port GP(DP) from AC.		
Input/output Inst	SP8 bil	Set port bit	0000	0 1 B ₁ B ₀	1	2	P(DPLBiBo) ← 1 or GP(DP, BiBo)	Sets a specified bit of the port PIDPL) or pseudo port GP (DP). Note that immediate data BIBO is used to specify the desired port bit.		if executed, the content of the E register will be destroyed.
Inpu	RPB bit	Resel port bit	0010	0 1 8,80	ī	2	P(DPL,B1B0) ← 0 or CP(DP, B1B0)	Resets a specified bit of the port P(DPL) or pseudo port GP (DP). Note that immediate data B 180 is used to specify the desired port bit.	ZF	If executed, the content of the E register will be destroyed.
2	SCTL bit	Set control register bit	0010 1000	1 1 0 0 B3B2B1B0	2	2	CTL, 83828180 ← 1 or MSTEN← 1	Sets a specified bit of the control register (individual interrupt enable flag) of the master interrupt enable lag, Note that immediato data 83828180 is used to specify the desired bit.		* 2
er Instructions	RCTL bit	Reset control register bit	0010	1 1 0 0 83828180		2	CTL, B3B2B1B0 + 0 or MSTEN-0	Resets a specified bit of the control register findividual interrupt enable flag) of the master interrupt enable flag. Note that immediate data B3028 B0 is used to specify the desired bit.	ZF	* 2
<u>Ö</u>	HALT	Hall	1111	0110	1	1	Hall, Hoki	Places the chip in the standby mode.		
	NOP	No operation	0000	0000	١	1	No operation	The CPU runs idle for one machine cycle.		· ·

*1: If two or more LI or CLA instructions are executed continuously, only the first instruction will be executed normally. However, the instructions following the first will be handled as the NOP instructions.
 *2: B3828180 = 0000B to 1000B

On the LC65204A user mask option code specification

Overview

The user mask option data for the LC65204A should be stored to an EPROM as well as program code and then sent to Sanyo.

With the Sanyo cross assembler for the LC65204A, the user is allowed to specify option codes in the conversation mode and the user option data can be set in an EPROM properly with ease.

If the Sanyo cross assembler is not used, the option code should be specified in the following manner (this corresponds to the format of the cross assembler):

EPROM address map

No, 3117-23/28

Programming Considerations

• The user application programs for the LC65204A should be developed with the following considerations in mind.

Γ	ltem	Functions	Consideration
	System clock mode	The LC65204A allows the user to select the desired system clock source from the following four by software. (1) Main clock 1/1 mode (Tcyc = 0.95µs) (2) Main clock 1/2 mode (Tcyc = 1.90µs) (3) Main clock 1/32 mode (Tcyc = 30.6µs) (4) Sub clock mode (Tcyc = 61µs) (Note) Main clock = 4.19MHz and Sub clock = 32.768kHz	 The main clock oscillation is always required at the system start-up. If your application uses the sub clock, the clock should be selected.
System Clock Function	System clock switching	The desired system clock mode can be selected by writing data to the clock mode flag (CMF: 2 bits) of the system clock control register as shown below: CMF System clock mode 0 Main clock 1/32 mode (at the reset) 1 Main clock 1/1 mode 2 Main clock 1/1 mode 3 Sub clock mode	 When the current system clock mode needs to be changed, the user should confirm that the main clock oscillation has become stabilized or that the MCSTP flag has been set to '0' in the external clock input mode. The current system clock mode will be switched to the desired mode in 64 cycles (64/fMOSC, Max.) after the CMF flag is set properly. If the user wants the LC65204A to enter a standby mode after the system clock switching, the above switching time period should be kept in mind. That is, the user should execute the HALT instruction after the switching time elapses.
	Main clock control (oscillation stop/start)	The main clock oscillation can be controlled (stop and start) by writing data to the MCSTP flag of the system clock control register as shown below: <u>MCSTP Main clock oscillation mode</u> <u>0 Start (at the reset)</u> <u>1 Stop</u>	 Be sure not to set the MCSTP to '1' if one of the main clock mode has been used as the system clock, If the MCSTP is set to '1', it should be confirmed that the sub clock is already specified and the switching time above mentioned is over. If one of the main clock modes is started from the main clock 'stop' mode, it should be confirmed that the MCSTP is set to '0' and the main clock oscillation stabilizing time period (tMXS or TMCFS) is over.
Standby Function	HALT mode start/release	<pre> <start> The HALT mode will be started if the HALT instruction is executed with the SLPF flag of the standby control register set to '0'. Note that the instruction will be processed as the NOP instruc- tion if one of the following conditions is satisfied. Release> (1) Reset (2) The PB3/START pin is set to 'H' with the WG2 = 1. (3) The Interrupt release signal becomes active with the WG3 = 1. (4) Time base overflow </start></pre>	 If the HALT mode needs to be released based on the PB3/START pin level ('H') or the interrupt release signal, the WG2 or WG3 flag must be set prior to the execu- tion of the HALT instruction.
	HOLD mode start/release	<start> The HOLD mode will be started if the HALT instruction is executed with the SLPF = 1. <release> (1) Reset (2) The PB3/START pin Is set to 'H' with the WG1 = 1.</release></start>	 Execute one NOP instruction before issuing the HALT instruction to place the microcomputer in the HOLD mode. If the HOLD mode needs to be released based on the PB3/START pin level, it should be confirmed that the WG1 flag is set and the active oscillation clock (either main clock x 1/128 or sub clock) is used as the time base source clock prior to the execution of the HALT instruction,

ltem	Functions	Consideration • The routine must be included in the user application program in order to reset the TBF flag withIn a certain fixed time (maximum time base timer overflow cycle). In this case, be sure not to overlap the time base interrupt request signal timing with the TBF flag reset timing. • The active oscillation clock should be used as the time base clock source. • If the time base interrupt request flag (TBF) is set to '1' prior to the HALT mode activation, the HALT mode will be released due to the time base overflow signal and at the same time the watchdog reset signal becomes active. In order to prevent the watchdog reset at the HALT mode release, (1) reset the TBF im- medlately before executing the HALT instruction or (2) set the time base interrupt enable flag (WG3: release due to the interrupt) before executing the HALT instruction.	
Watchdog reset (only in case when the optional watchdog function has been selected)			
Interrupt Enable flag (control register: 5 bits)	 Five flags are provided to control the five interrupt sources on one-to-one basis. To enable a certain interrupt request, its corresponding interrupt enable flag must be set. (For this purpose, the SCTL0 to SCTL7 instructions can be used. Note that multiple flag bits cannot be accessed at the same time.) All the interrupt enable flags are reset at the system reset. 	 No flag is reset after interrupt processing terminates. In resetting a certain flag, Issue the RCTL instruction to that flag. All the flags are reset at the HOLD mode start. Set the desired flag after the HOLD mode is released. 	
Interrupt request flag	 Five Interrupt request flags are provided to the five interrupt sources on an one-to-one basis. These flags are assigned to a pseudo port. To reset the flag bits, data is loaded to the AC (ACcumulator) by the 'BANK + IP' instructions and then output to the port by the 'BANK + OP' instructions. Note that any bit cannot be set. The data bit that corresponds to the flag bit to be reset should be set to '0' and the remaining data bits should be set to '1'. This data should be first set in the AC and then output to the interrupt request register by the 'BANK + OP' instructions. At the reset, all the flags except for the timer 1 interrupt request flag (TM1F) are set to all '0'. The SIOF is reset the moment when the serial data transfer is started. 	 No flag is reset after interrupt processing terminates. Every time when a certain interrupt processing is performed, be sure to reset the flag that corresponds to the interrupt source. Note that if the interrupt request flag needs to be reset, it should be confirmed that the master interrupt enable flag, and at the same time the individual interrupt enable flag that corresponds to that interrupt source are both reset or either one is reset. All the flags are reset at the HOLD mode start-up. Be sure not to issue the 'BANK + SPB/RPB' instructions to the interrupt request register. 	

.

.

Considerations on Program Evaluation

- The application programs for the LC65204A should be evaluated on the evaluation chip (LC65999 or LC65PG20X/40X) with the following considerations in mind.

E Ŷ		Function		
ltem type	ltem	Production chip	EVA chip	Consideration
Function Settings	RAM capacity	RAM capacity of 256 x 4 bits	The desired RAM capacity can be selected by using the RC and RC2 pins.	Set the RC and RC2 pins properly in accordance with the production chip RAM capacity.
	Stack levels	8 levels	The desired stack level can be set by the STC pin.	Set the STC pin properly in accordance with the production chip setting.
	Output type of ports C and D	Pch high-voltage withstand input/output	The circuit type of ports C and D can be set to the Pch high-voltage withstand input/output or the Nch medium-voltage withstand input/output by the C/FLSEL pin.	Set the C/FLSEL pin properly in ac- cordance with the production chip circuit type.
	Oscillation circuit	Connect the desired oscil- lator with pins OSC1, OSC2, X1 and X2.	If the EVA chip board is used for program evaluation, the desired oscillator can be selected by using the jump switch on the board. The simulation chip has the same optional selection as the production chip.	[EVA chip board] Set the jumper switch properly in accordance with the pro- duction chip option setting, [simula- tion chip] Connect the same oscillation as that of the production chip to pins OSC1, OSC2, X1 and X2.
	Output level of ports C and D at the reset	4-bit simultaneous select. The output level of all the four bits of the port C or D can be set to the 'H' or 'L' at the same time.	Port C can set to the 'H' or 'L' by the CHL pin while port D by the DHL pin.	Set the CHL and DHL pins properly in accordance with the production chip option setting.
us	Watchdog reset function	The watchdog reset function based on the time base timer can be selected.	The watchdog function can be activated or inactivated by using the WDC pin.	Set the WDC pin properly in accordance with the production chip option sett- ing.
onal functions	AC zero cross detection circuit	The AC zero cross detection circuit can be internally added to the PF3/INTO pin.	The AC zero cross detection circuit can be internally activated by the ACZ/INTO pin.	Set the ACZ/INTO pin properly in accordance with the production chip option setting.
Optional	Port output type: PU and OD	The output type of each port pin can be set to the PU or OD (on a single-bit manipu- lation basis).	No pull-up resistor output can be selected. All the port pins are set to the Nch OD output type.	external resistor to the target port.
	PU resistor	This resistor is used with the port pin that enters the high impedance state (Hi-Z OFF) a the 'L'-level output.	Since this is a resistor externally added, the im- pedance level remains un- changed at the 'L' level output.	On the production chip, only the leakage current flows into the Pch Tr. at the 'L' output. However, the current flow continues through the pull-up resistor on the EVA chip. Please remember.
	Port output type: PD and OD	The output type of each port pin can be set to the OD or PD (on a single-bit manipu- lation basis).	No pull-down resistor can be selected. All the port pins are set to the Pch OD output type.	[EVA chip board] Connect the 100kohm of external resistor to the target port. [Simulation chip] Connect the external resistor to the target port of the user application board. Note that the user application board should have its own load power supply.

ltem type	ltem	Function		
		Production Chip	EVA Chip	Consideration
Oscillation	Main clock oscillation constant	[Crystal oscillation] and [Ceramic oscillation] If the guaranteed constant listed in this catalog is used, the standard oscillation fre- guency is produced.	[Crystal oscillation] and [Ceramic oscillation] The EVA chip differs from the pro- duction chip in oscillation circuit design and character- istics. In addition, the oscillation may be unstable due to wire capacitance.	[Crystal oscillation] and [Ceramic oscillation] External constants should be fine-adjusted according to the evaluation environment.
	Sub clock oscillation constant	[Crystal oscillation] If the guaranteed constant listed in this catalog is used, the standard oscillation fre- quency is produced. (19)	[Crystal oscillation] The EVA chip differs from the pro- duction chip in oscillation circuit design and character- istics. In addition, the oscillation may be unstable due to wire capacitance.	[Crystal oscillation] External constants should be fine-adjusted ac- cording to the evaluation environment.
	Oscillation frequencies of main clock and sub clock	The oscillation frequency characteristics are shown in this catalog.	The EVA chip differs from the production chip in circuit design and characteristics.	The detailed evaluation should be per- formed on the ES and CS.
Characteristics	Operation current and Standby cur . rent	The current characteristics are shown in this catalog.	The EVA chip differs from the production chip in circuit design and characteristics.	The standby current cannot be evaluated in detail. However, the standby func- tion can be confirmed in the manner as shown in the manual. Be sure to check the standby function in that way. The characteristics should be evaluated in detail on the EC and CS.
Electrical Cha	Operating power supply voltage	The operating power supply voltage range is shown in this catalog.	The power supply voltage range is limited to the the range for the EPROM and other LSIs.	The EVA chip should operate in the operating power supply voltage range of $VDD=5V \pm 5\%$. The operating voltage range of the EPROM and other LSIs should not be exceeded. This means that the functions in the entire operating range of the production chip cannot be evaluated.
	Operating ambient temperature	The operating ambient temperature is shown in this catalog.	Guaranteed temperature range: 10 °C to 40 °C	The operating temperature range of the EVA chip and the simulation chip should be from 10 $^{\circ}$ C to 40 $^{\circ}$ C.
Function	ROM capacity	The LC65204A has the 4Kbyte ROM. This means that the JMP and BANK + JMP instructions allow program to jump to the entire ROM area. Note that the SB + JMP instructions cannot be used.	Up to 8Kbytes of ROM can be externally added to the chip. The SB + JMP, BANK + JMP and JMP instructions allow pro- gram to jump to the entire ROM area.	It should be confirmed that the application program size is less than 4K bytes.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.