

General Description

The LC6512A, 6513A are microcomputers that are indentical with FLT driver-contained microcomputers LC6502D, 6505D in instruction set but are further enhanced in performance, such as shorter cycle time, more stack levels, increased FLT drive capacity, and are partially changed in specifications for standby function. Since the LC6512A, 6513A are also pin-compatible with the LC6502D, 6505D, they can be used as similar replacements for the LC6502D, 6505D. The LC6512A, 6513A can replace the LC6502B/6505D to enhance performances of equipment in which these microcomputers have been applied so far.

Features

- Low power dissipation CMOS single-chip microcomputer
- Instruction set with 79 instructions common to the LC6502C, 6502B, 6502D/LC6505C, 6505B, 6505D
- 2-source, 2-level interrupt function (external interrupt/internal timer interrupt)
- 8-level stack
- 4-bit prescaler-contained 8-bit programmable timer
- FLT driver-contained output ports and low-threshold input ports
 - (1) Digits driving output ports: 10 pins
 - (2) Segments driving output ports: 8 pins
 - (3) Normal voltage input ports: 8 pins (4 pins: Low-threshold input port)
 - (4) Normal voltage input/output ports: 8-pins
- ROM, RAM
 - (1) LC6512A ROM: 2048 bytes, RAM: 128 x 4 bits
 - (2) LC6513A ROM: 1024 bytes, RAM: 64 x 4 bits
- Cycle time 1.33µs min.
- 400kHz, 800kHz, 1MHz, 3MHz ceremic resonator OSC
- Power-down by 2 standby modes
- (1) HALT mode: Power dissipation saving by program standby during normal operation
- (2) HOLD mode: Power supply backup during power failure
- (3) The standby function is the same as for the LC6514B and its using method is different from that of the LC6502D, 6505D, etc.
- Differences among LC6512D, 6513D, and LC6512A, 6513A
 The LC6512D, 6513D and LC6512A, 6513A are different in the OSC circuit only and are the same in the basic features. The differences are shown below.

Item	LC6512A, 6513A	LC6512D, 6513D	
OSC circuit configuration	1-stage inverter	5-stage inverter	
OSC mode	Ceramic resonator OSC	Ceramic resonator OSC, CR OSC, application of external clock	
OSC waveform	Sine wave	Rectangular wave	
Operating frequency	Ceramic resonator OSC: 500kHz, 800kHz, 1MHz, 3MHz	Ceramic resonator OSC: 400kHz, 800kHz, 1MHz CR OSC: 400kHz typ, 800kHz typ External clock: 222kHz to 1290kHz	

Technical Data

The LC6512A, 6513A are members of our LC6500 series of CMOS microcomputers. For their internal functions, refer to the LC6500 SERIES USER'S MANUAL. Those which differ from the description in the USER'S MANUAL are described in this catalog. Carefully study features and Appendix 4 Standby Function in this catalog before using the LC6512A, 6513A.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Package Dimensions 3025B-D42SIC (unit: mm)

Package Dimensions 3052A-Q48AIC (unit: mm)

Pin Assignment

Pin Name

OSC1, OSC2	: Ceramic resonator for OSC	
INT	: Interrupt	
RES	: Reset	
HOLD	: Hold	
PA0-3	: Input port	A0-3
PB03	: Input port	B03
PC0-3	: Input/output common port	C0-3
PD0-3	: Input/output common port	D0-3
PE03	: Output port (High-voltage port)	E0-3
PF0-3	: Output port (High-voltage port)	F0-3
PG0-3	: Output port (High-voltage port)	G0–3
PH03	: Output port (High-voltage port)	H0-3
PIO, 1	: Output port (High-voltage port)	10, 1
TEST	: Test	

(Note) Nothing must be connected to NC pins internally or externally.

When mounting the QIP version on the board, do not dip it in solder.

DIP42S

QIP48

System Block Diagram

RAM	: Data memory	STS : Status register
F	: Flag	ROM : Program memory
WR	: Working register	PC : Program counter
AC	: Accumulator	INT : Interrupt control
ALU	: Arithmetic and logic unit	IR : Instruction register
DP	: Data pointer	I.DEC : Instruction decoder
E	: E register	CF, CSF : Carry flag, carry save flag
CTL	: Control register	ZF, ZSF : Zero flag, zero save flag
OSC	: Oscillation circuit	EXTF : : External interrupt request flag
ТМ	: Timer	TMF : Internal interrupt request flag

Pin Description

Pin Name	Input/Output	Function
INT	Input	Interrupt request input pin
HOLD	Input	HOLD mode request input pin (The LC6502, 6505 differ in function.) Capable of being used as a general-purpose single-bit input port unless the standby mode is used.
RES	Input	Reset input pin
PA ₀₋₃	Input	Input port A0 to A3 (Normal voltage, low-threshold input) Capable of 4-bit input and single-bit decision for branch Use also for HALT mode release request input

.

(Continued on next page)

PB0-3	Input	Input port Bo to B3 (Normal voltage)
	mput	Capable of 4-bit input and single-bit decision for branch
РС ₀₋₃	Input/Output	Input/output common port Co to C3 (Normal voltage) Capable of 4-bit input and single-bit decision for branch during input Capable of 4-bit output and single-bit set/reset during output
PD ₀₋₃	Input/Output	Input/output common port D_0 to D_3 (Normal voltage) Capable of 4-bit input and single-bit decision for branch during input Capable of 4-bit output and single-bit set/reset during output
PE ₀₋₃	Output	Output port E0 to E3 (Digit driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output latch for branch
PF0-3	Output	Output port Fo to F3 (Digit driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output latch for branch
PG ₀₋₃	Output	Output port G ₀ to G ₃ (Segment driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output latch for branch
РН ₀₋₃	Output	Output port H ₀ to H ₃ (Segment driver output) Capable of 4-bit output and single-bit set/reset Capable of 4-bit input of output latch contents and single-bit decision of output latch for branch
PI _{O, 1}	Output	Output port 10, 11 (Digit driver output) Capable of 2-bit output and single-bit set/reset Capable of 2-bit input of output latch contents and single-bit decision of output latch for branch
OSC1	Input	A ceramic resonator is connected to this pin and pin OSC2 in the internal clock mode.
OSC2	Output	Pin for externally connecting a resonance circuit for the internal clock mode
V _{DD}	Input	Power supply pin Normally connected to +5V
V _{SS}	_	Connected to OV power supply
TEST	Input	LSI test pin Normally connected to VSS(0V)

(Continued from preceding page.)

.

Absolute Maximum Ratings/Ta = 25	[°] C, V _{SS} = 0V			unit
Maximum Supply Voltage	VDD		-0.3 to +7.0	v
Input Voltage	VIN	Input pins other than OSC1	-0.3 to VDD+0.3(Note1)	v
Output Voltage	VOUT(1)	Ports C, D OSC 2	0.3 to VDD+0.3	v
	VOUT(2)	Ports E, F, G, H, I	VDD-45 to VDD+0.3	v
Peak Output Current	IO(1)	Ports C, D: Each pin	-2.0 to +2.0	mΑ
	10(2)	Ports E, F, I: Each pin	—15 to 0	mΑ
	IO(3)	Ports G, H: Each pin	—10 to 0	mΑ
	O(4)	All pins of ports C to I	—90 to +16	mΑ
Allowable Power Dissipation	Pd max(1)	T _a =-30 to +70°C(Flat package) 350	mW
	P _d max(2)	T _a ≕30 to +70 [°] C (DIP)	600	mW
Operating Temperature	Topr	-	-30 to +70	°C
Storage Temperature	⊤ _{stq}		55 to +125	°C
(Note 1) For pin OSC1, up to oscil		e generated when internally oscill	ated under the recommended	

(Note 1) For pin OSC1, up to oscillation amplitude generated when internally oscillated under the recommended oscillation conditions in Fig. 2 is allowable.

[Note] When mounting the QIP package version on the board, do not dip it in solder.

		•		<i>.</i>	
Allowable Operating Conditions/Ta =	-30 to +70°	°C, V _{DD} = 5V±10%, V _{SS} = 0V	min	typ max	unit
Operating Supply Voltage	VDD(1)		4.5	5.0 5.5	V
Power-down Supply Voltage	VDD(2)	HOLD mode: HOLD = V(L(3)	1.8	5.5	V
"H"-Level Input Voltage	VIH(1)	Port A	1.9	VDD	V
	VIH(2)	Ports B, C, D	0.7V _{DD}	VDD	v
	VIH(3)	INT, RES, HOLD and OSC1	0.8V _{DD}	VDD	V
"L"-Level Input Voltage	VIL(1)	Ports B, C, D	VSS	0.3VDD	V
	VIL(2)	INT, RES, OSC1	VSS	0.2VDD	V
		HOLD, TEST: VDD=1.8 to 5:5V		0.2VDD	V
	VIL(4)	Port A	Vss	0.5	V
External Capacitance for Ceramic	C1	See Fig. 2.			
Resonator OSC	C2	See Fig. 2.			
Allowable Delay in Key Scan	^t DH	See Figs. 3-3, 3-4 in Appendix 3.		(N-2) Xtcyc	μs
Circuit	tDL			(N-2) Xtcyc	μs
		(Note) toyo: Cycle time at r	nicrocomp	uter running mod	le
Standby Timing	^t VDDF	VDD=1.8 to 5.5V, See Fig. 1.	0		μs
	tvddr	VDD=1.8 to 5.5V, See Fig. 1.	0		μs

[Note] No chattering shall be applied to the HOLD pin and PA0 to 3 pins during the HALT instruction execution cycle.

Fig. 1 Standby mode timing

Electrical Characteristics/ $T_a = -30$ to -	۲0°C, VD⊑		in typ	max	unit
"H"-Level Input Current	ЧΗ	Each input pin: VIN=VDD		1.0	μA
"L"-Level Input Current	ΙL	Each input pin: VIN=VSS -1			μA
"H"-Level Output Voltage	VOH(1)	Ports C, D: IOH=-1mA VDD-2			V
	VOH(2)	Ports C, D: IOH=-100µA VDD-0	.5		V
	VOH(3)	Ports E, F, I: IOH=-10mA VDD-1	.8		V
	VOH(4)	Ports E, F, I: IOH=-2mA VDD-1	.0		V
	VOH(5)	Ports E, F, I: IOH=-1mA VDD-0			v
	- 011(0)	(Each port IOH=Less than -1mA)			
	VOH(6)	Ports G, H: IOH=-2mA VDD-1	.0		V
	VOH(7)	Ports G, H: IOH=-1mA VDD-0	.5		V
	011(17	(Each port IOH=Less than -1mA)			
	VOH(8)	OSC2: I _{OH} =-100µA V _{DD} -0	.5		V
"L"-Level Output Voltage	VOL(1)	Ports C, D: IOL=1mA		0.4	V
	VOL(2)	OSC2: IOL=100µA		0.4	v
Output OFF Leak Current	OFF(1)	Ports C, D: VOUT=VDD, HOLD mode		1.0	μA
•	OFF(2)	Ports C, D: VOUT=VSS, -1	.0		μA
	0(2)	HOLD mode			
	ÍOFF(3)	Ports E, F, G, H, I: VOUT=VDD		30	μA
	OFF(4)		30		μA
	-011(4)	VOUT=VDD-40V	-		•
Clock OSC Frequency for	fcfosc		2 Note 2	408	kHz
Ceramic Resonator OSC	01000		34 Note 2	816	kHz
			BO Note 2		kHz
		29			kHz
Current Dissipation	DD(1)	Ceramic resonator OSC; f=400, 800, 100		2.0	mΑ
Carrent Dissipation	·DD(I)	Operating mode f=3MHz	2.7	-	mA
		Recommended conditions for ceramic			
		resonator OSC, output pin open, input			
		pin VIN=VSS			
	DD(2)	HALT mode: VDD=5V±10%,		10	μA
	.00(2)	Test circuit in Fig. 3			•••••
	DD(3)	HOLD mode: V_{DD} =1.8 to 5.5V,		10	μA
	.00(3)	Test circuit in Fig. 4			
Input Capacitance	CIN	Each input pin: Measure at f=1MHz.	5		pF
mpat appartance		Pins not being measured: VSS	· ·		P .
Output Capacitance	COUT	Ports E, F, G, H, I: Measure at f=1MHz	10		рF
Output Capacitance	V001	Pins not being measured: VSS	10		P1
Input/Output Capacitance	CIO	Ports C, D: Measure at f=1MHz,	10		pF
mput/output oapacitance	90	Pins not being measured: VSS			P.
Hustorosia Valtaga	v	INT, RES, HOLD	0.1V _{DD}		·v
Hysteresis Voltage	Vн	INT, NEO, HOLD	0.1400		v

,"

Center frequency	Ceramic resonator	C1 (pF)	C2 (pF)	
	CSA3.00MG (Murata)	33±10%		
3MHz	KBR3.0MS (Kyocera)	22±10%		
1MHz	CSB1000K, D (Murata)	180±10%		
	KBR1000H (Kyocera)	180±10%		
800kHz	CSB800K, D (Murata)	180:	±10%	
BUUKHZ	KBR800H (Kyocera)	180	±10%	
4001.11-	CSB400P (Murata)	330	±10%	
400kHz	KBR400B (Kyocera)	330	±10%	

Fig. 2 Recommended OSC circuit, constants for ceramic resonator OSC

Note 2) There is a tolerance of approximately 1% between the center frequency at the ceramic resonator mode and the nominal value presented by the ceramic resonator supplier. For details, refer to the specification for the ceramic resonator.

The min., max. values of OSC frequency represent the oscillatable frequency range.

Note 3) When using the piggyback microcomputer, evaluation chip for evaluation, connect a feedback resistor (approximately 1Mohm).

Input/output common ports C, D: Output inhibit HALT instruction is executed to provide HALT mode.

Fig. 3 IDD(2) test circuit

Fig. 4 IDD(3) test circuit

Fig. 5 Initial reset timing

Appendix 1. Support System

For application development of the LC6512A, 6513A, the support system for the LC6512A, 6513A is used.

1-1. Software support

The support system provides source editor, cross assembler. For cross assembler on CP/M, the "LC6502.COM", "LC6505.COM" are used, and on MS-DOS, the "LC6512.COM", "LC6513.COM" are used.

- 1-2. Hardware support
 - (1) Evaluation chip

Evaluation chip LC6597 is used. Level converters, drivers are connected to high-voltage ports (PE0 to 3, PF0 to 3, PG0 to 3, PH0 to 3, PI0, 1) externally.

(A dedicated adaptor is available.)

Fig. 1-1 Basic evaluation system using evaluation chip

(2) Simulation chip

Piggyback LC65PG12/13 and adaptor (EVA-97-12D/13D) for the LC6512A, 6513A are used jointly.

Fig. 1-2 How to use piggyback

(3) Evaluation kit

The EVA-410 and EVA-TB2 are used. For connecting with user's application equipment, adaptor (EVA-97-12D/13D) is used.

- (4) Adaptor (EVA-97-12D/13D)
 - This is used when evaluating the LC6512A, 6513A with the aid of the evaluation chip and piggyback. This contains drivers for FLT. (See Figs. 1-3, 1-4.)

Appendix 2. Internal Architecture of LC6512A, 6513A

The LC6512A, 6513A are identical with the LC6502C, 6505C in the internal architecture and instruction set except that output ports are of high-voltage type and port A is of low-threshold input type and the standby function is the same as for the LC6514B. For details, refer to "LC6500 SERIES USER'S MANUAL"; and for the standby function, refer to Appendix 4 "Standby Function".

2-1. PC

For the LC6512A, 6513A, this is organized with a 11-bit, 10-bit binary counter, respectively, which specifies the ROM address of an instruction to be executed next. The high-order 3(2) bits specify a page and the low-order 8 bits specify an address in the page. The page is updated automatically. () is for the LC6513A.

2-2. ROM

This is used to store user programs. For the LC6512A, 6513A, this is organized with 2048 x 8 bits, 1024×8 bits, respectively. By using the ROM table read instruction, the whole area can be accessed and the display pattern can be programmed.

2-3. Stack

This is used to save the contents of the PC at the subroutine call or interrupt mode. This allows subroutine nesting up to 8 levels.

2-4. DP

This is a register organized with 4-bit DPL and 3-bit, 2-bit DPH for the LC6512A, 6513A, respectively. When accessing the data RAM, the DPL, DPH specify a column address, row address, respectively. When accessing input/ output ports, the DPL specifies port A to port I. The DPL also specifies internal pseudo port O.

2-5. RAM

This is a static RAM used to store data. For the LC6512A, 6513A, this is organized with 128 x 4 bits, 64 x 4 bits, respectively. Row address 7H(3H) is allocated for 16 flags and 8 working registers which can be manipulated without being addressed by the DP. () is for the LC6513A.

2-6. AC, E

The AC is a 4-bit register which stores data to be processed by instructions. The E register is an auxiliary register to be back up the AC and is used as a temporary register or general-purpose register at the instruction execution mode.

2-7. ALU

This is a circuit which performs arithmetic and logic operations specified by individual instructions. This outputs not only data of operation results but also the status of carry (C), zero (Z).

2-8. Status register

This is a 4-bit register which stores the status of carry, zero and the external interrupt, timer interrupt request. The contents of the status register can be tested by the branch instructions.

2-9. Timer

This consists of a 4-bit fixed prescaler and a 8-bit programmable timer. This counts the system clock and requests a timer interrupt when an overflow occurs.

2-10. Control register

This is a 4-bit register, 2-bits of which control input/output of input/output common ports C, D and 2-bits of which enable/disable external interrupt, internal timer interrupt.

2-11. Input/output ports

There are 9 ports/34 pins from port A to I. Each port is addressed by the DPL. Ports A, B are of normal-voltage input type, ports C, D are of normal-voltage input/output common type, and ports E, F, G, H, I contain FLT drivers. Port A is of low-threshold input type.

(1) Ports A0 to 3, B0 to 3

2-12. External interrupt

The trailing edge of the signal on the INT pin is detected and the interrupt request flag in the status register is set. The occurrence of an interrupt is controlled by the enable/disable flag in the control register.

2-13. Reset

The system is initialized by setting the $\overline{\text{RES}}$ pin to "L" level. The contents to be initialized are as follows:

- PC Address 000H
- Control register 0000 → Interrupt disable, Ports C, D: Output inhibit
- Status register Timer, external interrupt flag \rightarrow Reset
- Output port Output latch (0µ) → Output transistor OFF

Appendix 3. Proper Cares in Using LSI

3-1. Low-threshold input port A0 to 3 provides the input characteristic shown in Fig. 3-1.

Fig. 3-1

3-2, FLT driver output

Ports E0 to 3, F0 to 3, I0 to 1 (10 pins) are for high-current digits driver output; and ports G0 to 3, H0 to 3 (8 pins) are for intermediate-current segments driver outputs. Of course, digits driver outputs can be used as segments driver outputs. Fig. 3-2 shows a sample application.

Fig. 3-2 FLT display application

Digit drive signal-used key scan

When key-scanning with the FLT digit drive signal in Fig. 3-3 and inputting the return signal to port A, the following must be observed.

- (a) Estimate voltage drop (VON) in the output transistor using the current flowing in an FLT used and the V-I characteristic of the output port of the LC6512A, 6513A.
- (b) Estimate voltage drop (VSW) in the switch circuit.
- (c) Check to see that $V_{ON} + V_{SW}$ meets the VIH/VIL requirement of the input port in Fig. 3-1.

Fig. 3-3 Sample key scan application

For the key scan application in Fig. 3-3, make the program considering the delay in the external circuit and the input delay shown below.

When the IP instruction is used to input the return signal as shown above, the input delay must be considered and two instructions are placed between the IP instruction and the crossing of input port waveform and $V_{IL}(4)$, $V_{IH}(1)$, respectively. Some instructions must be placed additionally according to the length of delay (t_{DL} , t_{DH}) in the external circuit after the digit drive signal is delivered with the execution of the OP instruction (point a and point c).

- N: Number of instruction cycles existing between instruction (OP, SPB, RPB) used to output data to output port and instruction (IP, BP, BNP) used to input data from input port.
 - (Number of instruction cycles to be programmed according to the length of tDL, tDH)
- tDL, tDH: Delay in external circuit from output port to input port.

Appendix 4. Standby Function

Two standby modes – HALT mode and HOLD mode – are available to minimize the power dissipation when the program is in the wait state or a power failure is backed up. Both modes are set with the execution of the HALT instruction. All the operations including the system clock generator are stopped at the standby mode. (For other models LC6502/05 of the LC6500 series, the HOLD mode is hardware set with the HOLD pin = "L". Be careful of the difference in the mode setting method.)

The HALT mode and HOLD mode are used properly depending on the purposes. They are different in the mode setting conditions, I/O port state during standby operation, mode releasing method. The HALT mode is entered by executing the HALT instruction when the HOLD pin is at "H" level. The HALT mode is used to save the power dissipation when the program is in the wait state. The HOLD mode is entered by executing the HALT instruction when the HOLD pin is at "L" level. At the HOLD mode all I/O ports are disabled and there is no power dissipation in the interfaces with external circuits, permitting capacitor or battery-used power supply backup during power failure.

4-1. HALT mode setting

The HALT mode is entered by executing the HALT instruction when the HOLD pin is at "H" level and all pins for port A₀ to A₃ are at "L" level. When even one of pins for port A₀ to A₃ is at "H" level, the HALT instruction is disregarded and becomes equal to the NOP instruction.

The HALT mode causes individual blocks to be placed in the following states.

(1) Operation is stopped

• All the operations including the system clock generator are stopped.

(2) I/O port

• The state immediately before setting the HALT mode is held.

- (3) Blocks to be cleared/reset
 - Timer State where all bits are set to "1" (max. time).
 - Status flag The EXTF, TMF are reset (interrupt disable). The CF, ZF contents are held. An interrupt request at the HALT mode is disregarded.

(4) Blocks to be held

• For the registers, data RAM, port output latch, PC (except those in (3), the contents immediately before setting the HALT mode are held.

4-2. HOLD mode setting

The HOLD mode is entered by executing the HALT instruction when the HOLD pin is at "L" level. In this case, the contents of port A0 to A3 remain unaffected.

The state in the HOLD mode is the same as that in the HALT mode, except the state of 1/O port. The HOLD mode permits the undermentioned power-down mode to be entered.

I/O port

- Input ports A, B: Input inhibit
- Input/output port C, D: Input inhibit, output high impedance
- Output ports E to I: Output Pch transistor OFF
- INT, RES pins: Input inhibit

For the output latch of the output port, the contents immediately before setting the HOLD mode are held.

4-3. HOLD power-down mode setting

The HOLD mode permits the supply voltage to be lowered and also the power dissipation to be reduced <u>after mode</u> <u>setting</u>. The HOLD mode can be used in the capacitor or battery-used backup operation during power failure.

Fig. 4-1 HOLD mode and power-down

- (1) A failure of the main power supply is detected and a standby request is made. This is hardware-controlled by the external circuit.
- (2) The HOLD pin is software-polled or the same signal is applied to the INT pin to test the standby request by interrupt. Then, the HALT instruction is executed and the HOLD mode is entered. (Note)
- 3 After the HOLD mode is entered, power-down can be attained by lowering VDD.
- After VDD returns to the prescribed voltage, the HOLD pin is set to "H" level and the normal operation returns.
- (Note) The HOLD pin input signal is transferred to pseudo input port PO 0 (DPL = 0EH, 2⁰ bit). Therefore, when polling the HOLD pin, the BPO or BNPO instruction is used at DPL = 0EH. (The IP instruction cannot be used.)

When the BPO instruction is used for testing, a branch occurs when the input voltage is at high level in the same manner as for normal input ports.

4-4. HALT mode release

Release by reset

When "L" level is applied to the RES pin, the HALT mode is released and the system reset state is entered. When the RES pin is set to "H" level again, the normal operation starts. Since the ceremic resonator mode is used for system clock generation, the release by reset must be performed.

- Notes –
- Since the ceramic resonator mode is used for system clock generation, "L" level must be applied to the RES pin for 5 to 10 msec (oscillation stabilizing time).

Mode change from HALT mode to HOLD Mode

The HALT mode is entered with the execution of the HALT instruction when the HOLD pin is at "H"level. The HALT mode is changed to the HOLD mode automatically by setting the HOLD pin to "L" level.

4-5. HOLD mode release

Release by reset

The HOLD mode is released by setting the $\overline{\text{HOLD}}$ pin to "H" level while applying "L" level to the $\overline{\text{RES}}$ pin. When the $\overline{\text{RES}}$ pin is set to "H" level again, the normal operation starts. The contents of the memories remain unaffected except the PC, I/O ports, registers which are initialized by the reset operation.

Since the ceramic resonator mode is used, the reset state must be held until oscillation is fully stabilized (10 msec after oscillation start) after the HOLD mode is released.

Fig. 4-3 HOLD mode release by reset

- Note: With "L" level applied to the HOLD pin as shown above, the CPU is not reset even when the RES pin is set to "L" level. This is because the HOLD pin is given priority lest the CPU is reset unnecessarily when the capacitor or battery-used backup mode causes the CPU peripherals to operate unstably and the RES pin is set to "L" level. Be careful of the level of the HOLD pin and RES pin also at the initial reset mode when power is applied. When the HOLD pin is at "L" level, no reset occurs.
- 4-6. Proper cares in using standby function
 - When using the HOLD mode, an application circuit and program must be designed with the following in mind.
 - (1) The supply voltage at the standby state must not be less than specified.
 - (2) Input timing of each control signal (HOLD, RES, port A, INT, etc.) at the standby initiate/release state.
 - (3) Release operation must not be overlapped at the time of execution of the HALT instruction.
- 4-7. Sample application where the standby function is used for power failure backup

Power failure backup is an application where power failure of the main power source is detected by the HOLD pin, etc. to cause the HOLD mode to be entered so that the current dissipation is minimized and a backup capacitor is used to retain the contents of the internal registers even during power failure.

- 4-7-1. Sample application circuit (ceramic resonator OSC)
 - Fig. 4-4 shows a ceramic resonator OSC-applied circuit where the standby function is used for power failure backup.

4-7-2. Operating waveform

The operating waveform in the sample application circuit in Fig. 4-4 is shown below. The mode is roughly divided as follows:

3 Return from backup voltage

- 4-7-3. Operation of sample application circuit
 - (1) At the time of initial application of power
 - A reset occurs and the execution of the program starts at address 000H of the program counter (PC). (2) At the time of instantaneous break
 - (1) At the time of very short instantaneous break The execution of the program continues.
 - (2) At the time of instantaneous break being a little longer than (1) (When the RES input voltage meets VIL and the HOLD input voltage does not meet VIL).

A reset occurs during the execution of the program and the execution of the program starts at address 000H of the program counter (PC).

Since the HOLD request signal is not applied to the HOLD pin, the HOLD mode is not entered.

(3) At the time of long instantaneous break (When both of the RES input voltage and HOLD input voltage meet VIL).

The HOLD request signal is applied to the HOLD pin and the HOLD mode is entered.

- When V+ rises after instantaneous break, a reset occurs to release the HOLD mode and the execution of the program starts at address 000H of the program counter (PC).
- (3) At the time of return from backup voltage

A reset occurs and the execution of the program starts at address 000H of the program counter (PC).

4-7-4. Notes for circuit design

1 How to fix C3, R6, C2, R2

Fix closed loop (A) discharge time constants C3, R6 and HOLD pin charge time constants C2, R2 so that closed loop (A) fully discharges before the HOLD input voltage gets lower than VIL at the time of instantaneous break and the RES input voltage is sure to get lower than VIL (a reset occurs) when V+ rises after instantaneous break where the HOLD input voltage gets lower than VIL.

2 How to fix C3, R7

Fix $\overline{\text{RES}}$ pin charge time constants C3, R7 so that when power is applied initially or the HOLD mode is released the ceramic resonator OSC oscillates normally and the $\overline{\text{RES}}$ input voltage exceeds V_{IH} and the program starts running.

(3) How to fix R4, R5

Fix Tr bias constants R4, R5 so that when V+ rises after instantaneous break the RES input voltage gets lower than VIL (brought to "L" level) before the HOLD input voltage exceeds VIH (brought to "H" level).

4 How to fix C2, R3

Fix HOLD pin charge time constants C2, R3 so that when the HOLD mode is released from the backup mode the HOLD input voltage does not exceed VOH (not brought to "H" level) until the RES input voltage gets lower than VIL (brought to "L" level).

Fix C3, R7 and C2, R3 so that the time interval from the moment the \overline{HOLD} input voltage exceeds V_{IH} until the moment the \overline{RES} input voltage exceeds V_{IH} is longer than the ceremic resonator OSC stabilizing time.

(5) When the load is heavy or the polling interval is long Since C1 discharges largely, increase the capacity of C1 or separate (B) detection from V+ and use a power supply or signal that rises faster than V+.

4-7-5. Notes for software design

When the HOLD request signal is detected, the HALT instruction is executed immediately. A concrete example is shown below.

- (1) An interrupt is inhibited before polling the HOLD request pin (HOLD pin).
- (2) Polling of the HOLD pin and the HALT instruction are programmed consecutively.

[Concrete example]

RCTL	3	;EXTEN, TMEN $\leftarrow 0$ (External, timer interrupt inhibit)
BP0	AAA	Polling of the HOLD pin (If "H" level, a branch occurs to AAA.)
HALT		;The HOLD mode is entered.
i		

AAA:

	or contained herein are intended for use in surgical implants, life-support systems, nuclear power control systems, vehicles, disaster/crime-prevention equipment and
the like, the failure of	which may directly or indirectly cause injury, death or property loss.
 ① Accept full resp subsidiaries and and all claims ar ② Not impose any litigation on SAN 	r products described or contained herein for an above-mentioned use shall: ionsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, distributors and all their officers and employees, jointly and severally, against any nd litigation and all damages, cost and expenses associated with such use: responsibility for any fault or negligence which may be cited in any such claim or NYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of d employees jointly or severally.
eed for volume product	ircuit diagrams and circuit parameters) herein is for example only; it is not guarant- tion. SANYO believes information herein is accurate and reliable, but no guarantees garding its use or any infringements of intellectual property rights or other rights of

LC6512A, 6513A

Appendix LC6500 Series Instruction Set (by Function)

\$

ι

х

XI.

хo

RTBL

.oed/store instructions

XM data

Store AC to M Load AC from M

Exchange AC with M. then modify DPH

with immediate data

Exchange AC with M. then increment DPL

Exchange AC with M, then decrement DPL

Read table data from program ROM

		•	-
Symbols	Meaning	M:	Memory
AC:	Accumulator	M(DP):	Memory addressed by DP
ACt:	Accumulator bit t	P(DPL):	Input/output port addressed by DPL
CF:	Carry flag	PC:	Program counter
CTL:	Control register	STACK:	Stack register
DP:	Data pointer	TM:	Timer
E:	E register	TMF:	Timer (internal) interrupt request flag
EXTF:	External interrupt request flag	At, Ha, L	a: Working register
En:	Flag bit n	ZF:	Zero flag

0 0 0 0 0 0 1 0 1 1

10100M2M1M01

Exchange AC with M 1 0 1 0 0 0 0 0 1 2 (AC) = (M(DP))

0001

1 1 1 0 1

1 1 1 1

0011

11

2

2

2 ۱

1 2

0010

1 1 1 1

1 1 1 1

0110

(), []: Contents

- + : Transfer and direction
 - Addition Subtraction

AND

Λ: OR V:

+:

-:

¥:

Exclusive OR

	EXTF: Fn:	External interrupt r Flag bit n	eq	ues	st fla	g		xt, I :F:	Ha,	Li	a :	Working register ero flag			
Instruction		Mnemonic	D7		D 5 D 4) 0	Bytes	Cycles	Function	Description	Status flag affected	Remarks
s	CLA	Clear AC	1	Ţ	0 0	0	0	0	0	1	1	AC ← 0	The AC contents are cleared.	ZF	# 1
ction	CLC	Clear CF	1	1	1 0	0	0	0	1	1	۱	CF ←0	The CF is reset.	ĊF	
manipulation instructions	STC	Set CF	1	1	1 1	0	0	0	1	1	1	CF ← 1	The CF is set.	CF	
	СМА	Complement AC	1	1	1 0	۱	0	1	1	1	1	AC $\leftarrow \overline{(AC)}$	The AC contents are complemented (zero bits become 1, one bits become 0).	ZF	
oulat	INC	Increment AC	0	0	0 0	1	1	1 (0	1	1	AC ←(AC) +1	The AC contents are incremented +1.	ZF CF	
ji en	DE C	Decrement AC	0	0	0 0	1	1	1	1	1	1	AC ← (AC) - 1	The AC contents are decremented -1.	ZF CF	
Accumulator r	RAL	Rotate AC left through CF	0	0	0 0	0	0	0	1	1	1	AC0++(CF), ACa+1++ (ACa), CF++(AC3)	The AC contents are shifted left through the CF.	ZF CF	
5	TAE	Transfer AC to E	0	0	0 0	0	0	1	1	1	1	E ⊷(AC)	The AC contents are transferred to the E.		
¥	XAE	Exchange AC with E	0	0	0 0	1	1	0	1	1	1	(AC) \$\$(E)	The AC contents and the E contents are exchanged.		
u	INM	Increment M	0	0	10	1	1	1	0	1	1	M(DP) ← [M(DP)]+1	The M(DP) contents are incremented +1.	ZF CF	
leiuq	DE M	Decrement M	0	0	10	1	1	1	1	1	1	M(DP) + [M(DP)]-1	The M(DP) contents are decremented -).	ZF CF	
y maniputation tions	SMB bit	Set M data bit	0	0	0 0	1	0	Bı	Э.	۱	1	M(DP. 8 8₀) ←1	A single bit of the M(DP) specified by B1B0 is set.		
Memor	RMB bit	Reset M data bit	0	0	10	1	0	810	Bo	ı	1	M(DP. B180) -0	A single bit of the M(DP) specified by B1B0 is reset.	ZF	
	AD	Add M to AC	0	1	10	0	0	0	0	1	1	AC + (AC) + (M(DP))	The AC contents and the M(DP) contents are binary-added and the result is placed in the AC.	ZF CF	
	ADC	Add M to AC with CF	0	0	10	0	0	0	0	1	1	AC ←(AC) + (M(DP)) +(CF)	The AC, CF, M{DP} contents are binary- added and the result is placed in the AC,	ZF CF	
	DAA	Decimal adjust AC in addition	1	1	10	0	۱	1	0	1	1	AC +(AC) + 6	6 is added to the AC contents,	ZF	
	DAS	Decimal adjust AC in subtraction	1	1	10	1	0	1	0	1	1	AC ←(AC)+10	10 is added to the AC contents.	ZF	
ructions	EXL	Exclusive or M to AC	1	1	1 1	0	1	0	1	1	1	AC ←(AC) ¥ (M(DP))	The AC contents and the M(DP) contents are exclusive-ORed and the result is placed in the AC.	ZF	
son inst	AND	And M to AC	1	1	ه ۱	0	1	۱	1	۱	1	AC ←(AC) ∧ (M(DP))	The AC contents and the M(DP) contents are ANDed and the result is placed in the AC,	ZF	
compari	OR	Or M to AC	1	1	10	0	1	0	1	1	1	AC ←(AC) V [M(DP)]	The AC contents and the M(DP) contents are ORed and the result is placed in the AC.	ZF	
Operation/comparison instructions	СМ	Compare AC with M	1	1	1 1	1	0	1	1	1	1	(M(DP))+(AC)+1	$\label{eq:contents} \begin{array}{l} The AC contents and the M(DP) contents are compared and the CF and ZF are set/reset. \\ \hline \\ $	ZF CF	
	CI data	Compare AC with immediate data			1 0 0 0	1:	3 2		0			13121110 +(AC)+1	The AC contents and immediate data 13/2110 are compared and the ZF and CF are set/reset. $\label{eq:comparison} \begin{array}{c c} Comparison result & CF & ZF \\ \hline 1_3 1_2 1_1 1_0 > (AC1 & 0 & 0 \\ \hline 1_3 1_2 1_1 1_0 = (AC1 & 1 & 1 \\ \hline 1_3 1_2 1_1 1_0 < (AC1 & 1 & 0 \\ \hline \end{array}$	ZF CF	
	CLI data	Compare DPL with immediate data	_		1 0 0 1					2	2	(DPL) ¥13(211)0	The DPL contents and immediate data [3]2]1]0 are compared.	ZF	
	Lf data	Load AC with immediate data	1	1	0 0	13	12	11	0	1	1	AC -13 12 11 10	Immediate data 13/21/10 is loaded in the AC.	ZF	# 1

M(DP) ←(AC)

AC + (M(DP))

(AC) ≒ [M(DP)] DP_H ← (DP_H) ¥ - 0 M₂M₁M₀

 $(AC) \rightleftharpoons (M(DP))$ $DP_{L} \leftarrow (DP_{L}) + 1$

 $(AC) \leftrightarrows (M(DP))$ $DP_{L} \leftarrow (DP_{L}) = 1$

(PCh.E.AC)

AC E-ROM

The AC contents are stored in the M(DP),

The M(DP) contents are loaded in the AC,

The AC contents and the M(DP) contents are exchanged. Then, the DPH contents are modified with the contents of (DPH) VOM2M1MD.

The AC contents and the M(DP) contents are exchanged.

The AC contents and the M(DP) contents are exchanged. Then, the DPL contents are incremented +1.

The AC contents and the M(DP) contents are exchanged. Then, the DPL contents are decremented -1.

The contents of ROM addressed by the PC whose low-order B bits are replaced with the E and AC contents are loaded in the AC and E.

Z٢

ζF

ZF

ZF

ZF

The ZF is set/ reset according to the result of (DPH) WM2 (DPH) WM2 (DPH) WM2 (DPH) WM2 (DPH) WM2 (DPH) Set/ ime of instruc-tion execution (DPL + 1), The ZF is set/ reset according (DTH = result of (DPL - 1),

.

ig			Instruct	tion code	8 5		[·····		Status	
Instruction		Mnemonic	D7 D8 D5 D4	D ₃ D ₂ D ₁ D ₀	Bytes	Cycles	Function	Description	flag affected	Remarks
instructions	LDZ data	Load DPH with Zero and DPL with immediate data respectively	1000	13 12 11 10	1	,	DP++0 DP1+13121110	The DPH and DPL are loaded with 0 and immediate data [3]2] [0 respectively.		
manipulation ins	LHI data	Load DPH with immediate data	0100	13 12 11 10	1	1	DPH ← 13 12 11 10	The DPH is loaded with immediate data 13121110.		
aluqir	IND	Increment DPL	1110	1 1 1 0	1	1	$DP_L \leftarrow \{DP_L\} + 1$	The DPL contents are incremented +1.	ZF	
	DED	Decrement DPL	1110	1 1 1 1	1	1	DPL + (DPL) - 1	The DPL contents are decremented -1.	ZF	
inter	TAL	Transfer AC to DPL	1 1 1 1	0111	1	۱	DP L ← (AC)	The AC contents are transferred to the DPL.		
ta po	TLA	Transfer DPL to AC	1 1 1 0	1001	1	1	AC -(DPi)	The DPL contents are transferred to the AC.	ZF	
ā	ХАН	Exchange AC with DPH	0010	0011	1	١	(АС) ≒ (DРн)	The AC contents and the DPH contents are exchanged.		
ipulatión instructions	XAI XAO XAI XA2 XA3	Exchange AC with working register At	1110 1110	11 10 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0	1 1	1 1 1 1	(AC) ≒(AO) (AC) ≒(A1) (AC) ≒(A2) (AC) ≒(A3)	The AC contents and the contents of working register AO, A1, A2, or A3 specified by 1110 are exchanged.		
Working register manipulation instr	ХНа ХНО ХН1	Exchange DPH with working register Ha	1 1 1 1 1 1 1 1	a 1 0 0 0 1 1 0 0	1 1	1 1	(DPH) ≒(HO) (DPH) ≒(H1)	The DPH contents and the contents of working register H0 or H1 specified by a are exchanged.		
Working ru	XLa XLO XL1	Exchange DPL with working register La	1 1 1 1 1 1 1 1 1		1	1	(DPL)≒(LO) (DPL)≒(L1)	The DPL contents and the contents of working register LO or L1 specified by a are exchanged.		
tions	SFB flag	Set flag bit	0101	B3 B2 B1 B0	1	١	Fn ←1 A flag specified by B3B2B180 is set.			
Flag manipulation instructions		Reset flag bit	0001	B3 B2 B1 B0		1	Fn ←0	A fleg specified by BgBgB1B0 is resat.	ZF	The flags are divided into 4 groups of FO to F3, F4 to F7, F8 to F11, F12 to F15, The ZF is set/ reset according to the 4 bits including a single bit speci- fied by im- mediate data 83828180.
	JMP əddr	Jump in the current bank	0 1 1 0 P7P6P5P₄	1 PioPo Pis Pi3 Pi2 Pi Po	2	2	PC ← PC11 (又はPC11) P10P9 P8 P7 P6 P5 P4 P3 P2 P1 P0	A jump to an address specified by the PC11 (or PC11) and immediate data P10 to P0 occurs.		
tions	JPEA	Jump in the current page modified by E and AC	1111	1010	1	3	PC7~0 ←(E.AC)	A jump to an address specified by the contents of the PC whose low-order 8 bits are replaced with the E and AC contents occurs.		
tine instruction	CZP addr	Call subroutine in the zero page	1011	P3 P2 P1 P0	1	1	STACK \leftarrow (PC)+1 PC 11~5.PC 1~0 \leftarrow 0 PC 5~2 \leftarrow P3 P2 P1 P0	A subroutine in page 0 of bank 0 is called.		
Jump/subroutine	CAL addr	Call subroutine in the zero bank		1 P10P9P8 P3P2P1P0			STACK \leftarrow (PC) +2 PC11~0 \leftarrow OP10P9P8P7 P6P5P4P3P2P1P0	A subtoutine in bank 0 is called,		
1	RT	Return from subroutine	0110	0010	1	1	PC + (STACK)	A return from a subroutine occurs.		
Ц	RTI	Return from interrupt routine	0010	0010	1	1	PC ←(STACK) CF_ZF ←CSF.ZSF	A return from an interrupt servicing routine occurs.	ZF CF	
	BAt addr	Branch on AC bil	0 1 1 1 P7P5P5P4	0 0 tito P3P2P1P0	2	2	PC7~0 ← P7 P6P5P4 P3 P2P1P0 if AC1=1	If a single bit of the AC specified by im- mediate data 110 is 1, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BAD to BA3 according to the value of t.
	BNAt addr	Branch on no AC bit	0 0 1 1 P7P6P5P4	0 0 t i t o P3 P2 Pi Po	2	2	$PC_7 \sim_0 \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ $if ACt = 0$	If a single bit of the AC specified by im- mediate data tri0 is 0 a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNAD to BNA3 accord- ing to the value of t.
S	BMt addr	Branch on M bit	0 1 1 1 P`P6P5P4	0 1 tito P3 P2 P1 P0	2	2	$PC_7 \sim_0 \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ if $(M(DP, t_1 t_0)) = 1$	If a single bit of the M(DP) specified by immediate data (110) is 1, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BMD to BM3 according to the value of t.
ich instructions	BNMt addr	Branch on no M bit	0013 P7P6P5P4	0 1 tito P3 P2 PiPo	2	2	$\frac{PC_{7} \sim_{0} \leftarrow P_{7}P_{6}P_{5}P_{4}}{P_{3}P_{2}P_{1}P_{0}}$ if (M(DP,t_{1}t_{0}) = 0	If a single bit of the M(DP) specified by immediate data (110) is 0, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNMO to BNM3 accord- ing to the value of t.
Branch	BPt addr	Branch on Port bit	0 1 1 1 P7 P6 P5 P4	1 Otito PjP2P1P6	2	2	$PC_7 \sim_0 \leftarrow P_7 P_8 P_5 P_4$ $P_3 P_2 P_1 P_0$ if (P(DPL tito)) = 1	If a single bit of port P(DPL) specified by immediate data 110 is 1, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BPO to BP3 according to the value of t,
	BNP1 addr	Branch on no Port bit	0 0 1 1 P7 P6 P5 P4	1 Otito P3P2P1P0	2	2	PC7 ~0 + P7 P6 P5 P4 P3 P2 P1 P0 H (P(DPL, t 1t 0))=0	If a single bit of port P(DPL) specified by immediate data 11(0 is 0, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNPO to BNP3 according to the value of t.
	BTM addr	Branch on timer	0 1 1 1 P7P6P5P4	1 1 0 0 P3P2P1P0	2	2	PC7 ~0 ← P7P6P5P4 P3P2P1P0 I TMF=1 then TMF ←0	If the TMF is 1, a branch to an address specified by immediate data P to Pg within the current page occurs. The TMF is reset.	TMF	

nstruction		Mnemonic	Instructi	on code	S.	10	Function	Description	Status fiag	Remarks
Instru			D7 D6 D5 D4 D3 D2 D1 D0			Cycl	1 Shellon		affected	-
	BNTM addr	Branch on no timer	0011 P7P6P5P4	1 1 0 0 P3P2P1P0	2	2	$PC_{7\sim0} \leftarrow P_{7}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ if TMF = 0 then TMF $\leftarrow 0$	If the TMF is 0, a branch to an address specified by immediate data P7 to P0 within the current page occurs. The TMF is reset.	TMF	
	Bladdr	Branch on interrupt	0 1 1 1 P7P6P5P4	1 1 0 1 P3P2P1P0	2	2	$PC_7 \sim_0 \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$	If the EXTF is 1, a branch to an address specified by immediate data P7 to P0 within the current page occurs. The EXTF is reset.	EXTF	
	BNI addr	Branch on no interrupt	0 0 1 1 P7P6P5P4	1 1 0 1 P3P2P1P0	2	2	PC $7 \sim 0 \leftarrow P7 P6 P5 P4$ P3 P2 P1 P0 il EXTF=0 then EXTF $\leftarrow 0$	If the EXTF is 0, a branch to an address specified by immediate data P7 to P0 within the current page occurs. The EXTF is reset.	EXTF	
tructions	BC addr Branch on CF		0 1 1 1 P7P6P5P4	1 1 1 1 P3P2P1P0	2	2	$\begin{array}{c} PC_{7}\sim_{0}\leftarrow P_{7}P_{6}P_{5}P_{4}\\ P_{3}P_{2}P_{1}P_{0}\\ (1 CF=1 \end{array}$	If the CF is 1, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		
Branch instructions	BNC addr	Branch on no CF	0 0 1 1 P2P6P5P4	1 1 1 1 P3 P2 P1 Po	2	2	$\begin{array}{c} PC & 7 \sim_0 \leftarrow P \uparrow P_6 P_5 P_4 \\ P_3 P_2 P_1 P_0 \\ \text{if } CF = 0 \end{array}$	If the CF is 0, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		
	BZ addr	Branch on ZF	0 1 1 1 P7P6P5P4	1 1 1 0 P3P2P1P0	2	2	PC7~0~P7P6P5P4 P3P2P1P0 if ZF=1	If the ZF is 1, a branch to an address specified by immediate date P7 to P0 within the current page occurs.		
	BNZ addr	BNZ addr Branch on no ZF		1 1 1 0 P3P2P1P0	2	2	$PC_{2} \sim_{0} \leftarrow P_{2}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ $(f ZF = 0$	If the ZF is D, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		
	BFn addr	Branch on flag bit	1 1 O 1 P7P6P5P4	n3n2n1n0 P3P2P1P0	2	2	$PC_7 \sim 0 \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ $II F_0 = 1$	If a flag bit of the 16 flags specified by immediate data rgngn(no) is 1, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BF0 to BF15 according to the value of n.
	BNFn addr	Branch on no flag bit		n 3 n 2 n 1 n 0 P 3 P 2 P 1 P 0	2	2	$PC_{2} \sim_{0} \leftarrow P_{2} P_{6} P_{5} P_{4}$ $P_{3} P_{2} P_{1} P_{0}$ if Fn = 0	If a flag bit of the 16 flags specified by immediate data ngngnnp is 0, a branch to an address specified by immediate data P7 to P0 within the current page occurs.		Mnemonic is BNFD to BNF 15 according to the value of n.
ŝ	IP	Input port to AC	00001100			1	AC ← (P(DP∪)	The contents of port PIDPLI are inputted to the AC.	ZF	
ction	OP	Output AC to port	0110	0001	1	1	P(DPL) ← (AC)	The AC contents are outputted to port P(DPL)		
nput/output instructions	SPB bit	Set port bit	0000	0 1 B1B0	1	2	P(OP∟ B1B0) ⊷1	Immediate data B1B0-specified one bit in port P(DPL) is set.		Mnemonic is BNF0 to BNF 15 according to the value of n.
Indut/o	RPB bit	Reset port bit	0010	0 3 B1 B0	1	2	P(DP∟B1B0) ⊷0	Immediate data B180-specified one bit in port P (DPL) is reset.	ZF	When this in- struction is executed, the E register contents are destroyed.
	SCTL bit	Set control register bit(S)	0010	1 1 0 0 B3 B2 B1 B0	2	2	CTL ←(CTL) V B3B2B1B0	Immediate data 8;38;28;180-specified bits in the control register are set.		
instructions	RCTL bet	Reset control register bit(S)	0010 1001	1 1 0 0 83 82 81 80	2	2	CTL +-(CTL) A B3B2B1B0	Immediate data B382B1B0-specified bits in the control register are reset.	ZF	
Other instr	WTTM	Write timer	1 1 1 1	1001	1	1	TM←(E).(AC) TMF ←0	The E and AC contants are loaded in the timer. The TMF is reset.	TMF	
ō	HALT	Həl t	1 1 1 1	0110	1	1	Hall	All operations stop.		
	NOP	No operation	0 0 0 0	0000	'	1	No operation	No operation is performed, but 1 machine cycle is consumed.		

*1 If the L1 instruction or CLA instruction is used consecutively in such a manner as L1, L1, L1, ----, or CLA, CLA, CLA, -----, the first L1 instruction or CLA instruction only is effective and the following L1 instructions or CLA instructions are changed to the NOP instructions.

.

) Seri	ies In	stru	ction	Мар)																		
ļĿ,	DEC		DEM	BNC				BC							DED	Я					2-byte instruction		
ы	INC		INM	BNZ				ΒZ							UNI	IX					Ξ. Ϋ́		
Ω	XAE			BNI				BI															
ວັ	IP		RCTL.CLI SCTL.CI	BNTM			IP	BTM			 _			L	XA 3	1 HX					1-byte, 2-cycle instruction		
В							JMP				CAL				CMA	CM] 1-byte,] instruc		
A	8		В	P _t											DAS	JPEA							
6	SMB		RMB	BNPt				BPt							TLA	WTTM					e ction		
œ		В				В			Z	, E		Ч		Ē	XA 2	0HX		1	TL	TL	1-cycle instruction		
7		RFB			ГНІ	SFB			LDZ	BNFn		CZP	П	ΒF _n	AND	TAL	CI	CLI	SCTL	RCTL			
9	m		m	BNM _t											DAA	HALT							
5	SPB		RPB	BN				BMt							OR	EXL							
4												_				XA1	XL 1						
e	TAE		ХАН							RTBL				WХ									
2	s		RTI	At			RT																
1	RAĽ		г	BNAt					OP	BAt							CLC	STC					
0	NOP		ADC				AD				×		CLA		0 X X 0	0TX							
ЛН	0		3	3	4	5	9	~	∞	6	<	m	υ	D	Е	<u>і</u> ц	4	S	∞	6			
						Jat byte												pλp	puz	;			

LC650

LC6500 Series Programming Model

