LC62F0164A

SANYO

16-Bit Single-Chip Microcontroller with On-Chip 64K-Word Flash EEPROM and 1K-Word RAM

Preliminary

Overview

The LC62F0164A single chip microcontroller integrates 64K words (128K bytes) of Flash EEPROM for program and data storage, 1K words (2K bytes) of internal RAM, 2 sets of timers (can be used as four timers), 2 channels of serial interfaces. The SANYO original high speed 16 bit CPU core (SNAIL) is used in the chip.

The LC62F0164A operates on 100 nS cycle time and most of instructions are one-word/one -cycle. The special architecture of the SNAIL core realizes both high speed operation and efficient code side. The instruction set of the SNAIL is simplified by disposing the instructions that are not frequently used. Simplified instruction set realized small core size like 8 bit microcontrollers and high speed operation like high performance 16 bit or 32 bit RISC chip. The SNAIL CPU core comprises high speed multiplier. The multiplier executes $16 \times 16 \rightarrow 32$ bits multiplication in two cycles.

The LC62F0164A has 1M bit Flash EEPROM for program and data storage. The contents of the Flash EEPROM can be written by three ways : parallel programming using EPROM programmer, on board programming using serial data input and data re-writing by program control. Using the data rewrite function by program control, the LC62F0164A can eliminate the external Flash EEPROM which is used in variety of applications.

www.DataSheet.in

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Features

(1) High speed CPU core

100nS cycle time (When Flash EEPROM is used) Most instructions are one cycle/one word Simple and efficient instructions

(2) Integrated high speed multiplier

 $16 \times 16 \rightarrow 32$ bit Two cycle pipelined

- (3) 1M bit Flash for program and data storage The program and data area can freely be defined On board rewrite function Data rewrite function by program control
- (4) 1K word × 16 bits internal RAM (2K bytes)

(5)	Ports
(~)	1 0110

Port	# of pins	Input/Output	Other functions	Style	Flash control
P0	16	Input	External AD bus	With Pull-up resister	
P1	16	Input/Output	External address bus	With Pull-up resister	Data
P2	16	Input/Output		CMOS/N-ch OD With Pull-up resister	Address
Р3	15	Input/Output	Serial interface Counter input External bus control signals PWM output	CMOS/N-ch OD With Pull-up resister	
	1	Input	READY signals		
P7	16	Input	External Interrupts AD converter	CMOS	Controls

(6) Timer - 2 sets (4 channels)

- Timer0 : Can be used as timer or pulse counter

2 channels of 16 bit or one channel of 32 bit

- Mode 0: Two channels of 16 bit timers with programmable prescaler
- Mode 1 : 16 bit timer with programmable prescaler + 16 bit pulse counter
- Mode 2 : 32 bit timer with programmable prescaler
- Mode 3 : 32 bit pulse counter
- Timer1 : Can be used as timer or PWM generator
 - 2 channels of 8 bit or one channel of 16 bit
 - Mode 0: Two channels of 8 bit timers
 - Mode 1 : 8 bit timer + 8 bit PWM generator
 - Mode 2 : 16 bit timer
 - Mode 3 : Variable bit length PWM generator (9-16 bits)

(7) Serial Interface

Two channels of 8 bit serial interface circuits

Bit order switch function (LSB first or MSB first)

8 bit baud rate generator

(8) AD converter

Eight channels of 10 bit AD converter

www.DataSheet.in

(9) External bus interface (under development)

- 2 external windows on data address space
 - Programmable window address (512 address step)
 - Programmable window size (512 words step)
 - Maximum of 32K words size each
 - Independent control mode selection on each window

Two control mode : Multiplex or straight on each window

Wait state control (selectable from 2, 3, 4 or 5 waits)

External ready signal control

Automatic chip select signal generation

(10) Interrupts :

11 sources / 3 vectors

- 4 external interrupt INT0 / INT1 / INT2 / INT3
- 4 timer interrupts
- 2 serial interface interrupts
- 1 A/D converter

Programmable vector selection

Interrupt priority control function : Selectable from low/middle/high

(11) SQFP-100 package

System Block Diagram

Pin Assignment

Package Dimension

(unit : mm) 3181B

SANYO : SQFP-100

Dor	ameter	Symbol	Pins	Conditions			Ratings	;	<u> </u>
r al i	ameter	Symbol	PINS	Conditions	VDD[V]	min.	typ.	max.	unit
Supply voltage		VDDMAX	VDD1, VDD2, VDD3, VDD4 AVDD	VDD1=VDD2= VDD3=VDD4 =AVDD		-0.3		+6.5	V
Input voltage		VI	CF1, RST, TEST 0-2 Ports 0,7, AVREF			-0.3		VDD+0.3	
Input/o voltage		VIO	Ports 1, 2. 3			-0.3		VDD+0.3	
High level output	Peak output current	ЮРН	Ports 1, 2, 3	•CMOS output •For each pin.		-15			mA
current	output	Σ IOAH(1)	Port 1	The total of all pins.		-30			
		Σ IOAH(2)	Port 2	The total of all pins.		-30		1	
	current	Σ IOAH(3)	Port 3	The total of all pins.		-30			
Low level output	Peak output current	IOPL	Ports 1, 2, 3	For each pin.				15	
current	Total	$\Sigma IOAL(1)$	Port 1	The total of all pins.				30	
	output	$\Sigma IOAL(2)$	Port 2	The total of all pins.				30	
	current	Σ IOAL(3)	Port 3	The total of all pins.				30	
Maxim dissipat	un power .ion	Pdmax	SQFP100	Ta=0 to +50°C				350	mW
Operati tempera range	C	Торд				0		+50	°C
Storage tempera range		Tstg				-55		+125	

1. Absolute Maximum Ratings at Ta=25°C, VSS1=VSS2=VSS3=VSS4=VSS5=VSS6=VSS7=AVSS=0V

D	Complexed	Pins	Conditions			Ratings		unit
Parameter	Symbol	1 1115	Conditions	VDD[V]	min.	typ.	max.	
Operating supply voltage range	VDD	VDD1, VDD2, VDD3, VDD4 AVDD	98NS≤tCYC≤ 102NS		4.5		5.5	V
Input high voltage	VIII	•Ports 0, 1, 2, 3, 7 • RST		4.5 - 5.5	0.75VDD		VDD	
Input low voltage	VIL(1)	•Ports 0, 1, 2, 3, 7 • RST		4.5 - 5.5	VSS		0.25VDD	
	VIL(2)	TEST 0, 1, 2		4.5 - 5.5	VSS		0.3VDD	
Operation cycle time	tCYC			4.5 - 5.5	98		102	NS
Oscillation frequency range	FmCF	CF1, CF2	20MHz ceramic resonator oscillation Refer to figure 1	4.5 - 5.5	19.6	20	20.4	MHz
(Note 1)	FsXtal	CF1, CF2	20MHz crystal resonator oscillation Refer to figure 1	4.5 - 5.5		20		MHz
Oscillation stabilizing time period	TmsCF	CF1, CF2	20MHz ceramic resonator oscillation Refer to figure 3	4.5 - 5.5			5	ms
(Note 2)	TssXtal	CF1, CF2	20MHz crystal resonator oscillation Refer to figure 3	4.5 - 5.5			5	8

2. Recommended Operating Range at Ta=0 to +50°C, VSS1=VSS2=VSS3=VSS4=VSS5=VSS6=VSS7=AVSS=0V

(Note 1) The oscillation constant is shown in Tables 1.

LC62F0164A

Parameter	Symbol	Pins	Conditions			Ratings		unit
				VDD[V]	min.	typ.	max.	
Input high current	IIH(1)	•Ports 1, 2, 3	•Output disable •Pull-up resistor off •VIN=VDD (including off state leak current of output Tr.)	4.5 - 5.5			1	μΛ
	IIH(2)	Port 0	•Pull-up resistor off •VIN=VDD	4.5 - 5.5			1]
	IIH(3)	Port 7, RST	VIN=VDD	4.5 - 5.5			I	
Input low current	IIL(1)	Ports 1, 2, 3	•Output disable •Pull-up resistor off •V1N=VSS (including off state leak current of output Tr.)	4.5 - 5.5	-1			
	IIL(2)	Port 0	•Pull-up resistor off •VIN=VSS	4.5 - 5.5	-1			
	IIL(3)	Port 7, RST	VIN=VSS	4.5 - 5.5	-1			
Output high	VOH(1)	Port 1	IOH=-10mA	4.5 - 5.5	VDD-1.5			V
current	VOH(2)	Ports 2, 3	IOH=-10mA CMOS output	4.5 - 5.5	VDD-1.5		<u> </u>	
Output low current	VOL	Ports 1, 2, 3	IOL=10mA	4.5 - 5.5			1.5	V
Pull-up resistor	Rpu	Ports 0, 1, 2, 3	VIN=VSS	5.0	70	100	124	kΩ
Hysteresis voltage	VHIS	• RST •Ports 0, 1, 2. 3, 7		4.5 - 5.5		0.1VDD		V
Pin capacitance	СР	All pins	•Every other terminal connected to VSS. •f=1MHz •Ta=25°C	4.5 - 5.5		10		pF

3. Electrical Characteristics at Ta=0 to +50°C, VSS1=VSS2=VSS3=VSS4=VSS5=VSS6=VSS7=AVSS=0V

4. Serial Input/Output Characteristics at Ta=0 to +50°C, VSS1=VSS2=VSS3=VSS4=VSS5=VSS6=VSS7=0V

	De	arameter	Symbol	Pins	Conditions			Ratings		unit
	Гс	arameter	Symbol	1 1115	Conditions	VDD[V]	min.	typ.	max.	um
	ck	Cycle	tSCK(1)	SCK0(P32), SCK1(P35)	Refer to figure 5	4.5 - 5.5	2			1CYC
	ut clock	Low level pulse width	tSCKL(1)				1			
clock	Input	High level pulse width	1SCKH(1)				1			
Serial clock	clock	Cycle	tSCK(2)	SCK0(P32). SCK1(P35)	•When output is CMOS	4.5 - 5.5	2			1CYC
	Output cle	Low level pulse width	tSCKL(2)		•Refer to figure 5			1/2		tSCK
	Out	High level pulse width	tSCKH(2)					1/2		
input	Da tin	nta set-up ne	tsDI	SB0(P31), SB1(P34), SI0,	•Data set-up to SIOCLK •Refer to figure 5	4.5 - 5.5	0.03			μs
Serial	Da tin	ata hold ne	thDI	SII			0.03			
Serial output	Ou tin	itput delay ne	tdD0	SO0(P30), SO1(P33), SB0(P31), SB1(P34)	•Data set-up to SIOCLK •When output is CMOS •Refer to figure 5	4.5 - 5.5			1/3tCYC +0.05	

5. Pulse Input Conditions at Ta=0 to +50°C, VSS1=VSS2=VSS3=VSS4=VSS5=VSS6=VSS7=0V

Denomentan	Symbol	Pins	Conditions			Ratings		
Parameter	Symbol	F IIIS		VDD[V]	min.	typ.	max.	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72) INT3(P73)	•Interrupt acceptable •Events to timer 0 can be input.	4.5 - 5.5	2			tCYC
	tPIL(2)	RST	Reset acceptable	4.5 - 5.5	2			

Parameter	Symbol	Pins	Conditions			Ratings		unit
		1 110	Conditions	VDD[V]	min.	typ.	max. unit	
Resolution	N	AN0(P78)		4.5 - 5.5		10		bit
Absolute precision	ET	- AN7(P7F)		4.5 - 5.5			±8	LSB
Conversion time	TCAD		AD conversion time =14 × [ADTR] × tCYC (ADTR=3)	4.5 - 5.5	4.12 (1CYC= 98NS)		4.28 (tCYC= 102NS)	μs
Reference input voltage	AVREF	AVREF		4.5 - 5.5	VSS		VDD	V
Reference input current range	IRIF	AVREF	AVREF=VDD	4.5 - 5.5	75	150	300	μΛ
Analog input voltage range	VAIN	AN0(P78) - AN7(P7F)		4.5 - 5.5	VSS		VDD	V
Analog port	IAINH		VAIN=VDD	4.5 - 5.5			1	μA
input current	IAINL		VAIN=VSS	4.5 - 5.5	-1	····		x

6. AD Converter Characteristics at Ta=0 to +50°C, VSS1=VSS2=VSS3=VSS4=VSS5=VSS6=VSS7=0V

7. Current Dissipation Characteristics at Ta=0 to +50°C, VSS1=VSS2=VSS3=VSS4=VSS5=VSS6=VSS7=0V

Parameter	Symbol	I Pins	Conditions		Ratings			unit
		1 113	Conditions	VDD[V]	min.	typ.	max.	unit
Current flow during basic operation (Note 2)	IDDOP(1)	VDD1 =VDD2 =VDD3 =VDD4 =AVDD	•FmCF=20MHz for Ceramic resonator oscillation, Crystal oscillation	4.5 - 5.5		60	80	mA

(Note 2) The currents of output transistors and pull-up MOS transistors are ignored.

 Table 1. Guaranteed constant ceramic oscillators (main-clock)

Type of oscillator	Producer	Oscillator	C1	C2
20MHz crystal oscillator	Daishinku	TBD		
20MHz Ceramic oscillator	Murata	TBD		
		TBD	Bui	lt in

* Both C1 and C2 must use K rank ($\pm 10\%$) and SL characteristics.

(Notes) •Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest possible pattern length.
 •If other oscillators are used, we provide no guarantee of performance.

Figure 2 AC timing measurement point

Figure 3 Oscillation stabilizing time

Figure 4 Reset circuit

Figure 5 Serial input/output test condition

Figure 6 Pulse input timing condition

memo :

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2000. Specifications and information herein are subject to change without notice.