

SPECIFICATION FOR APPROVAL

/	1	Droliminon	, Chapification
(,	Premimary	Specification

() Final Specification

Title	55.0" WUXGA TFT LCD

BUYER	CHN
MODEL	

SUPPLIER	LG.Display Co., Ltd.
*MODEL	LC550EUJ
SUFFIX	SFK1 (RoHS Verified)

*When you obtain standard approval, please use the above model name without suffix

}	APPROVED BY	SIGNATURE DATE
	1	
8	*	
	Ī	
	1	
Plea	ase return 1 copy for you	ur confirmation with

your signature and comments.

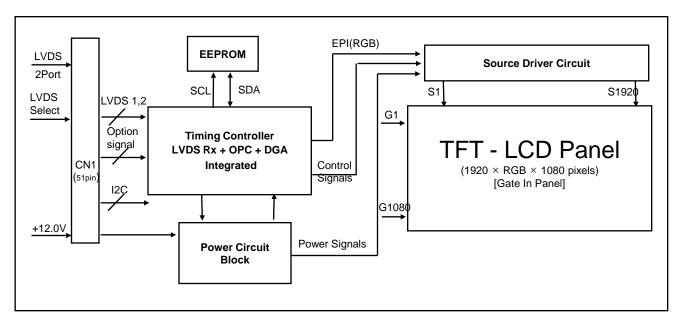
	APPROVED BY	SIGNATURE DATE
	Y.S. Park / Team Leader	7/10/10
,		
	REVIEWED BY	4
_	K.Y.Chong / Project Leader	12.10.15
	PREPARED BY	1
_	J.S.Bae/ Engineer	1
		12.10.15

TV Products Development Dept. LG. Display LCD Co., Ltd

CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	7
3-3	SIGNAL TIMING SPECIFICATIONS	8
3-4	SIGNAL TIMING WAVEFORMS	10
3-5	Intra interface Signal Specification	13
3-6	COLOR DATA REFERENCE	14
3-7	POWER SEQUENCE	15
4	OPTICAL SPECIFICATIONS	16
5	MECHANICAL CHARACTERISTICS	21
6	MECHANICAL DIMENSION	22
6-1	BOARD ASSEMBLY DIMENSION	22
6-2	CONTROL BOARD ASSEMBLY DIMENSION	22
6-3	FFC DIMENSION	23
7	RELIABILITY	24
8	INTERNATIONAL STANDARDS	25
8-1	ENVIRONMENT	25
9	PACKING	26
9-1	PACKING FORM	26
10	PRECAUTIONS	27
10-1	ASSEMBLY PRECAUTIONS	27
10-2	OPERATING PRECAUTIONS	27
10-3	ELECTROSTATIC DISCHARGE CONTROL	28
10-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	28
10-5	STORAGE	28
10-6	OPERATING CONDITION GUIDE	28

RECORD OF REVISIONS


Revision No.	Revision Date	Page	Description
0.1	Aug, 14, 2012	-	Preliminary Specification(First Draft)
1.0	Oct .15.2012		Final Specification

Ver. 1.0 3/39

1. General Description

The LC550EUJ is a Color Active Matrix Liquid Crystal Display with an integral the Source PCB and Gate implanted on Panel (GIP). The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 54.64 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot. Therefore, it can present a palette of more than 16.7Million colors.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

General Features

<u>Octional Features</u>	
Active Screen Size	54.64 inches(1387.80m) diagonal
Outline Dimension	1228.6 (H) x 701.7 (V) x1.5 (D) (Typ.)
Pixel Pitch	0.630 mm x 0.630 mm
Pixel Format	1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth	8-bit, 16.7 M colors
Drive IC Data Interface	Source D-IC : 8-bit EPI, gamma reference voltage, and control signals Gate D-IC : Gate In Panel
Transmittance (With POL)	6.25 %(Typ.)
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Weight	2.60Kg (Typ)
Display Mode	Transmissive mode, Normally black
Surface Treatment (Top)	Hard coating(2H), Anti-glare treatment of the front polarizer (Haze <1%)

Ver. 1.0 4/39

2. Absolute Maximum Ratings

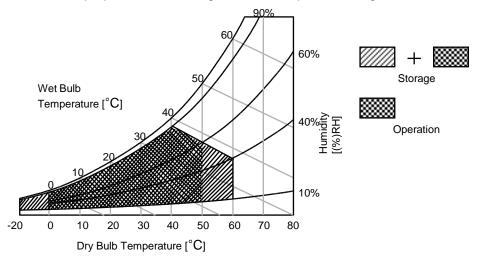

The following items are maximum values which, if exceeded, may cause faulty operation or permanent damage to the LCD module.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Cymphol	Va	lue	Lloit	Remark	
Parameter	Symbol	Min	Max	Unit		
Power Input voltage	VLCD	-0.3	+14.0	V [DC]	1	
Panel Front Temperature	Tsur	-	+68	°C	4	
Operating Temperature	Тор	0	+50	°C		
Storage Temperature	Тѕт	-20	+60	°C	2.2	
Operating Ambient Humidity	Нор	10	90	%RH	2,3	
Storage Humidity	Нѕт	10	90	%RH		

notes: 1. Ambient temperature condition (Ta = 25 ± 2 °C)

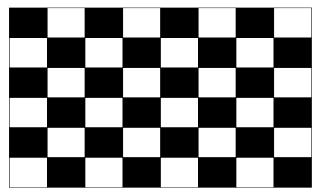
- 2. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be Max 39 °C and no condensation of water.
- 3. Gravity mura can be guaranteed below 40°C condition.
- 4. The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 68 ℃ with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68 ℃. The range of operating temperature may degrade in case of improper thermal management in final product design.

Ver. 1.0 5/39

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power for the LCD circuit.


Table 2. ELECTRICAL CHARACTERISTICS

Dovernator	Cumb al	Value			1124	Nata
Parameter	Symbol	Min	Тур	Max	Unit	Note
Circuit :	-	-	-			
Power Input Voltage	VLCD	10.8	12.0	13.2	VDC	
Dower Input Current	ILCD	-	573	745	mA	1
Power Input Current		-	840	1092	mA	2
Power Consumption	PLCD		6.88	8.94	Watt	1
Rush current	Irush	-	-	5.0	А	3

Notes : 1. The specified current and power consumption are under the V_{LCD} =12.0V, 25 \pm 2°C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.

- 2. The current is specified at the maximum current pattern.
- 3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).
- 4. Ripple voltage level is recommended under $\pm 5\%$ of typical voltage.

White: 255Gray Black: 0Gray

Mosaic Pattern(8 x 6)

Ver. 1.0 6/39

3-2. Interface Connections

This LCD module employs two kinds of interface connection, 51-pin connector is used for the module electronics and 14-pin connector is used for the integral backlight system.

3-2-1. LCD Module

- LCD Connector(CN1): FI-RE51S-HF(manufactured by JAE) or GT05P-51S-H38(manufactured by LSM) or IS050-C51B-C39(manufactured by UJU)
- Mating Connector : FI-R51HL(JAE) or compatible

Table 3. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	NC	No Connection (Note 4)	27	NC	No Connection
2	NC	No Connection (Note 4)	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	No Connection (Note 4)	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	NC	No Connection (Note 4)	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	NC	No Connection (Note 4)	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	NC	No Connection (Note 4)	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	LVDS Select	'H' =JEIDA , 'L' or NC = VESA	33	R2CP	SECOND LVDS Receiver Signal (C+)
8	NC	No Connection (Note 4)	34	GND	Ground
9	NC	No Connection (Note 4)	35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	NC	No Connection (Note 4)	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	40	NC	No Connection
15	R1BP	FIRST LVDS Receiver Signal (B+)	41	NC	No Connection
16	R1CN	FIRST LVDS Receiver Signal (C-)	42	NC or GND	No Connection or Ground
17	R1CP	FIRST LVDS Receiver Signal (C+)	43	NC or GND	No Connection or Ground
18	GND	Ground	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)	45	GND	Ground
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	46	GND	Ground
21	GND	Ground	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	48	VLCD	Power Supply +12.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	49	VLCD	Power Supply +12.0V
24	NC	No Connection	50	VLCD	Power Supply +12.0V
25	NC	No Connection	51	VLCD	Power Supply +12.0V
26	NC or GND	No Connection or Ground		-	-

Note

- 1. All GND(ground) pins should be connected together to the LCD module's metal frame.
- 2. All VLCD (power input) pins should be connected together.
- 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
- 4. #1~#6 & #8~#10 NC (No Connection): These pins are used only for LGD (Do not connect)
- 5. Specific pins(pin No. #10) are used for Scanning function of the LCD module. If not used, these pins are no connection.
- 6. Specific pin No. #44 is used for "No signal detection" of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP(Auto Generation Pattern).

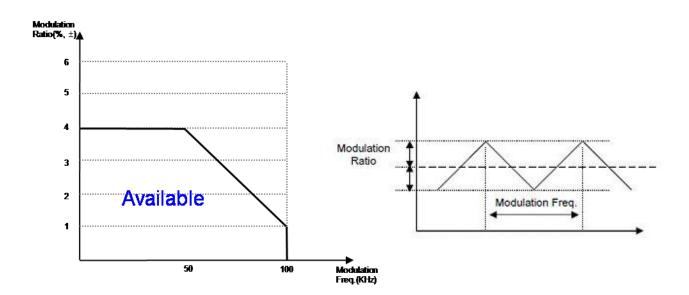
Ver. 1.0 7/39

3-3. Signal Timing Specifications

Table 4 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.

Table 4. TIMING TABLE (DE Only Mode)

ITE	М	Symbol	Min	Тур	Max	Unit	notes
	Display Period	tHV	960	960	960	tCLK	1920 / 2
Horizontal	Blank	tнв	100	140	240	tCLK	1
	Total	tHP	1060	1100	1200	tCLK	
	Display Period	tvv	1080	1080	1080	Lines	
Vertical	Blank	t∨B	20 (228)	45 (270)	69 (300)	Lines	1
	Total	tvp	1100 (1308)	1125 (1350)	1149 (1380)	Lines	

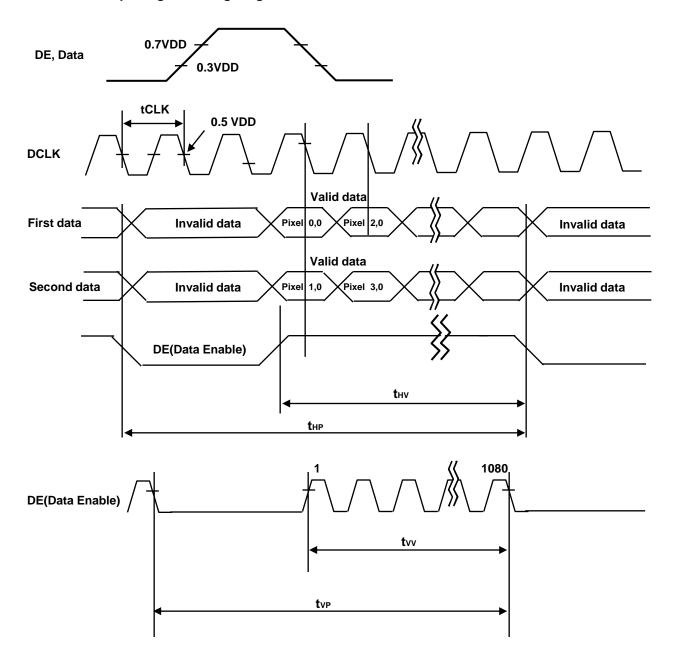

ITE	М	Symbol	Min Typ		Max	Unit	notes
	DCLK	fclk	63.00	74.25	78.00	MHz	
	Horizontal	fн	57.3	67.5	70	KHz	2
Frequency	Vertical	fv	57 (47)	60 (50)	63 (53)	Hz	2 NTSC (PAL)

notes: 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.

- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency
- 3. Spread Spectrum Rate (SSR) for 50KHz ~ 100kHz Modulation Frequency(FMOD) is calculated by (7 0.06*Fmod), where Modulation Frequency (FMOD) unit is KHz. LVDS Receiver Spread spectrum Clock is defined as below figure

* Timing should be set based on clock frequency.

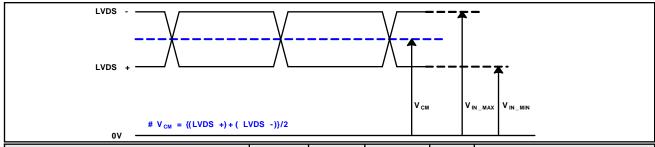
Ver. 1.0 8/39



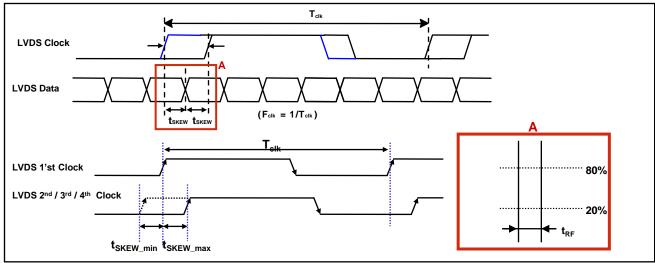
- ** Please pay attention to the followings when you set Spread Spectrum Rate(SSR) and Modulation Frequency(FMOD)
- 1. Please set proper Spread Spectrum Rate(SSR) and Modulation Frequency (FMOD) of TV system LVDS output.
- 2. Please check FOS after you set Spread Spectrum Rate(SSR) and Modulation Frequency(FMOD) to avoid abnormal display. Especially, harmonic noise can appear when you use Spread Spectrum under FMOD 30 KHz.

Ver. 1.0 9/39

3-4. LVDS Signal Specification


3-4-1. LVDS Input Signal Timing Diagram

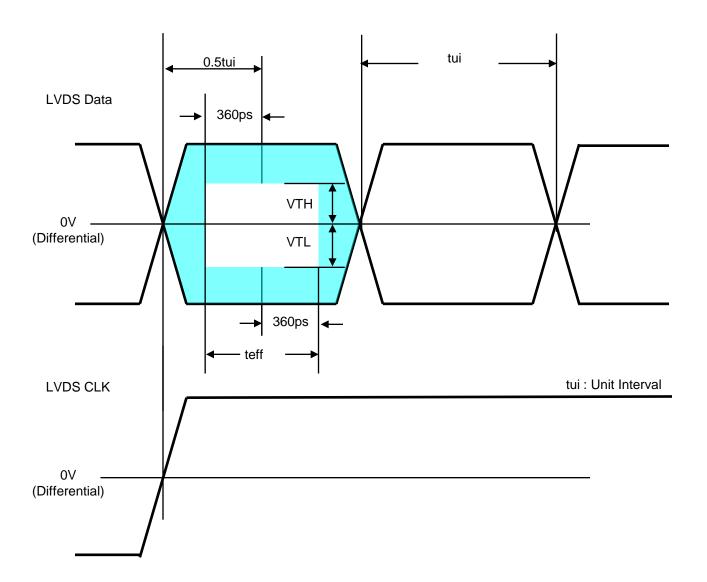
Ver. 1.0 10/39


3-4-2. LVDS Input Signal Characteristics

1) DC Specification

Description	Symbol	Min	Max	Unit	Note
LVDS Common mode Voltage	V _{CM}	1.0	1.5	V	-
LVDS Input Voltage Range	V _{IN}	0.7	1.8	٧.	
Change in common mode Voltage	ΔVCM	-	250	mV	-

2) AC Specification



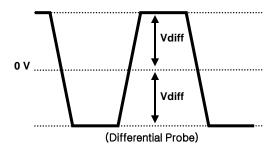
Description	Symbol	Min	Max	Unit	Note	
LVDS Differential Voltage	High Threshold	V_{TH}	100	300	mV	2
LVDS Dillerential Voltage	Low Threshold	V_{TL}	-300	-100	mV	J
LVDS Clock to Data Skew	t _{SKEW}	-	(0.20*T _{clk})/7	ps	-	
LVDS Clock/DATA Rising/Falli	LVDS Clock/DATA Rising/Falling time			(0.3*T _{clk})/7	ps	2
Effective time of LVDS	t _{eff}	±360	-	ps	-	
LVDS Clock to Clock Skew (E	ven to Odd)	t _{SKEW_EO}	-	1/7* T _{clk}	ps	-

Note 1. All Input levels of LVDS signals are based on the EIA 644 Standard.

- 2. If $t_{\rm RF}$ isn't enough, $t_{\rm eff}~$ should be meet the range.
- 3. LVDS Differential Voltage is defined within $t_{\rm eff}$

Ver. 1.0

Ver. 1.0 12/39


^{*} This accumulated waveform is tested with differential probe

3-5. Intra interface Signal Specification

3-5-1. EPI Signal Specification

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	note s
Logic & EPI Power Voltage	VCC	-	1.62	1.8	1.98	VDC	
EPI input common voltage	VCM	LVDS Type	0.8	VCC/2	1.3	V	
EPI input differential voltage	Vdiff	-	150	-	500	mV	
EPI Input eye diagram	Veye	-	90	-	-	mV	

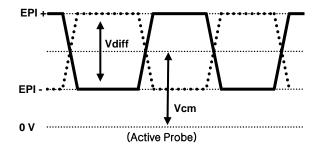


FIG. 2-1 EPI Differential signal characteristics

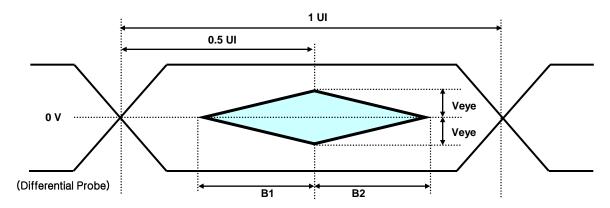


FIG. 2-2 Eye Pattern of EPI Input

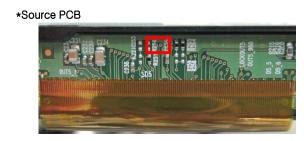


FIG. 3 Measure point

Ver. 1.0 13/39

3-6. Color Data Reference

The brightness of each primary color(Red,Green,Blue) is based on the 8bit gray scale data input for the color. The higher binary input, the brighter the color. Table 5 provides a reference for color versus data input.

Table 5. COLOR DATA REFERENCE

												npu	ıt Co	olor	Dat	а									
	Color				RE	ΕD							GRE	EN							BL	UE			
		<u> </u>	SB					LS			ISB					LSI		-	SB					LS	
	Т	R	7 R6	R5	R4	R3	R2	R1 F	80	G	7 G6	G5	G4	G3	G2	G1 (30	В	7 B6	6 B5	B4	В3	B2 E	31 E	30
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																									
	RED (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																									
	GREEN (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE		İ																							\exists
	BLUE (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Ver. 1.0 14/39

3-7. Power Sequence

3-7-1. LCD Driving circuit

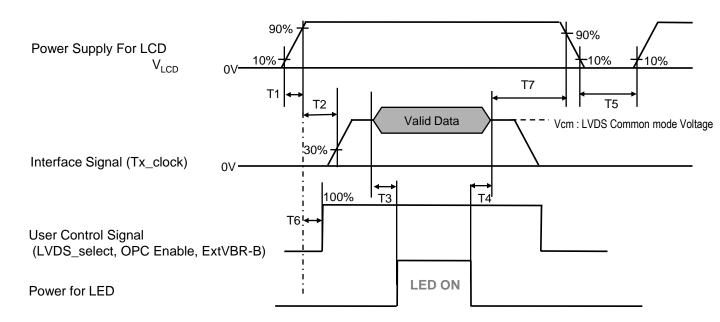


Table 6. POWER SEQUENCE

Donomotor		Value						
Parameter	Min	Тур	Max	Unit	Notes			
T1	0.5	-	20	ms	1			
T2	0	-	-	ms	2			
Т3	400	-	-	ms	3			
T4	200	-	-	ms	3			
T5	1.0	-	-	s	4			
T6	0	-	T2	ms	5			
T7	0	-	-	ms	6			

Note:

- 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
- 2. If T2 is satisfied with specification after removing LVDS Cable, there is no problem.
- 3. The T3 / T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
- 4. T5 should be measured after the Module has been fully discharged between power off and on period.
- 5. If the on time of signals (Interface signal and user control signals) precedes the on time of Power (V_{LCD}), it will be happened abnormal display. When T6 is NC status, T6 doesn't need to be measured.
- 6. It is recommendation specification that T7 has to be 0ms as a minimum value.
- * Please avoid floating state of interface signal at invalid period.
- * When the power supply for LCD (VLCD) is off, be sure to pull down the valid and invalid data to 0V.

15/39

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values are specified at distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °. FIG. 1 shows additional information concerning the measurement equipment and method.

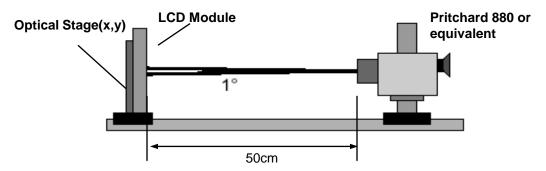


FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 7. OPTICAL CHARACTERISTICS

Ta= $25\pm2^{\circ}$ C, V_{LCD}=12.0V, fv=60Hz, Dclk=72.4MHz Backlight : LGD B/L

	Parameter		Currele el		Value		Linit	Note
	Parame	ter	Symbol	Min	Тур	Max	Unit	Note
Contrast Ratio			CR	1000	1400	-		1
Desarate Time	_	Variation	G to G σ		6	9		3
Response Time		Gray to Gray (BW)	G to G BW		8	12	ms	2
		DED.	Rx		0.642			
	RED		Ry		0.335			
Color Coordinates [CIE1931]		CDEEN	Gx	Тур -0.03	0.310	Typ +0.03		
		GREEN	Gy		0.604			
		5.115	Вх		0.152			
		BLUE	Ву		0.061			
		right(φ=0°)	θr (x axis)	89	-	-		
	2D	left (φ=180°)	θI (x axis)	89	-	-	dograd	1
Viewing Angle	(CR>10)	up (φ=90°)	θu (y axis)	89	-	-	degree	4
Viewing Angle		down (φ=270°)	θd (y axis)	89	-	-		
	3D (CT≤10%)	Up+Down	θu (y axis) +θd (y axis)	16	20	-	degree	6
3D Crosstalk		3D C/T		1	3	%	1	
Gray Scale			-	-	-			5

Ver. 1.0 16/39

Note: 1. Contrast Ratio(CR) is defined mathematically as:

Contrast Ratio = Surface Luminance with all white pixels
Surface Luminance with all black pixels

It is measured at center 1-point.

- Surface luminance is determined after the unit has been 'ON' and 1Hour after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 1.
- 2. Response time is the time required for the display to transit from any gray to white (Rise Time, Tr_R) and from any gray to black (Decay time, Tr_D). For additional information see the FIG. 2.
 - ※ G to G_{BW} Spec stands for average value of all measured points.

Photo Detector: RD-80S / Field: 2°

3. G to G $_{\sigma}$ is Variation of Gray to Gray response time composing a picture

- 4. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 3.
- 5. Gray scale specification
 Gamma Value is approximately 2.2. For more information, see the Table 8.
- 6. 3D performance specification is expressed by 3D luminance, 3D Crosstalk and 3D viewing angle. 3D luminance and 3D crosstalk is measured at center 1-point. For more information, see the FIG 4~7.

Table 8. GRAY SCALE SPECIFICATION

Gray Level	Luminance [%] (Typ.)
LO	0.07
L15	0.27
L31	1.04
L47	2.49
L63	4.68
L79	7.66
L95	11.5
L111	16.1
L127	21.6
L143	28.1
L159	35.4
L175	43.7
L191	53.0
L207	63.2
L223	74.5
L239	86.7
L255	100

Ver. 1.0 17/39

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Black or White".

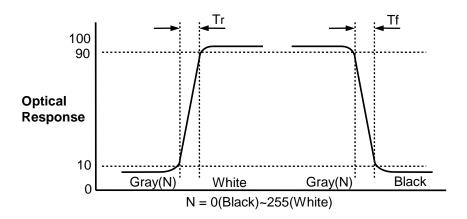


FIG. 2 Response Time

Dimension of viewing angle range

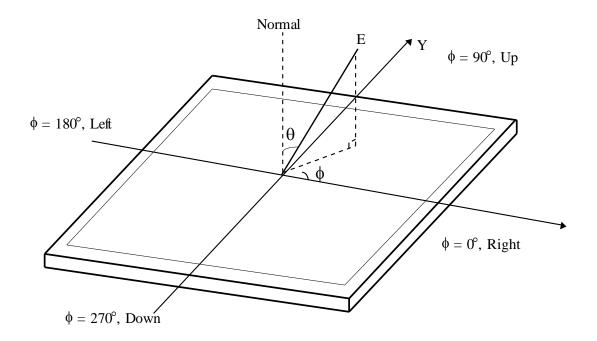
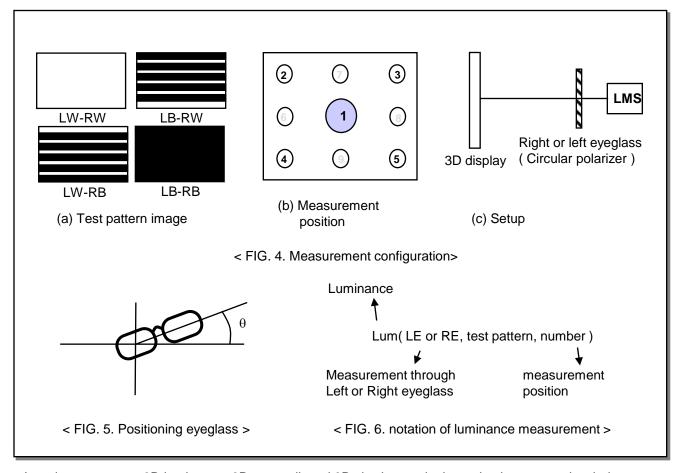



FIG. 3 Viewing Angle

Ver. 1.0 18/39

In order to measure 3D luminance, 3D crosstalk and 3D viewing angle, it need to be prepared as below;

- 1) Measurement configuration
 - 4-Test pattern images. Refer to FIG 4.
 - -. LW-RW: White for left and right eye
 - -. LW-RB: White for left eye and Black for right eye
 - -. LB-RW: Black for left eye and white for right eye
 - -. LB-RB: Black for left eye and right eye

Image files where black and white lines are displayed on even or odd lines.

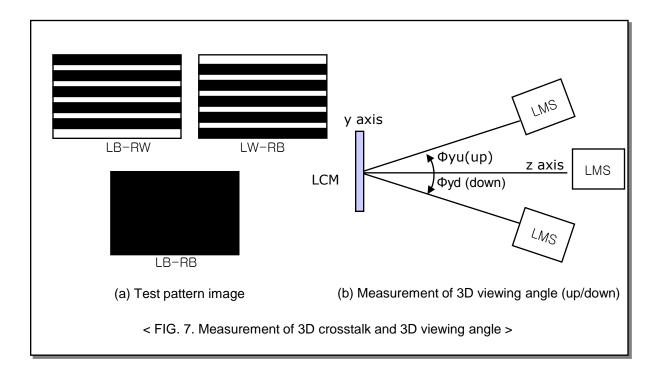
Luminance measurement system (LMS) with narrow FOV (field of view) is used.

2) Positioning Eyeglass (refer to appendix-VII for standard specification of eyeglass) Find angle of minimum transmittance.

This value would be provided beforehand or measured by the following steps;

- (i) Test image (LB-RW) is displayed.
- (ii) Left eyeglass are placed in front of LMS and luminance is measured, rotating right eyeglass such as FIG 5. The notation for luminance measurement is "Lum(LE, LB-RW,1)".
- (iii) Find the angle where luminance is minimum.

Ver. 1.0 19/39


^{*} Following measurements should be performed at the angle of minimum transmittance of eyeglass.

- 3) Measurement of 3D luminance
 - (i) Test image (LW-RW) is displayed.
 - (ii) Left or right eyeglass are placed in front of LMS successively and luminance is measured at center 1 point where the notation for luminance measurement is "Lum(LE, LW-RW,1)" or "Lum(RE, LW-RW,1).
- 4) Measurement of 3D crosstalk
 - (i) Test image (LB-RW, LW-RB and LB-RB) is displayed.
 - (ii) Right or left eyeglass are placed in front of LMS successively and luminance is measured for position 1.with rotating LMS or sample vertically.

$$\frac{\text{Lum}(\text{LE}, \text{LB-RW}, 1) - \text{Lum}(\text{LE}, \text{LB-RB}, 1)}{\text{Lum}(\text{LE}, \text{LW-RB}, 1) - \text{Lum}(\text{LE}, \text{LB-RB}, 1)}$$
 or
$$\frac{\text{Lum}(\text{RE}, \text{LW-RB}, 1) - \text{Lum}(\text{RE}, \text{LB-RB}, 1)}{\text{Lum}(\text{RE}, \text{LB-RW}, 1) - \text{Lum}(\text{RE}, \text{LB-RB}, 1)}$$

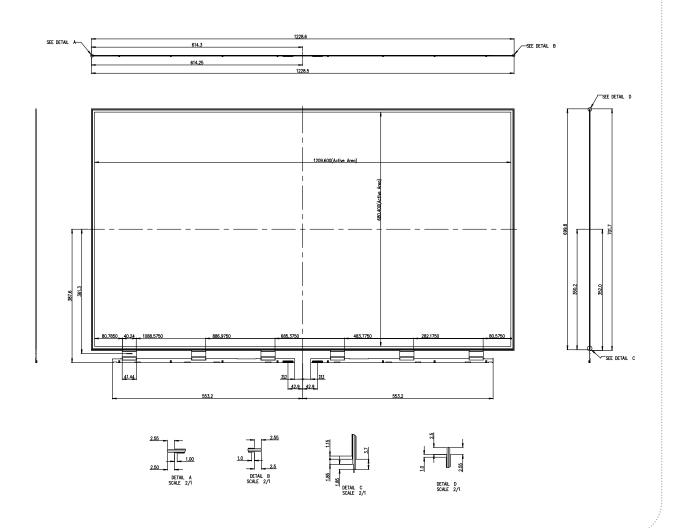
5) Measurement of 3D Viewing Angle

3D viewing angle is the angle at which the 3D crosstalk is under 10%. The angles are determined for the vertical or y axis with respect to the z axis which is normal to the LCD module surface and measured for position 1. For more information, see the Fig7

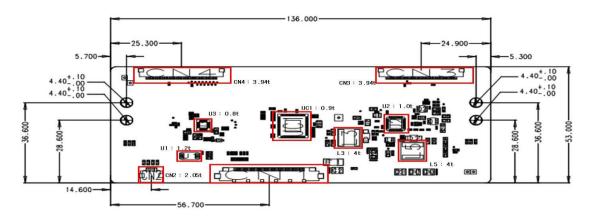
Ver. 1.0 20/39

5. Mechanical Characteristics

Table 9 provides general mechanical characteristics.


Table 9. MECHANICAL CHARACTERISTICS

Item	Value	е			
	Horizontal	1228.6mm			
Outline Dimension (Only Glass)	Vertical	701.7Mm			
(cm, chart,	Thickness	1.5mm			
Astina Disalan Assa	Horizontal	1209.6 mm			
Active Display Area	Vertical	680.4 mm			
Weight	2.6kg(typ)				
Surface Treatment	Hard coating(2H), Anti-glare treatment of the front polarizer (Haze <1%)				


notes: Please refer to a mechanic drawing in terms of tolerance at the next page.

Ver. 1.0 21/39

6-1. Board Assembly Dimension



6-2. Control Board Assembly Dimension

Ver. 1.0 22/39

6-3. FFC Dimension

Ver. 1.0 23/39

7. Reliability

Table 10. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition			
1	High temperature storage test	Ta= 60°C 240h			
2	Low temperature storage test	Ta= -20°C 240h			
3	High temperature operation test	Ta= 50°C 50%RH 240h			
4	Low temperature operation test	Ta= 0°C 240h			
5	Humidity condition Operation	Ta= 40 °C ,90%RH			
6	Altitude operating storage / shipment	0 - 16,400 ft 0 - 40,000 ft			

notes: Before and after Reliability test, Board ass'y should be operated with normal function.

Ver. 1.0 24/39

8. International Standards

8-1. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

Ver. 1.0 25/39

9. Packing

9-1. Packing Form

a) Package quantity in one Pallet: 70 pcs

b) Pallet Size: 1390 mm X 890 mm X 980 mm.

Ver. 1.0 26/39

10. Precautions

to the polarizer.)

Please pay attention to the followings when you use this TFT LCD panel.

10-1. Assembly Precautions

- (1) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (2) You should adopt radiation structure to satisfy the temperature specification.
- (3) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (4) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental
- (5) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer
- (6) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (7) Board ass'y should be put on the mold frame properly.
- (8) FFC Cable should be connected between System board and Source PCB correctly.
- (9) Mechanical structure for backlight system should be designed for sustaining board ass'y safely.

10-2. Operating Precautions

- (1) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (2) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer
- (3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (4) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (6) Please do not give any mechanical and/or electrical impact to board assy. Otherwise, it can't be operated its full characteristics perfectly.

Ver. 1.0 27/39

10-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. Panel ground path should be connected to metal ground.

10-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

10-5. Storage

When storing the board ass'y as spares for a long time, the following precautions are necessary.

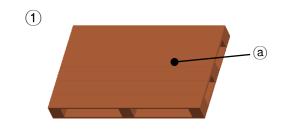
- (1) Store them in a dark place. Do not expose the board ass'y to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

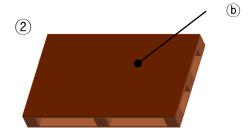
 It is recommended that they be stored in the container in which they were shipped.

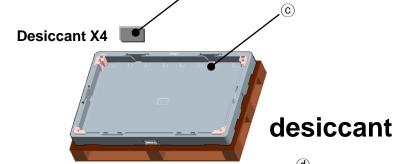
10-6. Operating condition guide

- (1) The LCD product should be operated under normal conditions. Normal condition is defined as below;
 - Temperature : 5 ~ 40 °C, normal humidity
 - Display pattern: continually changing pattern (Not stationary)
- (2) If the product will be used in extreme conditions such as high temperature, display patterns or operation time etc...

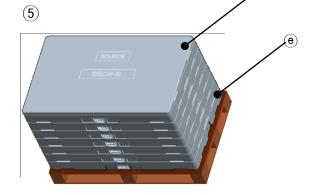
It is strongly recommended to contact LGD for Qualification engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at Airports, Transit Stations, Banks, Stock market, and Controlling systems. The LCD product should be applied by global standard environment. (refer ETSI EN 300, IEC 60721)

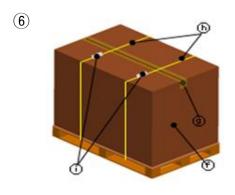

Ver. 1.0 28/39


4


APPENDIX-I

■ Pallet Ass'y

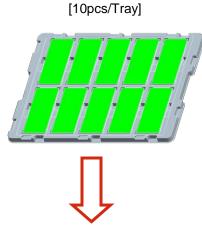

3



No.	Description	Material
(a)	Pallet	Plywood
(b)	Carton Plate	Single Wall
©	PE Sheet	Carbon
(d)	Top Packing	EPS
Θ	Bottom Packing	EPS
(f)	Angle Packing	Single Wall
9	Tape	OPP
h	Band	PP
(i)	Clip	Steel
J	Desiccant	Power dry

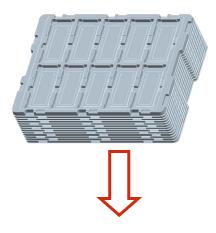
Ver. 1.0 29/39

APPENDIX- I -2

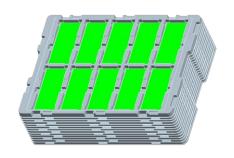

■ LC550EUJ-SFK1 Control PCB Packing Ass'y

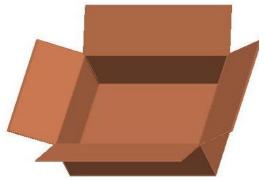
a) Control PCB Qty / Box : 120 pcs

b) Tray Qty / Box : 13Tray(Upperst Tray Is empty)


c) Tray Size: 466 X 353 X 16 d) Box size: 468 X 355 X 144

[12Tray+Empty Tray]



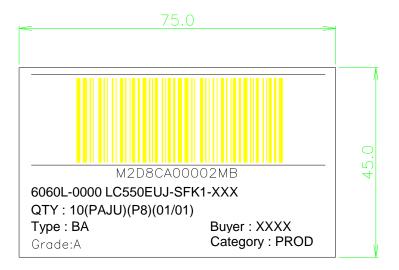


[Inserting into Box

NO.	DESCRIPTION	MATERIAL			
1	PCB Packing A,ssy	Packing A,ssy -			
2	Tray	PET			
3	Вох	SW			

Ver. 1.0 30/39

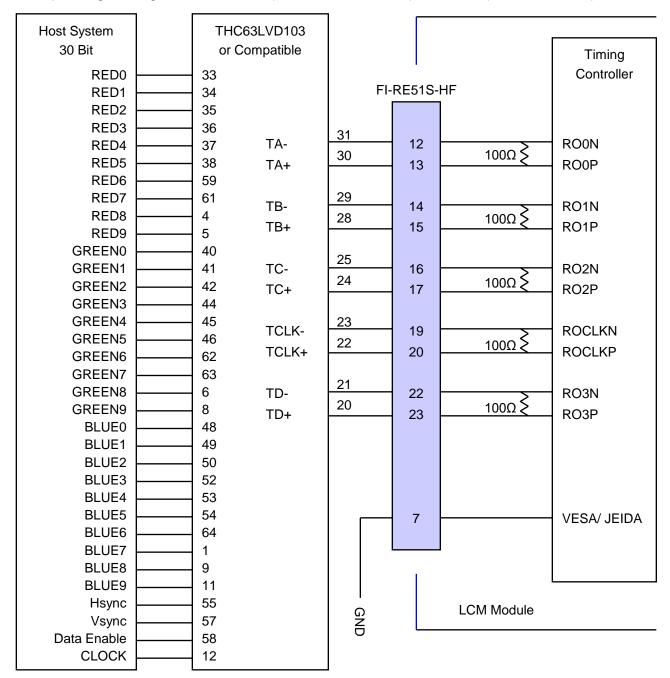
APPENDIX- II-1


■ Board Ass'y ID Label


Ver. 1.0 31/39

APPENDIX- II-2

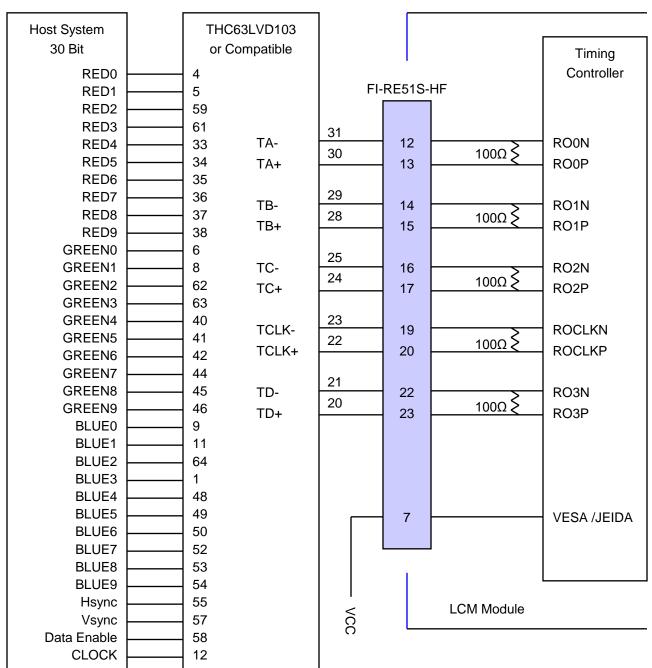
■ Box Label


■ Pallet Label

Ver. 1.0 32/39

APPENDIX- III-1

■ Required signal assignment for Flat Link (Thine: THC63LVD103) Transmitter(Pin7= "L" or "NC")

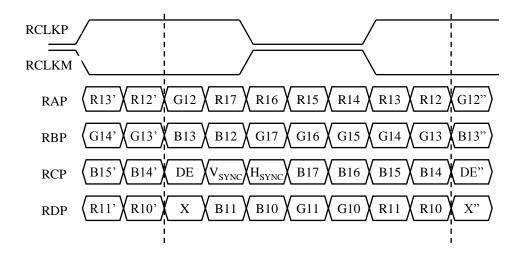


Note: 1. The LCD module uses a 100 $Ohm[\Omega]$ resistor between positive and negative lines of each receiver input.

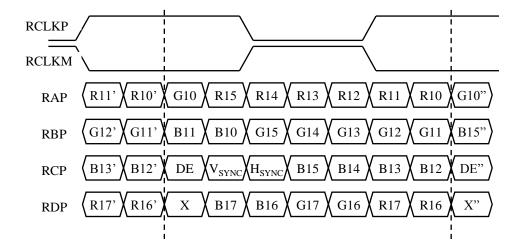
- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '7' means MSB and '0' means LSB at R,G,B pixel data.

APPENDIX- III-2

■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter(Pin7= "H")


Note :1. The LCD module uses a 100 $Ohm[\Omega]$ resistor between positive and negative lines of each receiver input.

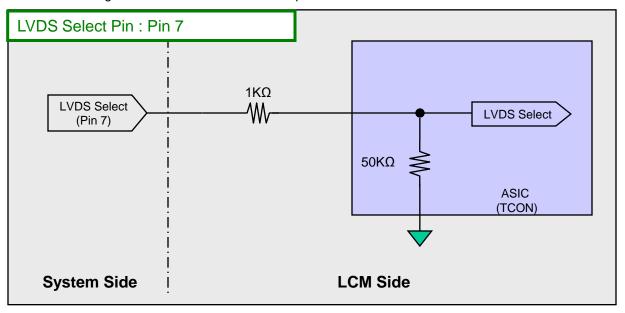
- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '7' means MSB and '0' means LSB at R,G,B pixel data.


APPENDIX- IV

■ LVDS Data-Mapping Information (8 Bit)

1) LVDS Select: "H" Data-Mapping (JEIDA format)

2) LVDS Select: "L" Data-Mapping (VESA format)



Ver. 0.1 35/39

APPENDIX- V

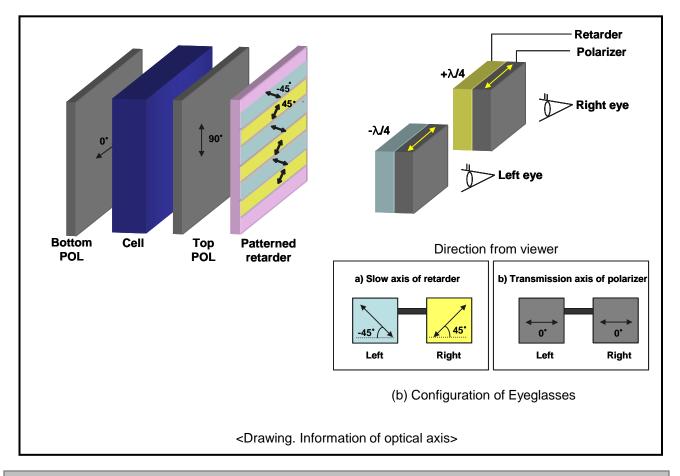
■ Option Pin Circuit Block Diagram

Circuit Block Diagram of LVDS Format Selection pin

Ver. 0.1 36/39

APPENDIX-VI

■ Standard specification of Eyeglasses


This is recommended data of Eyeglasses for LC550EUJ-SFK1 model. (details refer to table)

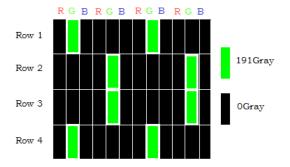
For each item, depending on the eyeglass manufacturer tolerances may occur, this tolerance can affect 3D performance. (3D Crosstalk, 3D luminance, 3D viewing angle)

<Table. Standard specification of Eyeglasses>

De	Left	Right	Remark		
Optical axis	a) Slow axis of retarder	-45°	45°	Refer to drawing	
	b) Transmission axis of polarizer	0°	0°		
Retardation value	Retarder	125nm		@550nm	

Polarization efficiency: more than 99.90%




Ver. 0.1 37/39

APPENDIX-VII-1

. Flicker Adjustment

Parameter	Unit	Min	Тур	Max	Note
Inversion Method	-	V-2Dot Inversion			
Adjust Pattern / Gray Level	-	G2Dot Full Flicker / 191Gray			60Hz
Position	-	Center (Offset -5 level)			
Voltage range V		6.55	7.05	7.55	

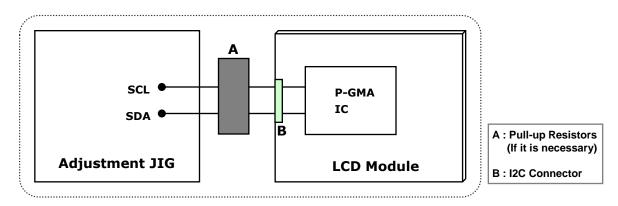


FIG. 8 VCOM Adjustment Pattern & Block Diagram

Ver. 0.1 38/39

APPENDIX-VIII

■ The reference method of BL burst dimming

It is recommended to use synchronous V-sync frequency to prevent waterfall (Vsync * 2 =Burst Frequency)

Ver. 0.1 39/39