Product Specification # SPECIFICATION FOR APPROVAL | (| •) | Preliminary Specification | |---|-----|----------------------------------| |---|-----|----------------------------------| () Final Specification | BUYER | LGE | |-------|-----| | MODEL | | | SUPPLIER | LG.Display Co., Ltd. | | | |----------|----------------------|--|--| | MODEL | LC260EXJ | | | | SUFFIX | SDA1 (RoHS Verified) | | | | APPROVED BY | SIGNATURE
DATE | |------------------------------|---------------------| | | | | | | | | | | | | | Please return 1 copy for you | r confirmation with | | your signature and o | comments. | | APPROVED BY | SIGNATURE
DATE | |--|-------------------| | K. S. Nah / Chief Senior Engineer | | | REVIEWED BY | | | K.N. Kim
/ Chief Senior Engineer | | | PREPARED BY | | | J.H. Song
/ Senior Engineer | | | DD Droduct Decima | Dont | | PD Product Design
LG Display Co., I | • | Ver. 0.0 # **Product Specification** # **CONTENTS** | Number | ITEM | Page | |--------|---------------------------------------|------| | | COVER | 1 | | | CONTENTS | 2 | | | RECORD OF REVISIONS | 3 | | 1 | GENERAL DESCRIPTION | 4 | | 2 | ABSOLUTE MAXIMUM RATINGS | 5 | | 3 | ELECTRICAL SPECIFICATIONS | 6 | | 3-1 | ELECTRICAL CHARACTERISTICS | 6 | | 3-2 | INTERFACE CONNECTIONS | 7 | | 3-3 | SIGNAL TIMING SPECIFICATIONS | 8 | | 3-4 | SIGNAL TIMING WAVEFORMS | 9 | | 3-5 | COLOR DATA REFERENCE | 12 | | 3-6 | POWER SEQUENCE | 13 | | 4 | OPTICAL SPECIFICATIONS | 14 | | 5 | MECHANICAL CHARACTERISTICS | 18 | | 6 | RELIABILITY | 20 | | 7 | INTERNATIONAL STANDARDS | 21 | | 7-1 | ENVIRONMENT | 21 | | 8 | PACKING | 22 | | 8-1 | PACKING FORM | 22 | | 9 | PRECAUTIONS | 23 | | 9-1 | ASSEMBLY PRECAUTIONS | 23 | | 9-2 | OPERATING PRECAUTIONS | 23 | | 9-3 | ELECTROSTATIC DISCHARGE CONTROL | 24 | | 9-4 | PRECAUTIONS FOR STRONG LIGHT EXPOSURE | 24 | | 9-5 | STORAGE | 24 | Ver. 0.0 2 /32 # Product Specification # **RECORD OF REVISIONS** | Revision No. | Revision Date | Page | Description | |--------------|---------------|------|--| | 0.0 | Jun, 19, 2012 | - | Preliminary Specification(First Draft) | | 0.1 | Jun, 25, 2012 | Ver. 0.0 3 /32 ### **Product Specification** ### 1. General Description The LC260EXJ is a Color Active Matrix Liquid Crystal Displa. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive display type which is operating in the normally black mode. It has a 26.01 inch diagonally measured active display area with WXGA resolution (768 vertical by 1366 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in Horizontal stripes. Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus presenting a palette of more than 16.7 M (6bit + A-FRC) colors. It has been designed to apply the 8-bit 1-port LVDS interface. It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important. #### **General Features** | Active Screen Size | 26.01 inches(660.6mm) diagonal | |--------------------------|--| | Outline Dimension | 594.2(H) x 341.5(V) x 1.8(D)mm | | Pixel Pitch | 140.5 / x RGB X 421.5 / m | | Pixel Format | 1366 horiz. by 768 vert. pixels RGB stripe arrangement | | Color Depth | 8bit(D), 16,7 M colors | | Transmittance (With POL) | 4.84 %(Typ.) | | Viewing Angle (CR>10) | Viewing angle free (R/L 178(Min.), U/D 178(Min.)) | | Power Consumption | Total 2.7 W(Typ)(TBD) | | Weight | 820g(Typ.), 900g(Max) | | Display Operating Mode | Transmissive mode, normally black | | Surface Treatment | Hard coating(3H), Anti-glare treatment of the front polarizer (Haze 10%) | | Possible Display Type | Landscape only | Ver. 0.0 4 /32 ### **Product Specification** ## 2. Absolute Maximum Ratings The following items are maximum values which, if exceeded, may cause faulty operation or permanent damage to the LCD module. Table 1. ABSOLUTE MAXIMUM RATINGS | Parameter | | Symbol | Va | lue | Unit | Note | | |--------------------------------|-------------|------------|------|--------|-------|------|--| | | | | Min | Max | Offic | | | | Dower Input Voltage | LCD Circuit | VLCD | -0.3 | +14.0 | VDC | | | | Power Input Voltage | Driver | VBL | -0.3 | + 27.0 | VDC | | | | | ON/OFF | Voff / Von | -0.3 | +5.5 | VDC | 1 | | | Driver Control Voltage | Brightness | EXTVBR-B | 0.0 | +5.5 | VDC | | | | T-Con Option Selection Voltage | | VLOGIC | -0.3 | +4.0 | VDC | | | | Operating Temperature | | Тор | 0 | +50 | °C | 2.2 | | | Storage Temperature | | Тѕт | -20 | +60 | °C | 2,3 | | | Panel Front Temperature | | Tsur | - | +68 | °C | 4 | | | Operating Ambient Humidity | | Нор | 10 | 90 | %RH | 0.0 | | | Storage Humidity | Нѕт | 10 | 90 | %RH | 2,3 | | | Note1. Ambient temperature condition (Ta = 25 ± 2 °C) - 2. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be Max 39°C, and no condensation of water. - 3. Gravity mura can be guaranteed below 40°C condition. - 4. The maximum operating temperatures is based on the test condition that the surface temperature of display area is less than or equal to 68°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68°C. The range of operating temperature may be degraded in case of improper thermal management in final product design. Ver. 0.0 5 /32 ### **Product Specification** #### 3-1. Electrical Characteristics It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED backlight and LED Driver circuit. Table 2. ELECTRICAL CHARACTERISTICS | Parameter | Symbol | | Value | Unit | Note | | | |---------------------|-------------------|------|-------|------|----------|-------|--| | 1 drameter | | Min | Тур | Max | Offic | 14010 | | | Circuit : | Circuit: | | | | | | | | Power Input Voltage | V _{LCD} | 10.8 | 12.0 | 13.2 | V_{DC} | | | | Power Input Current | I _{LCD} | - | 225 | 293 | mA | 1 | | | Power input Current | | - | 275 | 356 | mA | 2 | | | Power Consumption | P _{LCD} | - | 2.7 | 3.51 | Watt | 1 | | | Rush current | I _{RUSH} | - | - | 3.0 | А | 3 | | 1. The specified current and power consumption are under the V_{LCD} =12.0V, Ta=25 \pm 2°C, fV=120Hz condition, and mosaic pattern(8 x 6) is displayed and fV is the frame frequency. White: 1023 Gray - 2. The current is specified at the maximum current pattern. - 3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.). - 4. Ripple voltage level is recommended under \pm 5% of typical voltage Black: 0 Gray Mosaic Pattern(8 x 6) ## **Product Specification** #### 3-2. Interface Connections This LCD module employs two kinds of interface connection, a 30-pin connector is used for the module electronics and 14-pin connector is used for the integral backlight system. #### 3-2-1. LCD Module - LCD Connector(CN1): KDF71G-30S-1H(Manufactured by Hirose) or FI-X30SSL-HF(Manufactured by JAE). - Mating Connector : : FI-X30C2L (Manufactured by JAE) or Equivalent Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION | Pin No. | Symbol | Description | Note | |---------|-------------|-------------------------------|-------------| | 1 | VLCD | Power Supply +12.0V | | | 2 | VLCD | Power Supply +12.0V | | | 3 | VLCD | Power Supply +12.0V | | | 4 | VLCD | Power Supply +12.0V | | | 5 | GND | Ground | | | 6 | GND | Ground | | | 7 | GND | Ground | | | 8 | GND | Ground | | | 9 | LVDS Select | 'H' =JEIDA , 'L' or NC = VESA | Appendix IV | | 10 | NC | No Connection | 4 | | 11 | GND | Ground | | | 12 | RA- | LVDS Receiver Signal(-) | | | 13 | RA+ | LVDS Receiver Signal(+) | | | 14 | GND | Ground | | | 15 | RB- | LVDS Receiver Signal(-) | | | 16 | RB+ | LVDS Receiver Signal(+) | | | 17 | GND | Ground | | | 18 | RC- | LVDS Receiver Signal(-) | | | 19 | RC+ | LVDS Receiver Signal(+) | | | 20 | GND | Ground | | | 21 | RCLK- | LVDS Receiver Clock Signal(-) | | | 22 | RCLK+ | LVDS Receiver Clock Signal(+) | | | 23 | GND | Ground | | | 24 | RD- | LVDS Receiver Signal(-) | | | 25 | RD+ | LVDS Receiver Signal(+) | | | 26 | GND | Ground | | | 27 | NC | No Connection (Note 4) | 4 | | 28 | NC | No Connection (Note 4) | 4 | | 29 | NC | No Connection (Note 4) | 4 | | 30 | GND | Ground | 5 | Notes: 1. All GND (Ground) pins should be connected together to the LCD module's metal frame. - 2. All VLCD (power input) pins should be connected together. - 3. All Input levels of LVDS signals are based on the EIA 644 Standard. - 4. These pins are used only for LGD (Do not connect) - 5. Specific pin No. #30 is used for "No signal detection" of system signal interface. It should be GND for NSB (No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP (Auto Generation Pattern). Ver. 0.0 7 /32 ## **Product Specification** # 3-3. Signal Timing Specifications Global LCD Panel Exchange Center Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation. Table 6-1. TIMING TABLE (DE Only Mode) | ITE | М | Symbol | Min | Тур | Max | Unit | Note | |------------|-------------------|--------|--------------|--------------|----------------|------|------| | Horizontal | Display
Period | thv | - | 1366 | - | tclk | | | | Blank | tнв | 90 | 162 | 410 | tclk | | | | Total | tHP | 1456 | 1528 | 1776 | tclk | | | | Display
Period | tvv | - | 768 | 1 | tHP | | | Vertical | Blank | t∨B | 20
(126) | 22
(180) | 240
(295) | tHP | 1 | | | Total | tvp | 788
(894) | 790
(948) | 1008
(1063) | tHP | | | ITE | М | Symbol | Min | Тур | Max | Unit | Note | |-----------|------------|--------|------------|------------|------------|------|--| | | DCLK | fclk | 63.0 | 72.4 | 80.0 | MHz | | | | Horizontal | fH | 45 | 47.4 | 55 | KHz | 2 | | Frequency | Vertical | fv | 57
(47) | 60
(50) | 63
(53) | Hz | 2
NTSC :
57~63Hz
(PAL :
47~53Hz) | #### Note: - 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin. - 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency - X. Timing should be set based on clock frequency. # Product Specification # 3-4. Signal Timing Waveforms ## 3-4-1. LVDS Input Signal Timing Diagram Ver. 0.0 9 /32 ### **Product Specification** # 3-4-2. LVDS Input Signal Characteristics #### 1) DC Specification | Description | Symbol | Min | Max | Unit | Note | |-------------------------------|-----------------|-----|-----|------|----------| | LVDS Common mode Voltage | V _{CM} | 1.0 | 1.5 | V | _ | | LVDS Input Voltage Range | V _{IN} | 0.7 | 1.8 | V | <u>-</u> | | Change in common mode Voltage | △VCM | | 250 | mV | - | ### 2) AC Specification | Description | Symbol | Min | Max | Unit | Note | | |------------------------------|----------------------|----------|---------------------------|------------------|------|---| | LVDS Differential Voltage | High Threshold | V_{TH} | 100 | 300 | mV | 2 | | LVD3 Dillerential Voltage | Low Threshold | V_{TL} | -300 | -100 | mV | J | | LVDS Clock to Data Skew Mar | t _{SKEW} | | (0.2*T _{clk})/7 | ps | - | | | LVDS Clock/DATA Rising/Falli | t _{RF} | 260 | (0.3*T _{clk})/7 | ps | 2 | | | Effective time of LVDS | t _{eff} | ±360 | | ps | - | | | LVDS Clock to Clock Skew Ma | t _{SKEW_EO} | · | 1/7* T _{clk} | T _{clk} | - | | Note 1. All Input levels of LVDS signals are based on the EIA 644 Standard. - 2. If t_{RF} isn't enough, t_{eff} should be meet the range. - 3. LVDS Differential Voltage is defined within t_{eff} # Product Specification * This accumulated waveform is tested with differential probe Ver. 0.0 11 /32 # **Product Specification** #### 3-5. Color Data Reference The brightness of each primary color (Red, Green, Blue) is based on the 8-bit gray scale data input for the color. The higher binary input, the brighter the color. Table 7 provides a reference for color versus data input. **Table 7. COLOR DATA REFERENCE** | | | | | | | | | | | | | Inpu | ıt Co | olor | Data | а | | | | | | | | | | |-------|------------------|----|----|----|----|----|----|------|---------|----|----|------|-------|------|------|----|----|----|----|----|----|----|----|----|----| | | Color | | | | RE | D | | | | | | | GRE | EEN | l | | | | | | BL | UE | | | | | | | MS | | | | | | | SB
— | MS | | | | | | | SB | _ | | | | | | | SB | | | Т | R7 | R6 | R5 | R4 | R3 | R2 | R1 I | ₹0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 | | | Black | 0 | | | Red (255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | _1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | RED (000) Dark | 0 | | | RED (001) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | RED | RED (254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED (255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (000) Dark | 0 | | | GREEN (001) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | GREEN | GREEN (254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE (000) Dark | 0 | | | BLUE (001) | 0 | 1 | | BLUE | BLUE (254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | BLUE (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Ver. 0.0 12 /32 # Product Specification ## 3-6. Power Sequence #### 3-6-1. LCD Driving circuit **Table 8. POWER SEQUENCE** | Davamatav | | l lmi4 | Notes | | | | |-----------|-----|--------------|-------|------|-------|--| | Parameter | Min | Тур | Max | Unit | Notes | | | T1 | 0.5 | - | 20 | ms | 1 | | | T2 | 0 | - | - | ms | 2 | | | Т3 | 200 | - | - | ms | 3 | | | T4 | 200 | - | - | ms | 3 | | | T5 | 1.0 | - | - | s | 4 | | | T6 | - | - | T2 | ms | 5 | | | T7 | 0.5 | - | - | s | 6 | | | Т8 | 100 | - | - | ms | 7 | | #### Note: - 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied. - 2. If T2 is satisfied with specification after removing LVDS Cable, there is no problem. - 3. The T3 / T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem. - 4. T5 should be measured after the Module has been fully discharged between power off and on period. - 5. If the on time of signals (Interface signal and user control signals) precedes the on time of Power (V_{LCD}), it will be happened abnormal display. When T6 is NC status, T6 doesn't need to be measured. - 6. If there is no abnormal display, no problem. - 7. It is recommendation specification that T8 has to be 100ms as a minimum value. - * Please avoid floating state of interface signal at invalid period. - ₩ When the power supply for LCD (VLCD) is off, be sure to pull down the valid and invalid data to 0V. Ver. 0.0 ## **Product Specification** # 4. Optical Specification Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values are specified at distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °. FIG. 1 shows additional information concerning the measurement equipment and method. FIG. 1 Optical Characteristic Measurement Equipment and Method **Table 10. OPTICAL CHARACTERISTICS** Ta= $25\pm2^{\circ}$ C, V_{LCD}=12.0V, fv=60Hz, Dclk=72.4MHz, EXTVBR_B=100%, Back Light : LC260EXN-SDA1 | Daman | | Comple of | | Value | | I Imit | Nata | | |--|------------------|-----------|-------|-------|--------------|--------|------|--| | Parar | neter | Symbol | Min | Тур | Max | Unit | Note | | | Contrast Ratio | | CR | 700 | 1000 | - | | 1 | | | D T' | Rising | Tr | - | 6 9 | | | | | | Response Time | Falling | Tf | - | 9 | 13 | ms | 3 | | | | DED | Rx | | 0.635 | | | | | | | RED | Ry | | 0.340 | 1 | | | | | Color Coordinates | CDEEN | Gx | Тур | 0.320 | Typ
+0.03 | | | | | [CIE1931] | GREEN | Gy | -0.03 | 0.606 | | | | | | | BLUE | Bx | | 0.154 | | | | | | | BLUE | Ву | | 0.052 | | | | | | Viewing Angle (Cl | R>10) | | | | | | | | | x axis, right(φ=0°)
x axis, left (φ=180°) | | θr | 89 | - | - | | | | | | | θΙ | 89 | - | - | dograd | 6 | | | y ax | s, up (φ=90°) | θu | 89 | - | - | degree | 0 | | | y ax | s, down (φ=270°) | θd | 89 | - | - | | | | | Gray Scale | | | - | - | - | | 7 | | Ver. 0.0 ### Product Specification Notes: 1. Contrast Ratio (CR) is defined mathematically as: Surface Luminance at all white pixels Surface Luminance at all black pixels It is measured at center 1-point. - 2. Surface luminance is determined after the unit has been 'ON' and 1Hour after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 2. - 3. The variation in surface luminance , δ WHITE is defined as : $\delta \, \text{WHITE(5P)} = \text{Maximum}(L_{\text{on1}}, L_{\text{on2}}, \, L_{\text{on3}}, \, L_{\text{on4}}, \, L_{\text{on5}}) \, / \, \text{Minimum}(L_{\text{on1}}, L_{\text{on2}}, \, L_{\text{on3}}, \, L_{\text{on4}}, \, L_{\text{on5}})$ Where L_{on1} to L_{on5} are the luminance with all pixels displaying white at 5 locations . For more information, see the FIG. 2. - 4. Response time is the time required for the display to transit from any gray to white (Rise Time, Tr_R) and from any gray to black (Decay time, Tr_D). For additional information see the FIG. 3. - ※ G to G_{BW} Spec stands for average value of all measured points. Photo Detector: RD-80S / Field: 2° 5. G to G $_{\mbox{\scriptsize \sigma}}$ is Variation of Gray to Gray response time composing a picture - 6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 4. - 7. Gray scale specification Gamma Value is approximately 2.2. For more information, see the Table 11. **Table 11. GRAY SCALE SPECIFICATION** | Gray Level | Luminance [%] (Typ.) | |------------|----------------------| | LO | 0.10 | | L15 | 0.27 | | L31 | 1.04 | | L47 | 2.49 | | L63 | 4.68 | | L79 | 7.66 | | L95 | 11.5 | | L111 | 16.1 | | L127 | 21.6 | | L143 | 28.1 | | L159 | 35.4 | | L175 | 43.7 | | L191 | 53.0 | | L207 | 63.2 | | L223 | 74.5 | | L239 | 86.7 | | L255 | 100 | Ver. 0.0 15 /32 # **Product Specification** Measuring point for surface luminance & measuring point for luminance variation. FIG. 2 5 Points for Luminance Measure Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Black or White". FIG. 3 Response Time # **Product Specification** # Dimension of viewing angle range FIG. 4 Viewing Angle # **Product Specification** #### 5. Mechanical Characteristics Table 12 provides general mechanical characteristics. **Table 12. MECHANICAL CHARACTERISTICS** | Item | Value | | | | | |--------------------------------|------------------------|-----------|--|--|--| | | Horizontal | 594.2 mm | | | | | Outline Dimension (Only Glass) | Vertical | 341.5 mm | | | | | (cm, cms) | Thickness | 1.8 mm | | | | | Active Display Area | Horizontal | 575.769mm | | | | | Active Display Area | Vertical | 323.712mm | | | | | Weight | 820g(Typ.) , 900g(Max) | | | | | Note: 1.Please refer to a mechanical drawing in terms of tolerance at the next page. Ver. 0.0 # **Product Specification** # [FRONT VIEW] Ver. 0.0 19 /32 # **Product Specification** # 6. Reliability #### **Table 13. ENVIRONMENT TEST CONDITION** | No. | Test Item | Condition | | | | | | |-----|---------------------------------------|--------------------------------|--|--|--|--|--| | 1 | High temperature storage test | Ta= 60°C, 240h | | | | | | | 2 | Low temperature storage test | Ta= -20°C 240h | | | | | | | 3 | High temperature operation test | Ta= 50°C 50%RH 240h | | | | | | | 4 | Low temperature operation test | Ta= 0°C 240h | | | | | | | 5 | Humidity condition Operation | Ta= 40 °C ,90%RH | | | | | | | 6 | Altitude operating storage / shipment | 0 - 15,000 ft
0 - 40,000 ft | | | | | | Note: Before and after Reliability test, LCM should be operated with normal function. Ver. 0.0 20 /32 ### **Product Specification** ### 7. International Standards #### 7-1. Environment a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003 ### **Product Specification** # 8. Packing # 8-1. Packing Form a) Package quantity in one Pallet : 120 pcs b) Pallet Size :1140 mm(L) X 740 mm(W) X 840 mm(H) Ver. 0.0 22 /32 #### **Product Specification** #### 9. Precautions Please pay attention to the followings when you use this TFT LCD panel. ### 9-1. Assembly Precautions - (1) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (2) You should adopt radiation structure to satisfy the temperature specification. - (3) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (4) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.) - (5) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer - (6) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (7) Board ass'y should be put on the mold frame properly. - (8) FFC Cable should be connected between System board and Source PCB correctly. - (9) Mechanical structure for backlight system should be designed for sustaining board ass'y safely. #### 9-2. Operating Precautions - (1) Response time depends on the temperature. (In lower temperature, it becomes longer.) - (2) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer - (3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (4) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. - (6) Please do not give any mechanical and/or electrical impact to board assy. Otherwise, it can't be operated its full characteristics perfectly. Ver. 0.0 23 /32 ## **Product Specification** #### 9-3. Electrostatic Discharge Control Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. Panel ground path should be connected to metal ground. # 9-4. Precautions for Strong Light Exposure Strong light exposure causes degradation of polarizer and color filter. #### 9-5. Storage When storing the board ass'y as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the board ass'y to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. Ver. 0.0 24 /32 # **Product Specification** # # APPENDIX-I # ■ Pallet Ass'y | No. | Description | Material | | | | | |----------|----------------|-------------|--|--|--|--| | (a) | Pallet | Plywood | | | | | | b | Carton Plate | Single Wall | | | | | | © | PE Sheet | Carbon | | | | | | d | Top Packing | EPP | | | | | | е | Bottom Packing | EPP | | | | | | (f) | Angle Packing | Single Wall | | | | | | 9 | Tape | OPP | | | | | | h | Band | PP | | | | | | (j) | Clip | Steel | | | | | ### # APPENDIX- II-1 ■ Board Ass'y ID Label #### # APPENDIX- II-2 #### ■ BOX Label #### ■ Pallet Label Ver. 0.0 27 /32 ### **Product Specification** #### # APPENDIX-III-1 ■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter(Pin7="L or NC") Note: 1. The LCD module uses a 100 Ohm[Ω] resistor between positive and negative lines of each receiver input - 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible) - 3. '9' means MSB and '0' means LSB at R,G,B pixel data. Ver. 0.0 28 /32 ### **Product Specification** #### # APPENDIX-III-2 ■ Required signal assignment for Flat Link (Thine: THC63LVD103) Transmitter(Pin7="H") Note :1. The LCD module uses a 100 $\mathsf{Ohm}[\Omega]$ resistor between positive and negative lines of each receiver input. - 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible) - 3. '9' means MSB and '0' means LSB at R,G,B pixel data. Ver. 0.0 29 /32 ## **Product Specification** # APPENDIX- IV-1 # LVDS Data-Mapping info. (10bit) # ■ LVDS Select: "H" Data-Mapping (JEIDA format) # ■ LVDS Select: "L" Data-Mapping (VESA format) # Product Specification # APPENDIX- IV-2 # LVDS Data-Mapping info. (8bit) # ■ LVDS Select : "H" Data-Mapping (JEIDA format) # ■ LVDS Select : "L" Data-Mapping (VESA format) Ver. 0.0 31 /32 ## **Product Specification** #### # APPENDIX- V - Option Pin Circuit Block Diagram - 1) Circuit Block Diagram of ${\bf LVDS}$ Format Selection pin 2) Circuit Block Diagram of **Bit Format** Selection pin 3) Circuit Block Diagram of AGP Option Selection pin Ver. 0.0 32 /32 # Product Specification # # APPENDIX- VI # ■ Vcom setting Range | | Min | Тур | Max | |-----------------------|------------|------------|------------| | VCOM setting
Range | 01 85 step | 01 AF step | 02 15 step | Ver. 0.0 32 /32