Monolithic Digital IC

Overview

The LB1690 is a driver IC for 3 - phase brushless motors. It is ideally suited for DC fan motors of air-conditioner, hotwater system.

Features

- 3-phase brushless motor driver
- 45V withstand voltage and 2.5A output current
- Current limiter
- · Low-voltage protection circuit
- Thermal Shutdown circuit
- · Hall amp with hysteresis characteristic
- FG output function

Absolute Maximum Ratings at Ta = 25°C

Absolute Maximum Ratings at Ta = 25°C				unit
Maximum Supply Voltage	V _{CC} max		10	V
	V _M max		45	V
Output Current	lo		2.5	Α
Allowable Power Dissipation	Pd1	IC alone	3	W
	Pd2	With infinte heat sink	20	W
Operating Temperature	Topr		-20 to +100	°C
Storage Temperature	Tstg		-55 to +150	°C
Allowable Operating Conditions at $Ta = 25^{\circ}C$				unit
Supply Voltage Rang	V _{CC}		4.5 to 5.5	V
	V _M		5 to 42	V

Package Dimensions 3037A

(unit: mm)

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

LB1690

Electrical onalacteristics at ra-	20 0, vcc-	. Jv, vM-30v				
			min	typ	max	unit
Supply Current	I _{CC} 1	Stop mode		3.5	5	mΑ
	I _{CC} 2			10	15	mA
Output Saturation Voltage	V _O sat1	I _O =1A V _O (sink)+V _O (source)		2.1	3.0	V
	V _O sat2	I _O =2A V _O (sink)+V _O (source)		3.0	4.2	V
Output Leakage Current	l _o leak				100	μA
[Hall amp]						
Input Bias Current	I _{HB}			1	4	μA
Common-Mode Input Voltage Rai			1.5		3.2	V
Hysteresis Width	ΔV_{IN}		23	30	37	mV
Input Voltage	V _{SLH}	[L]→[H]	5	15	25	mV
	V _{SHL}	[H]→[L]	-25	-15	-5	mV
[FG terminal]						
Speed pulse Output						
'L'-Level Output Voltage	V _{FGL}	I _{FG} =5mA		0.16	0.4	V
Pull-up resistance value	R _{FG}		7.5	10	12.5	KΩ
Forward/Stop/Reverse						
Forward	V _{FSR1}			0	0.8	V
Stop	V _{FSR2}		2.1	2.5	2.9	V
Reverse	V _{FSR3}		4.2	5.0		V
Current Limiter	V _{Rf}		0.42	0.5	0.6	V
Thermal Shutdown Temperature	T _{SD}	Design goal	150	180		°C
Hysteresis Width	ΔT_{SD}			25		°C
Low-Voltage Protection Voltage	V _{LVSD}		3.5	3.8	4.1	V
Hysteresis Width	ΔV_{LVSD}		0.2	0.3	0.4	V

Electrical Characteristics at Ta=25°C, V_{CC}=5V, V_M=30V

Pin Assignment

Truth Table

Item Source Sink	Input		Forward/Reverse					
	IN1	IN2	IN3	Control FSR				
1	OUT 3 → OUT 2	н	нн	L	L			
	OUT 2 → OUT 3				н			
2	OUT 3 → OUT 1	- H L				L		
2	OUT 1 → OUT 3			н				
3	OUT 2 → OUT 3	- L					L	
5	OUT 3 → OUT 2			H	н			
4	OUT 1 → OUT 2	- L		н	L	L		
	OUT 2 → OUT 1			L	н			
5	OUT 2 → OUT 1	H	L	_ н	L			
	OUT 1 → OUT 2		L		н	FSR		
6	OUT 1 → OUT 3	1		нн	L	Forward L 0 to 0.8V Reverse H 4.2 to 5.0V		
	OUT 3 → OUT 1				Н			

FG Output

Block Diagram and Peripheral Circuit Diagram

Pin Description

Pin Name	Pin No.	Description		
IN1+, IN1-	17, 18	OUT1: Hall element input pins for Phase 1.		
		High logic is the state when $IN^+ > IN^-$.		
IN2+, IN2-	15, 16	OUT2: Hall element input pins for Phase 2.		
		High logic is the state when $IN^+ > IN^-$.		
IN3+, IN3-	13, 14	OUT3: Hall element input pins for Phase 3.		
		High logic is the state when $IN^+ > IN^-$.		
OUT1	5	Output pin for Phase 1		
OUT2	6	Output pin for Phase 2		
OUT3	7	Output pin for Phase 3		
V _{CC}	1	Power supply pin for applying voltage to each section other than output section		
V _M	10	Power supply for output section		
R _f	8	Output current detect pin; R_F is inserted between this pin and ground to detect the output current as a voltage.		
GND	11	Ground for other than output The minimum potential of output transistor is at the R_{F} pin.		
FSR	12	Forward/stop/reverse control pin		
		The motor is driven forward, stopped, or driven in reverse according to the voltage		
		at this pin.		
		Forward: 0 to 0.8 V		
		Stop: 2.1 to 2.9 V		
		Reverse: 4.2 to 5.0 V		
FG1	20	Output pin 1 for speed pulses on-chip pull-up resistor		
FG2	19	Output pin 2 for speed pulses on-chip pull-up resistor		

1. Position detection circuit (Hall element input circuit)

The position detection circuit is a differential amp with hysteresis (30mV typ.). For the operating DC level, use within the common-mode phase input voltage range (1.5 to V_{CC} -1.8 V). Also it is recommended that the input level is at least three times (120 to 160mVp-p) the hysteresis.

2. Current limiter circuit

The current is limited by moving the sink side transistor from saturated to unsaturated, so ASO can be a problem.

$$I = \frac{V_{Rf}}{R_f}$$
 (A)

Therefore, design so that as much as possible the current limiter is not triggered.

Also, take particular care not to exceed the maximum output current (2.5A) when the current limiter is triggered. Add a current limiter to the V_M current. (A curent setting no greater than 60% to 70% of the current value of current limiter circuit and a short delay time are recommended.)

- 3. Protection circuits
 - 3-1. Low-voltage protection circuit

If the voltage at the V_{CC} pin falls below the regulated voltage, the sink side output driver is switched off. This circuit is to prevent malfunctioning.

3-2. Thermal shutdown circuit

If the junction temperature rises above the regulated temperature, just as in 3-1., the sink side output driver is switched off.

4. Minimum voltage at $V_{\mbox{\scriptsize M}}$ power supply

Use a voltage greater than the V_{CC} voltage for the V_{M} power supply voltage.

V_{M≧}V_{CC}

5. FG output circuit

This circuit combines the IN1, IN2, and IN3 position detection signals, forms the wave, and outputs the result. The frequency of this output is proportional to the rotation speed signal and is $1 \times$ (FG1) or $3 \times$ (FG2) when seen from each position detection.

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production, SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.