· Monolithic Digital IC

The LB1684 is a 3-phase DD motor driver IC ideally suited for use in low-supply VTR capstan motor drive, drum motor drive, and floppy disk motor drive applications.

Features and Functions

- · Designed for 5V-supply control system.
- · Voltage-control system/current-control system available
- · Speed control available
- · Bidirectional control available
- · 20V/1.5A rating

Absolute Maximum Ratings at	$Ta = 25^{\circ}C$		unit	
Maximum Supply Voltage	V _{CC} 1	22	V	
	V _{CC} 2	7	v	
Output Current	IO	1.5	Α	
Allowable Power Dissipation	Pd max	2.2	W	
Operating Temperature	Topr	-20 to $+75$	°C	
Storage Temperature	Tstg	- 55 to + 125	°C	
Allowable Operating Conditio	ons at Ta = 25°C		unit	
Supply Voltage	V _{CC} 1	7.0 to 20	v	
	V _{CC} 2	4.3 to 6.3	V	
Electrical Characteristics at T	$a = 25^{\circ}C, V_{CC}1 = 12V, V_{CC}2 = 5.0V$	min typ	max	unit
Supply Current	$I_{CC}(off)$ $V_C = 0V, I_{CC}1 + I_{CC}2$	13	18	mA
	$I_{CC}(dri)$ $V_{C} = 4V_{I_{CC}}2$	20	40	mA
Output Saturation Voltage	$V_0(sat)1$ I _{OUT} =0.58A sink+source	1.4	2.1	v
	$V_0(sat)2$ $I_{OUT} = 1A sink + source$	2.0	3.5	v
Common-Mode Input Voltage Range		1.3 V _{CC}	2-1.3	v

Continued on next page.

Pin Assignment

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Continued from preceding page.	·	· ·	min	typ	max	unit
Motor Forward Rotation Input Voltage Range			2.0		V _{CC} 2	v
Motor Reverse Rotation Input Voltage Range			0		0.3	v
Interphase Current Variation		Driver stage	-25	0	+25	%
		Output stage	-25	0	+25	%
Speed Control Voltage (OFF)	V _C 1	R _f =0,R _s =0, FC pin → GND current 5μA			2.1	v
Speed Control Voltage (ON)	V _C 2	$R_f = 0, R_s = 0,$ FC pin \rightarrow GND current 0.5mA	2.38		2.58	V
	V _C 3	$R_{f} = 1\Omega, R_{s} = 100\Omega, V_{R}f = 100mV$		2.7		v
Closed-Loop Voltage Gain		$R_{f} = 1\Omega, R_{s} = 100\Omega, I_{L} = 100mA$		0.44		A/V
Input Sensitivity		Hall input		20	mV	'peak

Equivalent Circuit Block Diagram and Peripheral Circuit

Truth Table

	Source			Input		Forward/Reverse Contro	
			Sink	U	v	w	F/RC
1	W phase	→	V phase	н		,	L
	V phase	→	W phase	п	н	L	Н
2	W phase		U phase	IJ			L
2	U phase	→	W phase	HL		L	Н
3	V phase	→	W phase	L			L
J	W phase	->	V phase	- L L H	н	Н	
4	U phase	→	V phase		1,		L
4	V phase	->	U phase	Ь	LH	L	Н
5	V phase		U phase	н	,		L
	U phase		V phase	ц	L	н	Н
6	U phase	>	W phase	L	н	н	L
	W phase	\rightarrow	U phase				н

LB1684

7

Pin Description

Pin Name	Pin No.	Description				
$U_{\rm IN}1, U_{\rm IN}2$	13,14	U phase hall element input pin. 'H' of logic : $V_{IN}1 > V_{IN}2$				
	15,14	V phase hall element input pin. 'H' of logic : $V_{IN} > V_{IN} 2$				
V _{IN} 1, V _{IN} 2 W _{IN} 1, W _{IN} 2		W phase hall element input pin. 'H' of logic : $V_{IN}1 > V_{IN}2$				
	17,18					
U _{OUT}	3	U phase output pin				
V _{OUT}	2	V phase output pin				
W _{OUT}	1	W phase output pin				
V _{CC} 1	4	Power supply pin for applying output				
V _{CC} 2	19	Power supply pin for applying voltage to each section other than output section. The control point of control voltage is at approximately 1/2 of this voltage. This voltage must be stabilized to be free from ripple, noise, etc.				
R _f	20	Output current detect pin. By connecting R_f across this pin and GND pin, output current is detected as voltage.				
CD	10	Pin for fetching current (voltage) detected with R_f . By connecting a resistor across C_D pin and R_f pin, speed control start voltage can be fine-adjusted.				
STOP	9	Overcurrent protection pin. Voltage being lower than that on C_D pin is taken to be identical to overcurrent flow, causing output to be cut off. For example, if STOP pin is set to 1.5V for $R_f = 1\Omega$, approximately 1.5A or more flows at output, causing output to be cut off.				
F _{CU}	5	Frequency characteristic compensation pin.				
F _{CV} F _{CW}	67	Closed-loop oscillation in current-controlled system (including motor, F- V converter) is stopped.				
Vc	11	Speed/phase control pin. Control starts at approximately 1/2 of $V_{CC}2$. Control is of current- controlled type that controls output current. For $R_f=1\Omega$, LB1684 closed-loop has $gm=0.44A/V$ typ, which can be adjusted by varying R_f .				
GND	8	GND for other than output. Minimum potential of output transistor is at R _f pin.				
F/R	12	Forward/reverse control pin. By setting this pin to 'H' (more than 2.0V)/'L' (less than 0.3V), truth value is changed to perform forward/reverse rotation.				

.

LB1684

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.