Monolithic Digital IC

LB1409

Level Meter Driver for 9 LEDs

Package Dimensions

unit : mm

3064-DIP16

Applications

- AC level meters such as VU meters.
- DC level meters such as signal meters.

Functions

Display

Nine red or green LEDs display the input level in the shape of a bar.

- Input amplifier Wide application is available owing to built-in DC amplifier whose gain is variable with external resistors.
- Comparator level Setting is made by steps of 3 dB as follows.
 -18 dB, -15 dB, -12 dB, -9 dB, -6 dB, -3 dB, 0 dB, +3 dB, +6 dB
- Supply voltage The recommended supply voltage range is so wide as 5.5 V to 16 V. (If pin Vref 2 is used, 7 V to 16 V.)
- Reference voltage Constant voltage output is available with external transistor owing to pin Vref 2 = 5 V.

Specifications

Comparator Level OUT Pin Voltage at Ta = 25° C, V_{CC} = 12 V, Vref 1 = 3 V

Comparator level	Pin No.	min	typ	max	Unit	
D1	7	0.11	0.18*	0.25	V	
D2	8	0.20	0.27*	0.34	V	
D3	9	0.30	0.38*	0.46	V	
D4	10	0.45	0.53*	0.61	V	
D5	11	0.66	0.75	0.84	V	
D6	12	0.97	1.06	1.15	V	
D7	13	1.40	1.50	1.60	V	
D8	14	2.02	2.12	2.22	V	
D9	15	2.90	3.00	3.10	V	

*: No overlap occurs in each individual IC.

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

SANYO : DIP16

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	Pin 1	-0.3 to +18	V
Input voltage	V _{IN}	Pin 3, 4	-0.3 to V _{CC}	V
D1 to D9 output voltage	V _{OUT} (D)	D1 to D9 off	-0.3 to +18	V
D1 to D9 output current	I _{OL} (D)	Pin 7 to 15, D1 to D9 on	+30	mA
First reference flow-out current	Iref (1)	Pin 2	-1 to 0	mA
Second reference flow-out current	Iref (2)	Pin 16	-6 to 0	mA
V _{OUT} supply voltage	V _{OUT}	Pin 5	-0.3 to +6	V
Allowable power dissipation	Pd max	Ta = 55°C	500	mW
Operating temperature	Topr		-10 to +60	°C
Storage temperature	Tstg		-40 to +125	°C

Allowable Operating Ranges at Ta = $25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Ma a	Pin 1,	+5.5 to +16	V
	V _{CC}	(): Using Vref 2	(+7 to +16)	V
Input voltage	V_{IN}^+ or V_{IN}^-	Pin 3 or Pin 4	–0.3 to +V _{CC}	V
Output pin load resistance	RL	Between pin 5 OUT and pin 6 GND.	15 k to 20 k	Ω

Electrical Characteristics at Ta = 25°C, V_{CC} = 12 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Input bias current (Amplifier)	I _{IN} + (A)	Pin 3, $V_{IN}^{+} = 0$ V, $V_{IN}^{-} = 3$ V, $GND = 0$ V	-2		0	μA
	I _{IN} [–] (A)	Pin 4, V_{IN}^{+} = 3 V, V_{IN}^{-} = 0 V, GND = 0 V	-2		0	μA
Input bias current (Comparator) + Output leakage current	I _{IN} + (C)+ I _{OL} (A)	Pin 5, $V_{IN}^{+} = 0$ V, $V_{IN}^{-} = 3$ V, $OUT = 0$ V, GND = 0 V	-10		0	μA
Offset voltage (1)	Voffset (1)	Pin 5, $V_{CC} = 6 \text{ V}$, $V_{IN}^+ = V_{IN}^- = 0 \text{ V}$, $\text{GND} = -6 \text{ V}$, $\text{GAIN} = 20 \text{ dB}$	-180		+180	mV
Offset voltage (2)	Voffset (2)	Pin 5, $V_{IN}^{+} = V_{IN}^{-} = 0$ V, GND = 0 V, GAIN = 20 dB	0		+180	mV
First reference voltage	Vref (1)	Pin 2, Iref = 0 to 1 mA	2.6		3.0	V
Second reference voltage	Vref (2)	Pin 16, Iref = 0 to 6 mA	4.2	4.7	5.2	V
Current drain	ICC	Pin 1, V_{IN}^+ = 3 V, V_{IN}^- = 0 V		10	20	mA
Amplifier gain	VG	Open loop	30			dB
Output flow-out current	I _{ОН}	Pin 5, V_{IN}^{+} = 3 V, V_{IN}^{-} = 0 V, V_{OUT} = 0 V			-10	mA
D pin output ON voltage	V _{OL} (D)	Pin 7 to 15, D1 to D9, I_{OL} = 20 mA, $V_{IN}{}^+$ = 3 V, $V_{IN}{}^-$ = 0 V			1.2	V
D pin output leak current	I _{OH} (D)	Pin 7 to 15, D1 to D9, $V_{IN}^{+} = 0 V$, $V_{IN}^{-} = 3 V$, $V_{D1 \text{ to } D9} = 12 V$			10	μA
Output voltage (Amplifier)	V _{OH}	Pin 5, V _{CC} = 5.5 V, V _{IN} ⁺ = 3 V, V _{IN} ⁻ = 0 V, R _L = 15 kΩ	4			V
		Pin 5, V _{CC} = 12 V, V _{IN} ⁺ = 3 V, V _{IN} ⁻ = 0 V, R _L =15 k Ω	9.5			V

Pin Assignment

Equivalent Circuit

Sample Application Circuits

(All with offset adjustment)

• Circuit not using Vref 2

Adjusting procedures

- 1. Turn the center of 10 k Ω VR largely to 4.7 μF capacitor side.
- 2. Input AC signal of $50/\sqrt{2}$ mV from AC IN.
- 3. Adjust 1 k Ω VR so that the output at OUT becomes 500 mV DC. Equation used in the calculation of R to be inserted in series with LED. Gain : 20 dB R (red) = (V_{CC} - 2.5) / 6 k Ω R (green) = (V_{CC} - 2.8) / 18 k Ω

Unit (resistance: Ω , capacitance: F)

• Circuit using Vref 2

Unit (resistance: Ω, capacitance: F)

Adjusting procedures

- R to be inserted in series with LED is as follows irrespective of $V_{\mbox{\scriptsize CC}}.$
 - R (red) = 360 Ω (Approx. 6 mA) R (green) = 100 Ω (Approx. 18 mA)

 TR1 should be chosen with P_C considered; and the following transistors are recommended. Red LED drive 2SD400 Green LED drive 2SD325

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - 1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice.