

Current Transducer LB 1000-SI/SP2

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		1000 0 \pm 1500 $\mathbf{R}_{M \text{min}}$ $\mathbf{R}_{M \text{max}}$		A A
IVI	with ± 15 V	@ $\pm 1000 A_{max}$ @ $\pm 1500 A_{max}$	0	25 5	Ω
I _{SN} K _N V _C	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %)		200 1:500 ± 15		m A V
Λ ^q I ^C	Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		21 + I . 6	3	m A k V

Accuracy - Dynamic performance data

$oldsymbol{e}_{\scriptscriptstyle L}^{G}$	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity	± 0.3 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of $I_o + 10$ °C + 50°	C Typ	Max ± 0.4 ± 0.2	m A m A
t _r di/dt f	Response time ¹⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 50 DC	100	μs Α/μs kHz

General data

Ambient operating temperature	+ 10 + 50	°C
Ambient storage temperature	- 25 + 85	°C
Secondary coil resistance @ T _A = 70°C	40	Ω
Mass	700	g
Standards 2)	EN 50178	
	Ambient storage temperature Secondary coil resistance @ T _A = 70°C Mass	Ambient storage temperature $-25+85$ Secondary coil resistance @ $T_A = 70$ °C 40 Mass 700

Notes: 1) With a di/dt of 100 A/µs

2) A list of corresponding tests is available

$I_{PN} = 1000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- Better zero crossing performance
- $T_A = +10^{\circ}C..+50^{\circ}C$
- Shield between primary and secondary.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

000901/0

Dimensions LB 1000-SI/SP2 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

Primary through-holeConnection of secondary

± 0.5 mm

 $4 \; slots \varnothing \; 7 \; mm$

Ø 40 mm

Faston 6.3 x 0.8 mm.

Remarks

- I_s is positive when I_s flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.