

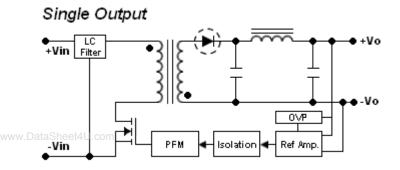
FEATURES

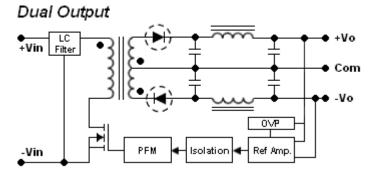
- I/O Isolation 1500VDC
- MTBF > 1,000,000 Hours
- Industry Standard Pinout
- High Efficiency up to 88%
- CSA1950 Safety Approval
- 2:1 Wide Input Voltage Range
- Complies with EN55022 Class A
- Short Circuit and Over Voltage Protection

We reserve the ri	ght to change specifications based on technologic	ai advances.			
SPECIFICATION	TEST CONDITIONS	Min	Nom	Max	Unit
INPUT (V _{in})			1	l .	-
· · · · · ·	12V input models	9	12	18	VDC
Input Voltage Range	24V input models	18	24	36	VDC
	48V input models	36	48	75	VDC
	12V input models	7	8	9	VDC
Start Voltage	24V input models	14	16	18	VDC
•	48V input models	30	33	36	VDC
	12V input models			8.5	VDC
Under Voltage Shutdown	24V input models			17	VDC
· ·	48V input models			34	VDC
	12V input models	-0.7		25	VDC
Input Surge Voltage (1000ms)	24V input models	-0.7		50	VDC
, ,	48V input models	-0.7		100	VDC
Reverse Polarity Input Current	All models			0.5	Α
Reflected Ripple Current			See	Table	
Short Circuit Input Power	All models			2500	mW
Input Filter	All models		Pi F	ilter	
OUTPUT (V _o)					
Output Voltage Range			See	Table	
Output Voltage Accuracy			±0.6	±1.2	%
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Load Regulation	Io = 10% to 100%		±0.5	±1.2	%
Load Regulation (2.5V output only)	Io = 10% to 100%		±0.7	±1.5	%
Line Regulation	Vin = Min to Max		±0.3	±1.0	%
Output Power				10	W
Output Current Range			See	Table	
Ripple & Noise (20MHz)			50	85	mV_{pk-pk}
Ripple & Noise (20MHz)	Over Line, Load, and Temperature			100	mV_{pk-pk}
Ripple & Noise (20MHz)				15	mVrms
Transient Recovery Time	25% Load Step Change		250	500	μs
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
PROTECTION					
Over Power Protection		110	150	180	%
Short Circuit Protection				nuous	
	12V input models	2000mA Slow-Blow Type			/pe
Input Fuse Recommendation	24V input models	1000mA Slow-Blow Type			/ре
	48V input models	500mA Slow-Blow Type			
GENERAL					
Efficiency			See	Table	
Switching Frequency			400		KHz
Isolation Voltage Rated	60 seconds	1500			VDC
Isolation Voltage Test	Flash Tested for 1 second	1650			VDC
Isolation Resistance	500VDC	1000			ΜΩ
Isolation Capacitance	100KHz, 1V		1000	1200	pF
Maximum Capacitive Load	·		See	Table	
Internal Power Dissipation				2500	mW

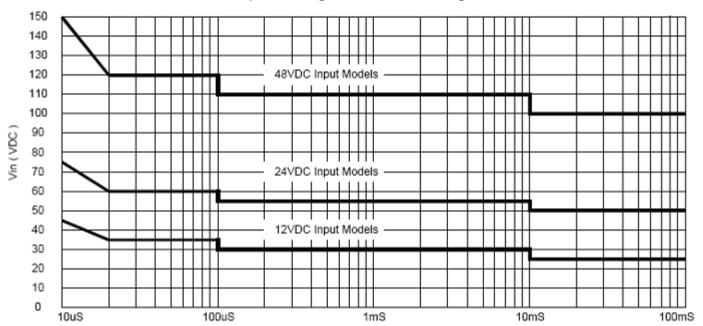
SPECIFICATION (CONTINUED)	TEST CONDITIONS	Min	Nom	Max	Unit			
ENVIRONMENTAL								
Operating Temperature (Ambient)		-40		+60	°C			
Operating Temperature (Case)		-40		+90	°C			
Storage Temperature		-40		+125	°C			
Lead Temperature	1.5mm from case for 10 seconds			260	°C			
Humidity				95	%			
Cooling			Free air convection					
MTBF	MIL-HDBK-217F @ 25°C, Ground Benign		1,000,000 Hours					
PHYSICAL								
Weight			17.3	grams				
Dimensions		31.8(L) x 20.3(W) x 10.2(H) mm						
Case Material		Metal with non-conductive baseplate						

OUTPUT VOLTAGE / CURRENT RATING CHART

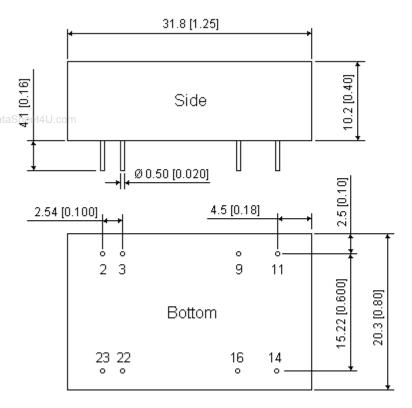

Model Number	Input Voltage	Output	Output Current Input Current (Typ)		Reflected Ripple	Efficiency	Max Capacitive		
woder Number	input voitage	Voltage	Min	Max	No Load	Max Load	Current (Typ)	(Typ)	Load
LANK1233W10		3.3 VDC	300mA	3000mA		1006mA		82%	2200µF
LANK1205W10		5 VDC	200mA	2000mA		1004mA		83%	2200µF
LANK1251W10	12 VDC	5.1 VDC	200mA	2000mA		1024mA		83%	2200µF
LANK1212W10	(9 – 18 VDC)	12 VDC	83mA	833mA	40mA	957mA	60mA	87%	820µF
LANK1215W10		15 VDC	66.6mA	666mA		968mA		86%	470µF
LANK1212DW10		±12 VDC	±42mA	±416mA		957mA		87%	220µF
LANK1215DW10		±15 VDC	±33mA	±333mA		968mA		86%	150µF
LANK2425W10		2.5 VDC	300mA	3000mA	48 47 20mA	377mA	40mA	83%	2200µF
LANK2433W10		3.3 VDC	300mA	3000mA		485mA		85%	2200µF
LANK2405W10		5 VDC	200mA	2000mA		479mA		87%	2200µF
LANK2451W10	24 VDC	5.1 VDC	200mA	2000mA		489mA		87%	2200µF
LANK2412W10	(18 – 36 VDC)	12 VDC	83mA	833mA		479mA		87%	820µF
LANK2415W10		15 VDC	66.6mA	666mA		478mA		87%	470µF
LANK2412DW10		±12 VDC	±42mA	±416mA		473mA		87%	220µF
LANK2415DW10		±15 VDC	±33mA	±333mA		478mA		87%	150µF
LANK4825W10		2.5 VDC	300mA	3000mA		188mA		83%	2200µF
LANK4833W10		3.3 VDC	300mA	3000mA		243mA	40mA	85%	2200µF
LANK4805W10		5 VDC	200mA	2000mA	10mA	239mA		87%	2200µF
LANK4851W10	48 VDC	5.1 VDC	200mA	2000mA		244mA		87%	2200µF
LANK4812W10	(36 – 75 VDC)	12 VDC	83mA	833mA		240mA		87%	820µF
LANK4815W10		15 VDC	66.6mA	666mA		239mA		87%	470µF
LANK4812DW10		±12 VDC	±42mA	±416mA		236mA		87%	220µF
LANK4815DW10		±15 VDC	±33mA	±333mA		243mA		87%	150µF


NOTES

- 1. Specifications typical at +25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2. Transient Recovery Time is measured to within 1% error band for a step change in output of 75% to 100%.
- 3. Ripple and noise measured at 20MHz bandwidth.
- 4. The LANK 10W Series requires a minimum load on the output to maintain specified regulation. Operation under no-load conditions will not damage these devices, however they may not meet all listed specifications.
- 5. All DC/DC converters should be externally fused on the front end for protection.
- 6. Other input and output voltages may be available, please contact factory.
- 7. Specifications subject to change without notice.



BLOCK DIAGRAMS

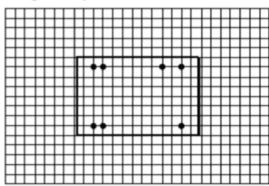


Input Voltage Transient Rating

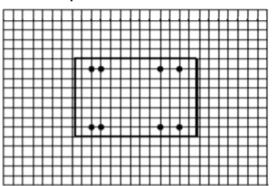
MECHANICAL DRAWING

Tolerance: Millimeters Inches

X.X±0.25 X.XX±0.01 X.XX±0.13 X.XXX±0.005


Pin: ± 0.05 ± 0.002

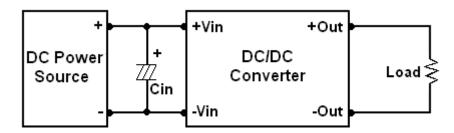
	PIN CONNECTIONS						
Pin	Single Output	Dual Output					
2	-Vin	-Vin					
3	-Vin	-Vin					
9	No Pin	Common					
11	NC	-Vout					
14	+Vout	+Vout					
16	-Vout	Common					
22	+Vin	+Vin					
23	+Vin	+Vin					


Connecting Pin Patterns

Top View (2.54mm/0.1 inch grids)

Single Output

Dual Output


DESIGN & FEATURE CONSIDERATIONS

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

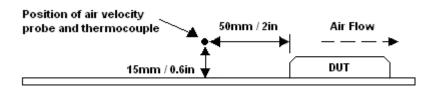
In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100kHz) capacitor of $12\mu\text{F}$ for the 12V input devices, a $4.7\mu\text{F}$ for the 24V input devices, and a $2.2\mu\text{F}$ for the 48V input devices. A capacitor mounted close to the power module helps ensure stability of the unit.

Maximum Capacitive Load

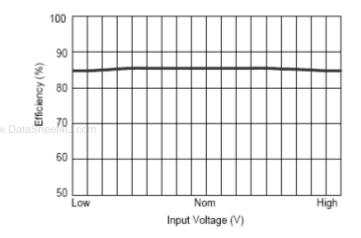
The LANK 10W Series has a limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the "Output Voltage / Current Rating Chart."

Over Current Protection

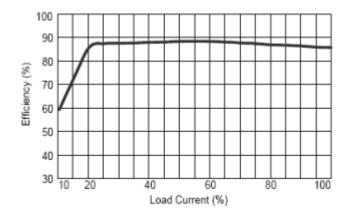

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Over Voltage Protection

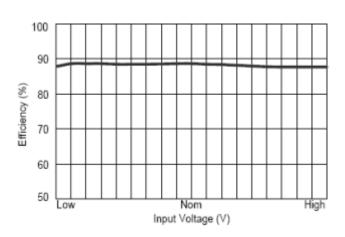
The Output over voltage clamp consists of control circuitry, which is independent of the primary regulation loop that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output over voltage.


Thermal Considerations

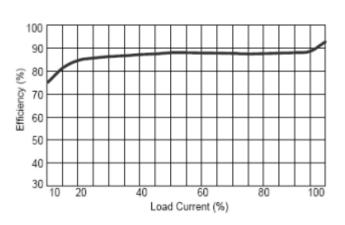
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module, and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in an experimental apparatus.



Efficiency vs Input Voltage (Single Output)



Efficiency vs Output Load (Single Output)



Derating Curve 100 200LFM 80 Output Power (%) 60 400LFM Natural 40 20 40 50 60 70 80 90 100 110 Ambient Temperature °C

Efficiency vs Input Voltage (Dual Output)

Efficiency vs Output Load (Dual Output)

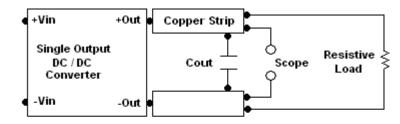
TEST CONFIGURATIONS

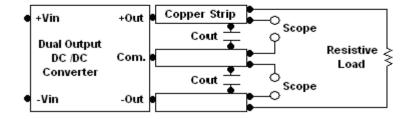

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with an inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance.

Capacitor Cin offsets possible battery impedance.

Current ripple is measured at the input terminals of the module. Measurement bandwidth is 0-500 KHz.

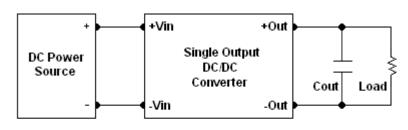

vw.DataSheet4U.com

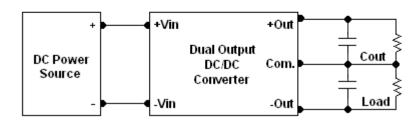


Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor.

Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50mm and 75mm from the DC/DC Converter.





Output Ripple Reduction

A good quality low ESR capacitor placed as close as possible across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.

vw.DataSheet4U.com

COMPANY INFORMATION:

Wall Industries, Inc. has created custom and modified units for over 40 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on time and on budget. Our ISO9001-2000 certification is just one example of our commitment to producing a high quality, well documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact **Wall Industries** for further information:

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 5 Watson Brook Rd.

Exeter, NH 03833