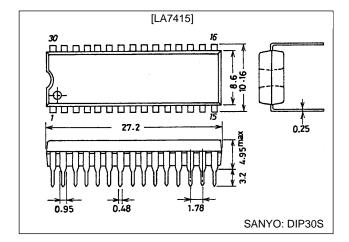
No. 5647 **LA7415**

VHS VCR Playback Head and Record Amplifiers

Overview

The LA7415 is a record and playback amplifier IC for VHS format VCR decks. In combination with a Sanyo LC7420 or LA7430 Series video signal processing IC, the LA7415 can provide an adjustment-free Y/C record current.


Features

- Record amplifier: Provides stable recording characteristics using a fixed-current drive technique that is resistant to load variations.
- REC-AMP: Includes a built-in AGC circuit.
- Can use the same printed circuit board as the LA7411.

Package Dimension

unit: mm

3061-DIP30S

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pd max	Ta 65 °C	650	W
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		5.0	V
Operating voltage range	V _{CC} op		4.8 to 5.5	V

Electrical Characteristics at $Ta = 25^{\circ}C$

Pairwise	_									Ratings					
Payshack Mode Pays	Parameter		Symbol			Conditions				min	tvn	max	Unit		
Current drain				Input Output			T2	T4	T5		1919	max			
Voltage gain Febr. CH3 Voltage gain Voltage gain Febr. CH3 Voltage gain Voltage gain Febr. CH3 Voltage gain V	[Playback Mode]							TRCK	HA						
Voltage gain Voltage SP H CH2 Voltage SP H CH2 Voltage Voltage gain collected	Current drain			I _{CCP}			Pin 15 influx current	OPEN	0	0	24	30	36	mA	
Voltage gain Volt		SP L	CH1	VG _P 1	T20A	T10A		OPEN	0	0	54.0	57.0	60.0	dB	
P		SP H	CH2	VG _P 2	T23A	T10A	V _{INI} = 38 mVp-p.	OPEN	0	2.5	54.0	57.0	60.0	dB	
Voltage gain differential ≥ Volta	Voltage gain	EP L	СНЗ	VG _P 3	T27A	T10A	f = 1 MHz	OPEN	5.0	0	56.0	59.0	62.0	dB	
Voltage gain differential		EP H	CH4	VG _P 4	T30A	T10A		OPEN	5.0	2.5	56.0	59.0	62.0	dB	
Methodo gain difference Veg Figs - - - Veg 3 - Veg	Voltage gain dit	fferential	1	VG _P 1	_	_	VG _P 1 – VG _P 2	-	_	-	-1	0	+1	dB	
Equivalent input CH2	Voltage gain dit	fferential	2	VG _P 2	-	-	VG _P 3 – VG _P 4	-	_	-	-1	0	+1	dB	
Equivalent input CH2	Inter-mode gair	n differer	nce	VG _{P EP-SP}	_	_	VG _P 3 – VG _P 1	_	_	_	1	2	3	dB	
Equivalent input noise voltage			CH1		T20A	T10A		OPEN	0	0	_	1.1	1.5	μVrms	
Note	 		CH2		T23A	T10A	After the 1.1-MHz LPF	OPEN	0	2.5	_	1.1	1.5	μVrms	
CH4 VNIM4 T30A T10A	-		CH3				Vout	OPEN	5.0	0	_	1.1			
CH1 Vip1 T20A T10A Frequency CH2 Vip2 T23A T10A CH2 Vip3 T27A T10A CH3 Vip3 T27A T10A CH4 Vip4 T30A T10A	g						VG _P 1, 2, 3, 4	-							
Frequency CH2 VTp2 T23A T10A Characteristics CH3 VTp4 T30A T10A Characteristics CH3 VTp4 T30A T10A CM1 T30A T10A CM1 T30A T10A														•	
characteristics CH3 Vp3 T27A T10A Vout Voll 130A Voll Voll 130A	Frequency	-		,											
CH4															
Second harmonic CH1	Characteristics			·											
Second harmonic CH2 VHpP2 T23A T10A T10A T10A T2A T10A				· ·											
CH3	Casand harman						***								
CH4		1IC													
CH1 Volph 100 100 100 1.0 1.2 - 100 1.0 1.2 - 100 1.0 1.2 1.0 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.0 1.2 1.0 1.0 1.	distortion														
Maximum															
Output level CH3							f = 1 MHz			-			_		
CH4							The output level when the third						_		
Crosstalk SP (Note 1) T23A T10A T30A				V _{OMP} 3			harmonic in the output is -30 dB						_		
Crosstalk SP (Note 1)			CH4	V _{OMP} 4							1.0				
Crosstalk SP (Note 1)					T23A				0		_			dB	
(Note 1)			CH1	CH1 V	V _{CR} 1		T10A	$\frac{A}{V_{IN}} = 38 \text{ mVp-p},$	OPEN	0	0	_	-40	-35	dB
CH2 V _{CR2} T27A T10A T10A T10A T10A T0A T10A T10A T10A	Crosstalk SP	-	CH2		T30A	T10A		OPEN	0	0	_	-40	-35	dB	
Crosstalk EP (Note 1) CH4 VCR4 T30A T10A CH5 VCR5 T27A T10A T30A T10A CH6 VCR6 T30A T10A CH7 T30A T10A CH7 T30A T10A	(Note 1)			CH2		T20A	T10A		OPEN	0	2.5	_	-40	-35	dB
Crosstalk EP (Note 1) CH3 VCR3 T27A T10A T10A T30A T10A T10A T30A T10A T27A T10A T2A T					H2 V _{CR} 2	T27A	T10A		OPEN	0	2.5	_	-40	-35	dB
Crosstalk EP (Note 1) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					T30A	T10A		OPEN	0	2.5	_	-40	-35	dB	
Crosstalk EP (Note 1) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					T23A	T10A		OPEN	5.0	0	_	-40	-35	dB	
Crosstalk EP (Note 1) CH4 VCR4 T27A T10A T30A T10A			CH3	V _{CR} 3	T27A	T10A	$V_1 = 38 \text{ mVp-p.}$	OPEN	5.0	0	_	-40	-35	dB	
CH4 VCR4 T27A T10A T10A T10A T10A T10A T10A T10A T10	Crosstalk EP				T30A	T10A		OPEN	5.0	0	-	-40	-35	dB	
Output DC Offset Off	(Note 1)				T20A	T10A		OPEN	5.0	2.5	_	-40	-35	dB	
OPEN - 0 -100 0 +100 mV OPEN 0 2.5 -100 0 +100 mV OPEN 0 2.5 -100 0 +100 mV OPEN 5.0 0 -100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV			CH4	V _{CR} 4	T27A	T10A	VG _P 3, 4	OPEN	5.0	2.5	_	-40	-35	dB	
OPEN 0 2.5 -100 0 +100 mV OPEN 5.0 0 -100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV					T30A	T10A		OPEN	5.0	2.5	_	-40	-35	dB	
OPEN 0 2.5 -100 0 +100 mV OPEN 5.0 0100 0 +100 mV OPEN 5.0 0100 0 +100 mV OPEN 5.0 0 -100 0 +100 mV OPEN 5.0 0 -100 0 +100 mV OPEN 5.0 0100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV				V 4		T40	OLIA OLIO	OPEN	_	0	-100	0	+100	mV	
Output DC Offset V ODC2 - T10 CH3-CH4 OPEN 5.0 2.5 -100 0 +100 mV OPEN 5.0 0100 0 +100 mV OPEN 5.0 0 -100 0 +100 mV OPEN 5.0 0 -100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV				V ODC1	_	110	CH1-CH2	OPEN	0	2.5	-100	0	+100	mV	
Output DC Output DC Offset V ODC3 - T10 CH1-CH3 OPEN 5.0 2.5 -100 0 +100 mV OPEN 5.0 0100 0 +100 mV OPEN 5.0 0 -100 0 +100 mV OPEN 5.0 0 - 100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV								OPEN	_	0	-100	0	+100	mV	
Output DC offset $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				V _{ODC} 2	-	T10	CH3-CH4	OPEN	5.0	2.5	-100	0	+100	mV	
Output DC offset $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								OPEN	0	_	-100	0	+100	mV	
V ODC4 - T10 CH2-CH4 OPEN 5.0 2.5 -100 0 +100 mV V ODC5 - T10 CH1-CH4 OPEN 0 0 -100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV OPEN 0 2.5 -100 0 +100 mV	•		V _{ODC} 3		-	T10	CH1-CH3			0					
OPEN 5.0 2.5 -100 0 +100 mV V ODC5 - T10 CH1-CH4 OPEN 0 0 -100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV OPEN 5.0 2.5 -100 0 +100 mV OPEN 0 2.5 -100 0 +100 mV				V .		T40	CHOCHA	OPEN	0		-100	0	+100	mV	
V opc5 - T10 CH1-CH4 OPEN 5.0 2.5 -100 0 +100 mV V opc6 - T10 CH2-CH3 OPEN 0 2.5 -100 0 +100 mV				v ODC4	_	T10	UП2-UП4	OPEN	5.0	2.5	-100	0	+100	mV	
OPEN 5.0 2.5 -100 0 +100 mV OPEN 0 2.5 -100 0 +100 mV				., -		T4.	0114 0114	OPEN	0	0	-100	0	+100	mV	
V onc6 - T10 CH2-CH3 - - - - - - -				v opc5	-	T10	CH1-CH4	OPEN	5.0	2.5	-100	0	+100	mV	
V _{ODC} 6 - T10 CH2-CH3 OPEN 5.0 0 -100 0 +100 mV				., -			0110 0110	OPEN	0	2.5	-100	0	+100	mV	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				V ODC6	_	T10	CH2-CH3	OPEN	5.0	0	-100	0	+100	mV	

Continued on the next page.

Note 1. With the input inductor L (8.2 µH) shorted.

2. Since the T4 (HA) control switch timing is synchronized with T6 (H-Sync), a T6 trigger (0 - 5 V - 0) must be input before measuring each of these items.

LA7415

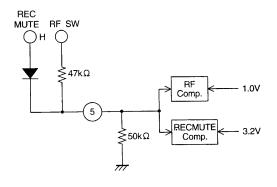
Continued from the preceding page.

									Ratings		
Parameter	Symbol			Conditions				min typ		max	Unit
Input Output			T2	T4	T5		1) P	max			
		T15: 5.0 V, T13: OPEN, T7: OPEN	TRCK	HA	SW30 MUTE						
Enveloped detector output pin voltage	V _{ENV}		Т8	The T8 DC voltage with no input	OPEN	0	0	0	0.4	0.8	V
Enveloped detector voltage SP1	V _{ENVSP1}	T20A	Т8	f = 4 MHz T10A: Adjusted to 300 mV p-p	OPEN	0	0	2.1	2.6	3.1	V
Enveloped detector voltage SP2	V _{ENVSP2}	T20A	Т8	f = 4 MHz T10A: Adjusted to 600 mV p-p	OPEN	0	0	4.5	4.8	5.0	V
Enveloped detector voltage EP1	V _{ENVEP1}	T27A	Т8	f = 4 MHz T10A: Adjusted to 200 mV p-p	OPEN	5.0	0	2.0	2.6	3.0	V
Enveloped detector voltage EP2	V _{ENVEP2}	T27A	Т8	f = 4 MHz T10A: Adjusted to 450 mV p-p	OPEN	5.0	0	4.5	4.8	5.0	V
Comparator output voltage 1	V _{COMP1}	T20A	Т3	f = 4 MHz, V _{IN} = 38 mVp-p The T3 DC voltage	5.0	0	0	-	0.4	0.7	V
Comparator output voltage 2	V _{COMP2}	T20A	Т3	$f = 4 \text{ MHz}, V_{\text{IN}} = 38 \text{ mVp-p}$ The T3 DC voltage	5.0	5.0	0	4.5	4.8	_	V
Playback mode on switching	R _{PON} 17		P-17	The difference in the DC measurement	-	1	-	-	4.0	6.0	
transistor on resistance	R _{PON} 18		P-18	for 1-mA and 2-mA influx currents	_	ı	-	_	4.0	6.0	
Playback mode	R _{PON} 21		P-21		OPEN	5.0	_	_	4.0	6.0	
mode switching	R _{PON} 24		P-24	The difference in the DC measurement	OPEN	5.0	-	_	4.0	6.0	
transistor on	R _{PON} 26		P-26	for 1-mA and 2-mA influx currents	OPEN	0	-	-	4.0	6.0	
resistance	R _{PON} 29		P-29		OPEN	0	-	_	4.0	6.0	
Trick 1 threshold	TR1-1		T2	Normal → Trick1	*	_	-	3.2	-	5.0	V
level	TR1-2		T2	Trick1 → Normal	*	-	_	1.2	_	2.8	V
Trick 2 threshold	TR2-1		T2	Normal → Trick2	*	_	_	0.0	_	0.8	V
level	TR2-2		T2	Trick2 → Normal	*	_	_	1.2	_	2.8	V
HAPB threshold	HAP-1		T4	$SP \rightarrow EP$	_	*	_	1.8	_	5.0	v
level	HAP-2		T4	$EP \rightarrow SP$	_	*	_	0.0	_	1.4	v
SW30 threshold	SW30-1		T5	Lch → Hch	_	_	*	1.2	_	5.0	V
level	SW30-2		T4	Hch → Lch	_	_	*	0.0	_	0.8	V
					T2	T4	T5				
[Record Mode]				T15: 5.0 V, T2: OPEN, T6: 5.0 V, T7: 5.0 V	REC Adj2	НА	SW30 MUTE				
Current drain	I _{CCR}			The pin 15 influx current	OPEN	0	0	44	55	66	mA
AGC amplifier	V _{RSP}	T11A	T21A	f = 4 MHz	OPEN	0	0	147	156	165	mVp-p
output level	V _{REP}	T11A	T26A	$V_{IN} = 200 \text{ mVp-p}$	OPEN	5.0	0	116	123	130	mVp-p
Inter-mode gain difference	VG R	ı	-	V _{RSP} /V _{REP}	-	ı	-	1.30	2.05	2.80	dB
AGC amplifier control	V _{AGC} 1-SP	T11A	T21A	f = 4 MHz, V _{IN} = 400 mVp-p	OPEN	0	0	1	0.5	1.0	dB
characteristics 1	V _{AGC} 1-EP	T11A	T26A	The output level/V _{RSP, EP} ratio	OPEN	5.0	0	_	0.5	1.0	dB
AGC amplifier control	V _{AGC} 2-SP	T11A	T21A	f = 4 MHz, V _{IN} = 100 mVp-p	OPEN	0	0	-1.0	-0.5	_	dB
characteristics 2	V _{AGC} 2-EP	T11A	T26A	The output level/V _{RSP, EP} ratio	OPEN	5.0	0	-1.0	-0.5	_	dB
AGC amplifier frequency	V FRS	T11A	T21A	f = 1 MHz, 7 MHz, V _{IN} = 100 mVp-p	OPEN	0	0	-1.0	-0.0	+1.0	dB
characteristics	V FRE	T11A	T26A	The 7 MHz/1 MHz output ratio	OPEN	5.0	0	-1.0	-0.0	+1.0	dB
AGC amplifier second	V _{HDRS}	T11A		$\label{eq:f_sol} f = 4 \text{ MHz}, \ V_{\text{IN}} = 200 \ \text{mVp-p}$ The (8 MHz component)/(4 MHz component)	OPEN	0	0	_	-45	-40	dB
harmonic distortion	V _{HDRE}	T11A	T21A	output ratio	OPEN	5.0	0	-	-45	-40	dB
AGC amplifier maximum	V _{OMRS}	T11A	T21A	f = 4 MHz, The output level for which	Adj.	0	0	20	22	_	mAp-p
AGC amplifier maximum output level		T11A	T26A	the second harmonic is –35 dB	Adj.	5.0	0	20	22	_	mAp-p
output level	V OMRE	1117	120/1				_ ,				
AGC amplifier muting	V _{OMRE}	T11A		f = 4 MHz, VI = 200 mVp-p	OPEN	0	5.0	_	-45	-40	dB

Continued on the next page.

Continued from the preceding page.

									Ratings			
Parameter	Symbol			Conditions				min		max	Unit	
		Input	Output		T2	T4	T5	111111	typ	IIIax		
[Record Mode]				T15: 5.0 V, T2: OPEN, T6: 5.0 V, T7: 5.0 V	REC Adj2	НА	SW30 MUTE					
AGC amplifier	V _{CYS}	T10A	T21A	T10A: f = 629 kHz, V _{IN} = 360 mVp-p T11A: f = 4 MHz, V _{IN} = 200 mVp-p	OPEN	0	0	-	-45	-40	dB	
modulation level	V _{CYE}	T11A	T26A	(4 MHz ±629 kHz)/(4 MHz) output ratio	OPEN	5.0	0	-	-45	-40	dB	
	R _{RON} 17		P-17		OPEN	5.0	_	-	4.0	6.0		
Record mode	R _{RON} 18		P-18	The difference in the DO	OPEN	0	-	_	4.0	6.0		
mode switching	R _{RON} 21		P-21	The difference in the DC measurement for 1-mA	OPEN	5.0	_	_	4.0	6.0		
transistor on resistance	R _{RON} 24		P-24	and 2-mA influx currents	OPEN	5.0	-	-	4.0	6.0		
resistance	R _{RON} 26		P-26		OPEN	0	_	-	4.0	6.0		
	R _{RON} 29		P-29		OPEN	0	-	-	4.0	6.0		
HA record	HAR-1		T4	$SP \to EP$	-	*	-	1.8	-	5.0	V	
threshold level	HAR-2		T4	$EP \to SP$	-	*	-	0.0	-	1.4	V	
Record MUTE	MUTE-1		T5	$MUTE\;OFF\toON$	_	ı	*	3.4	-	5.0	V	
threshold level	MUTE-2		T5	$MUTE\;ON\toOFF$	_	ı	*	0.0	-	3.0	V	
Record/playback threshold level	SW REC/PB			T7: control voltage	-	-	_	2.2	-	5.0	V	


Notes 3. Measure with a DC voltage of about 1.8 V applied to the AGC detector filter pin (pin 12) and with the AGC amplifier gain fixed.

- 4. Adjust the output level by applying a DC voltage to T13 (REC CUR.Adj2)
- 5. Use a resistor with a $\pm 1.0\%$ tolerance between pins 14 and 15.

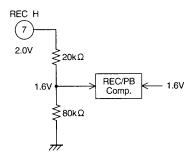
Usage Notes

1. Control Pin Logic

RF SW, REC MUTE: pin 5

Playback mode

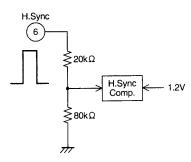
If the pin 5 DC voltage is < 1.0 V: Lch


If the pin 5 DC voltage is > 1.0 V: Hch

Record mode

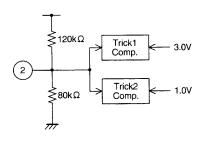
If the pin 5 DC voltage is < 3.2 V: Muting will be off

If the pin 5 DC voltage is > 3.2 V: Muting will be on


Record/playback mode switching: pin 7

If the pin 7 DC voltage is < 2.0 V: Playback mode

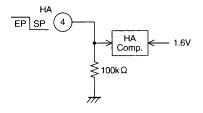
If the pin 7 DC voltage is > 2.0 V: Record mode


H.Sync input: pin 6

If the pin 6 DC voltage is > 1.5 V: Currently the signal is in an H.Sync period

*: Playback mode: Used for switching timing in SP search.
Record mode: Used as the record amplifier AGC synchronization block gate pulse.

(4) Playback trick mode switching: pin 2

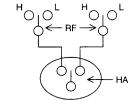

If the pin 2 DC voltage is > 3.0 V: Trick 1 If the pin 2 DC voltage is < 1.0 V: Trick 2 If the pin 2 DC voltage is > 1.0 V and < 3.0 V: Normal

*: Normal mode: Two channels controlled (EP/SP) by pin 4: ON Envelope comparator: OFF

In trick 1 and 2 modes: All 4 channels: ON Envelope comparator: ON

*: The difference between trick 1 and trick 2 is that:

HA SW (EP/SP mode switching): pin 4



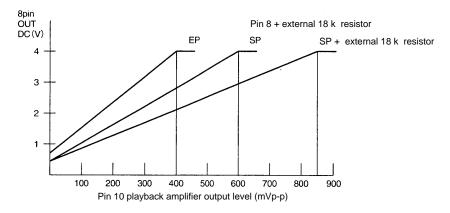
If the pin 4 DC voltage is < 1.6 V: SP mode

If the pin 4 DC voltage is > 1.6 V: EP mode

*: H.Sync synchronization for HA switching:

The switching of the HA SW circuit show in the figure at the right is synchronized with the H.Sync signal input to pin 6. (Other EP/SP switching is performed in real time.)

Comp.OUT (pin 3)

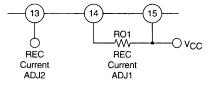

If the EP envelope is > SP: High (4.0 V or higher)

If the EP envelope is < SP: Low (0.7 V or lower)

2. Envelope Detector Characteristics: pin 8

The LA6529M includes an on-chip playback signal envelope detector circuit used to achieve automatic tracking adjustment with essentially linear characteristics.

Envelope Detector Characteristics (design target values) f = 4 MHz



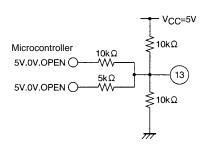
3. Record Amplifier Gain Control

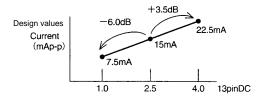
The LA6529M achieves an adjustment-free record current by adding an AGC circuit in the record amplifier block. The record current can be modified using the circuit shown below.

(1) REC Current.Adj2: When open

The pin 13 DC level is set to 1/2 V_{CC} (about 2.5 V) by an internal bias and the record current is determined by RO1.

Design values: RO1: 1.5 k = 15.6 mAp-p (SP) (per channel)= 12.3 mAp-p (EP)


(2) REC Current.Adj2: When used


The value determined by RO1 can be adjusted from -6.0 dB to +3.5 dB by applying a control DC level (1 to 4 V) to pin 13.

(Reference)

The circuit below can be used to apply the DC control level to pin 13.

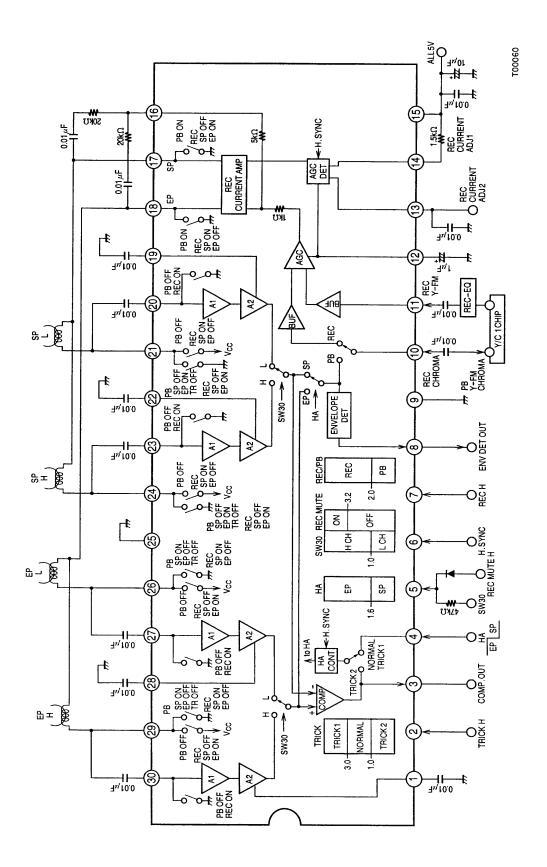
This allows 9 modes (1 to 4 V) to be applied.

Pin Functions

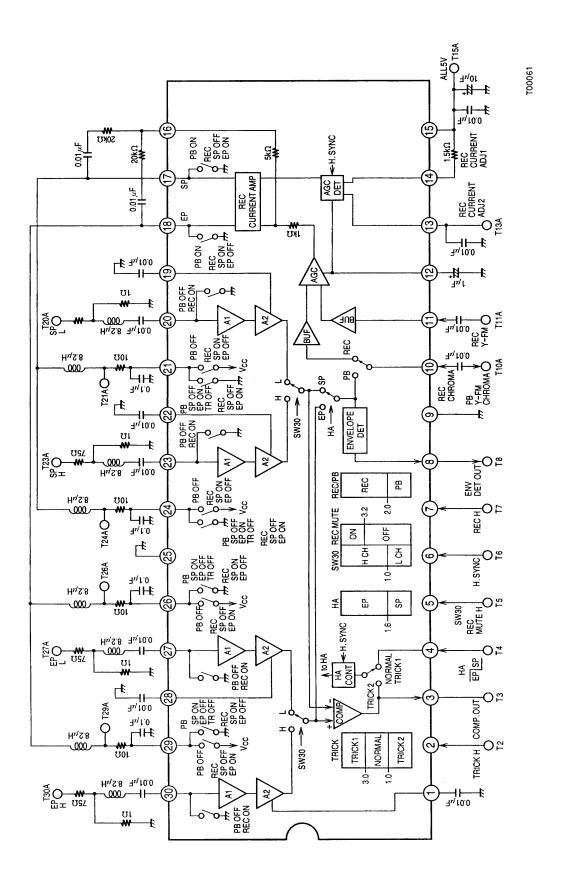
Pin No.	Pin	Standa	rd DC voltage (V)	Pin circuit	Notes
1 19 22 28	PB Amp Second filter	PB REC	2.0	$\begin{array}{c c} 1.5k\Omega & 3.3k\Omega \geqslant & 19\\ \hline 1.6k\Omega & 100\Omega & 28\\ \hline 75\Omega & (EP:0\Omega) \end{array}$	
		INEO	0.0		
2	TRICK-H			V _{CC} \$120kΩ Trick1 Comp Trick2 Comp 3.0V	3.0 V 1.0 V Trick1 NORMAL Trick2
		PB	High: 4.5 V or higher		
3	3 COMP-OUT		Low: 0.7 V or lower	₹100Ω ③——	EP > SP ENV: High
			OPEN	≥1κΩ 	
4	HA (EP/SP)			1κΩ 1κΩ HA Comp 1.6V	1.6 V EP SP
5	RF-SW (REC-MUTE)			S 1kΩ RF Comp RECMUTE Comp 3.2V T 1.0V	SW30 REC MUTE Hch
6	H-SYNC			6 20kΩ H.SYNC Comp 1.2V 7	1.5 V Sync H L

Continued on the next page.

Continued from the preceding page.


Pin No.	Pin	Standa	rd DC voltage (V)	Pin circuit	Notes
55011		РВ	0	7 20kΩ REC/PB	REC
7	REC-H	REC	5	80kΩ ≥ 1.6V T	2.0 V PB
8	ENV DET OUT	РВ	Described in a separate document.	——VCC	
8 ENV DET OUT		REC	0	® —	
9	GND				
10	PB-OUT	РВ	2.3	PB OUT \$\frac{1}{2} \frac{5}{2} \frac{5}{2} \frac{1}{2} \frac{1}{	
	REC-C-IN		3.6	25kΩ 300Ω C IN	
11	REC-Y-IN	REC	3.6	5kΩ 300Ω ———————————————————————————————————	
12	AGC-FLT	РВ	1.6	12 20kΩ	
		REC	1.6	10kΩ \$ \$600Ω	
13	REC-CURRENT ADJ2	РВ	2.5	VCC 100kΩ≶ (3 Comp	4 V: +3.5 dB 2.5 V: ±0 dB (OPEN) 1 V: –6 dB
		REC	2.5	100kΩ 100kΩ	1 V: −6 dB

Continued on the next page.


Continued from the preceding page.

Pin No.	Pin	Standa	rd DC voltage (V)	Pin circuit	Notes	
14 REC-CURRENT ADJ1		РВ	4.5	Comp		
		REC	5.0	∑ (1k,1.3kΩ)		
15	V _{CC}					
16	REC-BIAS	РВ	2.5	5kΩ (B)		
	10 KEO-BIAS	REC	1.7	From W. AGC 1kΩ		
17	17 REC-SP OUT 18 REC-EP OUT		РВ	0	18	
18		REC	4.2	16.7Ω 16.7Ω 16.7Ω 16.7Ω		
20 23	SP-L-IN SP-H-IN	РВ	0.7	② Comb. Tr		
27 30	EP-L-IN EP-H-IN	REC	0	REC ON		
21 24	SP-L-SW SP-H-SW	РВ	0	VCC REC ON (24) (26)(21)		
26 29	EP-L-SW EP-H-SW	REC	4.2	29 PB ON		
25	PRE-GND					

Block Diagram

Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1997. Specifications and information herein are subject to change without notice.