Current Transducer LA 55-P

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

CE

Primary nominal r.m.s. current			50			
Primary current, measuring range			0 ± 70			
Measuring resistance @		$\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$		$\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$		
		R _{M min}	$\mathbf{R}_{\rm Mmax}$	$\mathbf{R}_{M \min} \mathbf{R}_{M \max}$		
with ± 12 V	@ ± 50 A _{max}	10	100	60 95	Ω	
	@ ± 70 A	10	50	60 ¹⁾ 60 ¹⁾	Ω	
with ± 15 V	$@ \pm 50 A_{max}$	50	160	135 155	Ω	
	@ ± 70 A _{max}	50	90	135 ²⁾ 135 ²⁾	Ω	
Secondary nominal r.	m.s. current		50		mΑ	
Conversion ratio			1:1000			
Supply voltage (± 5 %)			± 1	2 15	V	
Current consumption			10 (@ ±15 V)+I _s mA			
R.m.s. voltage for AC	isolation test, 50 Hz,	1 mn	2.5	Ū	kV	
ccuracy - Dynamic	: performance da	ata				
	Primary current, meas Measuring resistance with ± 12 V with ± 15 V Secondary nominal r.I Conversion ratio Supply voltage (± 5 % Current consumption R.m.s. voltage for AC	Primary current, measuring range Measuring resistance @ with $\pm 12 V$ @ $\pm 50 A_{max}$ @ $\pm 70 A_{max}$ with $\pm 15 V$ @ $\pm 50 A_{max}$ @ $\pm 70 A_{max}$ @ $\pm 70 A_{max}$ @ $\pm 70 A_{max}$ Secondary nominal r.m.s. current Conversion ratio Supply voltage ($\pm 5 \%$) Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 7	Primary current, measuring range Measuring resistance @ $T_A =$ R_{Mmin} with ± 12 V@ ± 50 A max10 @ ± 70 A maxwith ± 15 V@ ± 50 A max50 @ ± 70 A maxwith ± 15 V@ ± 70 A max50Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %)50	Primary current, measuring range Measuring resistance @ $T_A = 70^{\circ}C$ $R_{Mmin} R_{Mmax}$ with $\pm 12 V$ @ $\pm 50 A_{max}$ 101000 (@ $\pm 70 A_{max}$ with $\pm 15 V$ @ $\pm 50 A_{max}$ 500160 (@ $\pm 70 A_{max}$ 0020Secondary nominal r.m.s. current50Conversion ratio Current consumption1:Supply voltage ($\pm 5 \%$) ± 1 Current consumption10R.m.s. voltage for AC isolation test, 50 Hz, 1 mn2.5	Primary current, measuring range $0 \dots \pm 70$ Measuring resistance @ $T_A = 70^{\circ}C$ $T_A = 85^{\circ}C$ with $\pm 12 V$ @ $\pm 50 A_{max}$ 10 100 @ $\pm 70 A_{max}$ 10 50 60 95 with $\pm 15 V$ @ $\pm 50 A_{max}$ 50 160 135 155 @ $\pm 70 A_{max}$ 50 90 135^{2}13	

A	ccuracy - Dynamic per	iormance data			
х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$	@ ± 15 V (± 5 %)	± 0.65		%
		@ ± 12 15 V (± 5 %)	± 0.90		%
e L	Linearity		< 0.15		%
			Тур	Max	
I _0	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} =$	25°C		± 0.2	mΑ
ОМ	Residual current $\vec{a} \otimes \mathbf{I}_{P} = 0$, after an overload of 3 x \mathbf{I}_{PN}			± 0.3	mΑ
ОТ	Thermal drift of I_{0}	0°C + 70°C	± 0.1	± 0.5	mΑ
01	C C	- 25°C + 85°C	± 0.1	± 0.6	mΑ
t ra	Reaction time @ 10 % of I _{P max}		< 500		ns
ţ	Response time @ 90 % of IP max		< 1		μs
di/dt	di/dt accurately followed		> 200		A/µs
f	Frequency bandwidth (- 1 de	3)	DC 2	200	kHz
G	eneral data				
T _A	Ambient operating temperature - 25 + 85		+ 85	°C	
T _s	Ambient storage temperature		- 40 + 90		°C
R _s	Secondary coil resistance @	\mathbf{D} $\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$	80		Ω
0		$\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$	85		Ω
m	Mass	<i>N</i>	18		g
	Standards 4)		EN 50	178	

Notes : ¹⁾ Measuring range limited to ± 60 A _{max}

²⁾ Measuring range limited to ± 55 A_{max}
 ³⁾ Result of the coercive field of the magnetic circuit
 ⁴⁾ A list of corresponding tests is available

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

I_{PN}

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980706/8

50 A

Dimensions LA 55-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

- Primary through-hole
- Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm
12.7 x 7 mm
12.7 × 7 11111

3 pins 0.63 x 0.56mm 0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

_www.DataSheet4LL.com

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.